相交线与平行线全章复习

合集下载

人教版七年级下数学第5章相交线与平行线复习巩固(含答案)

人教版七年级下数学第5章相交线与平行线复习巩固(含答案)

第五章相交线与平行线整章复习知识点1相交线1.下列图形中,∠1与∠2互为对顶角的是()A B C D2.如图,直线AB和CD相交所成的四个角中,∠1的邻补角是.3.如图,直线AB,CD相交于点O,若∠BOD=42°,OA平分∠COE,求∠DOE的度数.4.如图,直线AC,EF相交于点O,OD是∠AOB的平分线,OE在∠BOC 内,∠BOE=1∠EOC,∠DOE=72°,求∠AOF的度数.25.如图,要测量两堵墙所形成的∠AOB的度数,但人不能进入围墙,如何测量?请你写出测量方法,并说明几何道理.6.如图,我们知道:两直线交于一点,对顶角有2对;三条直线交于一点,对顶角有6对;四条直线交于一点,对顶角有12对,….(1)10条直线交于一点,对顶角有对;(2)n(n≥2)条直线交于一点,对顶角有对.知识点2垂线1.如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=150°,则∠3的度数为()A.30°B.40°C.50°D.60°2.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2和∠3的度数.3.如图,在△ABC中,过点C作CD⊥AB,垂足为D,则点C到直线AB 的距离是()A.线段CA的长B.线段CDC.线段AD的长D.线段CD的长4.如图是一条河,C是河边AB外一点.现欲用水管从河边AB将水引到C处,请在图上画出应该如何铺设水管能让路线最短,并说明理由.5.(1)如图①,过点P画AB的垂线;(2)如图②,过点P分别画OA,OB的垂线;(3)如图③,过点A画BC的垂线.知识点3同位角、内错角、同旁内角1.下列图形中,∠1和∠2不是同位角的是()A B C D2.如图,直线l1,l2被l3所截,则同位角共有()A.1对B.2对C.3对D.4对3.如图,下列说法错误的是()A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角4.如图,直线DE与∠O的两边相交,则∠O的同位角是,∠8的同旁内角是.5.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?知识点4平行线1.有下列四种说法:(1)过直线外一点有且只有一条直线与这条直线平行;(2)同一平面内,过一点能且只能作一条直线与已知直线垂直;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短;(4)平行于同一条直线的两条直线互相平行.其中正确的有()A.1个B.2个C.3个D.4个2.下列说法中,正确的有(填序号).(1)在同一平面内不相交的两条线段必平行;(2)在同一平面内不相交的两条直线必平行;(3)在同一平面内不平行的两条线段必相交;(4)在同一平面内不平行的两条直线必相交;(5)在同一平面内,两条直线的位置关系有三种:平行、相交和垂直. 3.四条直线a,b,c,d互不重合,如果a∥b,b∥c,c∥d,那直线a,d的位置关系为_________.4.如图,在∠AOB内有一点P.(1)过点P画l1∥OA;(2)过点P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样的关系.5.如图,将一张长方形的硬纸片ABCD对折后打开,折痕为EF,把长方形ABEF平摊在桌面上,另一面CDFE无论怎样改变位置,总有CD∥AB存在,为什么?知识点5平行线的判定1.如图,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.其中能判定AB∥CD的条件有()A.1个B.2个C.3个D.4个2.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上行驶,那么两次拐弯的角度可能为()A.第一次右拐60°,第二次右拐120°B.第一次右拐60°,第二次右拐60°C.第一次右拐60°,第二次左拐120°D.第一次右拐60°,第二次左拐60°3.如图,直线AB,CD,EF被直线GH所截,∠1=70°,∠2=110°,∠2+∠3=180°.求证:(1)EF∥AB;(2)CD∥AB.(补全横线上及括号里的内容)证明:(1)∵∠2+∠3=180°,∠2=110°(已知),∴∠3=70°().又∵∠1=70°(已知),∴∠1=∠3(),∴EF∥AB().(2)∵∠2+∠3=180°,∴∥( ).又∵EF∥AB(已证),∴∥().4.如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.知识点6平行线的性质1.(2019新疆)如图,AB∥CD,∠A=50°,则∠1的度数是()A.40°B.50°C.130°D.150°2.(2019张家界)已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=18°,则∠2的度数是.3.如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF∥AB.(1)CE与DF平行吗?为什么?(2)若∠DCE=130°,求∠DEF的度数.4.如图,已知DF∥AC,∠C=∠D,CE与BD有怎样的位置关系?请说明理由.知识点7命题、定理、证明1.下列语句中,不是命题的是()A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线2.下列命题中,是真命题的是()A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0D.若a·b=0,则a=0或b=03.把下列命题写成“如果……那么……”的形式.(1)内错角相等,两直线平行;(2)等角的余角相等.4.写出命题“平行于同一条直线的两条直线平行”的条件和结论.5.举反例说明下列命题是假命题.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab=0,则a+b=0.知识点8平移1.下面物体的运动情况可以看成平移的是()A.摆动的钟摆B.在笔直的公路上行驶的汽车C.随风摆动的旗帜D.汽车玻璃上雨刷的运动2.下列哪个图形是由左下图平移得到的()A B C D3.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.6B.8C.10D.124.如图,画出将△ABC向右平移6格得到的△A'B'C'.5.如图,△ABC沿BC方向平移到△DEF的位置,若EF=7 cm,CE=3 cm,求平移的距离.第五章 相交线与平行线知识点1 相交线 1.C 2.∠2和∠43.解:由对顶角相等得∠AOC=∠BOD=42°.∵OA 平分∠COE ,∴∠COE=2∠AOC=84°.由邻补角的性质得∠DOE=180°-∠COE=180°-84°=96°. 4.解:设∠BOE=x ,则∠AOF=∠EOC=2x.∵∠AOB 与∠BOC 互为邻补角,∴∠AOB=180°-3x. ∵OD 平分∠AOB ,∴∠DOB=12∠AOB=90°-32x. ∵∠DOE=72°,∴90°-32x+x=72°,解得x=36°. ∴∠AOF=2x=72°.5.解:反向延长射线OB到E,反向延长射线OA到F,则∠EOF和∠AOB是对顶角,所以可以测量出∠EOF的度数,∠EOF的度数就是∠AOB的度数.6.(1)90(2)n(n-1)知识点2垂线1.D2.解:由题意得∠3=∠1=30°(对顶角相等).∵AB⊥CD(已知),∴∠BOD=90°(垂直的定义),∴∠3+∠2=90°,即30°+∠2=90°,∴∠2=60°.3.D4.解:如图,沿CE铺设水管能让路线最短,因为垂线段最短.5.解:如图.知识点3同位角、内错角、同旁内角1.C2.D3.D4.∠5和∠2∠1和∠O5.解:∠1和∠2是直线EF,DC被直线AB所截形成的同位角,∠1和∠3是直线AB,CD被直线EF所截形成的同位角.知识点4平行线1.D2.(2)(4)3.a∥d4.解:(1)(2)如图.(3)l1与l2的夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.5.解:∵CD∥EF,EF∥AB,∴CD∥AB.知识点5平行线的判定1.C2.D3.(1)等式的性质等量代换内错角相等,两直线平行(2)CD EF同旁内角互补,两直线平行CD AB平行于同一条直线的两直线平行4.解:如图,过点F向左作FQ,使∠MFQ=∠2=50°,则∠NFQ=∠MFN-∠MFQ=90°-50°=40°,AB∥FQ.又因为∠1=140°,所以∠1+∠NFQ=180°,所以CD∥FQ,所以AB∥CD.知识点6平行线的性质1.C2.48°3.解:(1)CE∥DF.理由如下:∵∠1+∠2=180°,∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF.(2)∵CE∥DF,∠DCE=130°,∴∠CDF=180°-∠DCE=180°-130°=50°.∵DE平分∠CDF,∴∠CDE=1∠CDF=25°.2∵EF∥AB,∴∠DEF=∠CDE=25°.4.解:CE∥BD.理由如下:∵DF∥AC,∴∠D=∠ABD.∵∠C=∠D,∴∠ABD=∠C,∴CE∥BD.知识点7命题、定理、证明1.D2.D3.解:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(2)如果两个角是相等的角,那么它们的余角相等.4.解:把命题写成“如果……那么……”的形式:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以命题的条件是“两条直线都与第三条直线平行”,结论是“这两条直线也互相平行”.5.解:(1)两条平行直线被第三条直线所截形成的内错角,这两个角不是对顶角,但是它们相等.(2)当a=5,b=0时,ab=0,但a+b≠0.知识点8平移1.B2.C3.C4.解:如图.5.解:观察图形可知,平移的距离可以看作线段CF的长.因为EF=7 cm,CE=3 cm,所以平移的距离CF=EF-EC=7-3=4(cm).。

新版七下数学第五章相交线与平行线复习题五套

新版七下数学第五章相交线与平行线复习题五套

第五章相交线与平行线专题(一)相交线1.如图所示,直线AB与CD相交于点O,OE平分∠AOD,∠BOC=80°,求∠BOD和∠AOE的度数.2.如图,三条直线相交于点O,则∠1+∠2+∠3等于()A.90°B.120°C.180°D.360°,(第2题图)),(第3题图))3.如图,三条直线AB,CD,EF相交于点O,若∠BOE=4∠BOD,∠AOE=100°,则∠AOC 等于()A.30°B.20°C.15°D.10°4.如图,AB和CD相交于点O.(1)若∠1+∠3=50°,则∠3=__ __;(2)若∠1∶∠2=2∶3,则∠3=__ __;(3)若∠2-∠3=70°,则∠3=__ __.5.如图,两条直线AB,CD相交于点O,OE平分∠BOC,若∠1=30°,∠2=___ _,∠3=__ __.6.如图所示,直线AB,CD,EF相交于点O.(1)试写出∠AOC,∠AOE,∠EOC的对顶角;(2)试写出∠AOC,∠AOE,∠EOC的邻补角;(3)若∠AOC=40°,求∠BOD,∠BOC的度数.7.如图,一长方形纸片ABCD沿折痕EF对折,得到点D的对应点D′,点C的对应点C′,若∠BFE=50°,试求∠BFC′的度数.8.如图所示,已知直线AB,CD相交于点O,OE平分∠BOD,若∠3∶∠2=8∶1,求∠AOC 的度数.第五章相交线与平行线专题(二)平行线的判定1.如图所示,直线a ,b 被直线c 所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件为( )A .①②B .①③C .①④D .③④2.如图所示,要得到DE ∥BC ,则需要的条件为( )A .CD ⊥AB ,GF ⊥AB B .∠4+∠5=180°C .∠1=∠3D .∠2=∠33.对于图中标记的各角,下列条件能够推理得到a ∥b 的是( )A .∠1=∠2B .∠2=∠4C .∠3=∠4D .∠1+∠4=180°4.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A +∠2=180°B .∠3=∠AC .∠1=∠4D .∠1=∠A5.)如图所示,下列判断不正确的是( )A .∵∠1=∠2,∴AE ∥BDB .∵∠1=∠2,∴AB ∥EDC .∵∠3=∠4,∴AB ∥CD D .∵∠5=∠BDC ,∴AE ∥BD6.如图,能说明AB ∥DE 的有( )①∠1=∠D ;②∠CFB +∠D =180°;③∠B =∠D ;④∠D =∠BFD.A .1个B .2个C .3个D .4个(第1题图)(第2题图) (第5题图)(第6题图)7.如图,给出下面的推理:①因为∠B =∠BEF ,所以AB ∥EF ;②因为∠B =∠CDE , 所以AB ∥CD ;③因为∠B +∠BDC =180°,所以AB ∥EF ;④因为AB ∥CD ,CD ∥EF , 所以AB ∥EF.其中正确的推理是( )A .①②③B .①②④C .①③④D .②③④9.如图,下列推理正确的是( )A .∵∠1=∠2,∴AB ∥CD B .∵∠1+∠2=180°,∴AB ∥CDC .∵∠3=∠4,∴AB ∥CD D .∵∠3+∠4=180°,∴AB ∥CD10.如图,已知直线EF 分别交CD ,AB 于点M ,N ,且∠EMD =65°,∠MNB =115°,则下列结论正确的是( )A .AE ∥CFB .AB ∥CDC .∠A =∠D D .∠E =∠F11.如图,BD 平分∠ABC ,若∠1=∠2,则( )A .AB ∥CD B .AD ∥BC C .AD =BC D .AB =CD12.如图所示,AC ⊥BC ,垂足为C ,∠B =50°,∠ACD =40°,则AB 与CD 的位置关系是 AB ∥CD__.13.如图所示,下列条件中:(1)∠B +∠BCD =180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B =∠5.能判定AB ∥CD的条件有 .(填序号),(第9题图)) ,(第10题图)) ,(第11题图)) ,(第12题图))14.(8分)如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°,直线AB,CD有何位置关系?说明理由.16.(10分)如图,已知直线a,b,c被直线d,e所截,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?17.(12分)如图,AC⊥EC,B,C,D在同一直线上,∠A=∠1,∠E=∠2,直线AB与DE平行吗?试说明理由.第五章相交线与平行线专题(三)平行线的性质1.如图,直线m ∥n ,∠α为( )A .70 B .65° C .50° D .40°2.如图,AB ∥ED ,AG 平分∠BAC ,∠ECF =70°,则∠FAG 的度数是( )A .155°B .145°C .110°D .35°3.如图,已知AB ∥CD ,∠1=130°,则∠2=__ .4.如图,EF ∥BC ,AC 平分∠BAF ,∠B =80°,求∠C 的度数5.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( )A .60°B .50°C .40°D .30°6. 6.一张长方形的纸条,按如图方式折叠一下,已知∠3=120°,则∠1的度数为( )7.A .30° B .60° C .90° D .120°8.9. ,(第1题图)) ,(第2题图)) ,(第5题图)) ,(第6题图))10.7.(4分)如图,∠1=50°,∠2=140°,∠C =50°,则∠B =____.9.某次考古发掘出的一个梯形残缺玉片如下图,工作人员从玉片上量得∠A =115°,∠D =100°,已知梯形的两底AD ∥BC ,请你帮助工作人员求出另外两个角的度数,并说明理由.10.如图所示,点B 是△ADC 的边AD 的延长线上一点,DE ∥AC ,若∠C =50°, ∠BDE =60°,则∠CDB 的度数等于( )A .70°B .100°C .110°D .120°11.如图所示,已知AB ∥EF ∥DC ,EG ∥BD ,则图中与∠1相等的角共有( )A .6个B .5个C .4个D .2个12.如图所示,已知AB ∥CD ,BC ∥DE ,则∠B +∠D 的度数为____.13.如图,AC ∥BD ,AE 平分∠BAC 交BD 于点E ,若∠1=64°,则∠2=___ _.(第10题图) (第11题图), ( 第 7 题图 )14.(12分)如图所示,已知∠ABC=40°,∠ACB=60°,BO,CO分别平分∠ABC,∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.15.(12分)如图,直线AD与AB,CD相交于A,D两点,EC,BF与AB,CD相交于点E,C,B,F,如果∠1=∠2,∠B=∠C.小明在图上把两组相等角的信息标注出来后,略加分析,便发现CE∥BF,同桌的小慧说:“不光有这个发现,我还能得到∠A=∠D呢?”小明再深入其中,很快也明白了小慧是怎么得到∠A=∠D的了.你能帮助他们写出过程吗?16.(12分)如图,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在AB上.(1)试找出∠1,∠2,∠3之间的关系并说明理由;(2)如果点P在A,B两点之间运动时,问∠1,∠2,∠3之间的关系是否发生变化?(3)如果点P在A,B两点外侧运动时,试探究∠1,∠2,∠3之间的关系(点P和A,B不重合).第五章相交线与平行线专题(四)平行线的性质与判定的综合运用1.如图,直线AB ,CD 相交于点O ,OT ⊥AB 于点O ,CE ∥AB 交CD 于点C ,若∠ECO =30°,则∠DOT 的度数为( ) A .30° B .45° C .60° D .120°2.如图,AB ∥CD ,∠DFE =135°,则∠ABE 的度数是( )A .30°B .45C .60°D .90°3.如图,a ,b ,c 为三条直线,且a ⊥c ,b ⊥c ,若∠1=70°,则∠2的度数为( )A .70°B .90°C .110°D .80°4.如图所示,已知∠1=∠2=∠3=55°,则∠4的度数是( )A .110°B .115°C .120°D .125°5.(4分)如图所示,已知∠1=∠2,∠3=80°,则∠4等于( )A .80°B .70°C .60°D .50°6.(4分)如图,已知直线a ∥b ,∠1=40°,∠2=60°,则∠3等于( )A .100°B .60°C .40°D .20°(第1题图)(第2题图) (第3题图)(第4题图)7.将一副直角三角板如图所示放置,使含30°角的三角板短直角边和含45°角 的三角板的一条直角边重合,则∠1的度数为__.8.如图所示是一大门的栏杆,AE 为地面,BA ⊥AE 于点A ,CD ∥AE ,则∠ABC +∠BCD= _9.(8分)如图,直线AB ,CD 分别与直线AC 相交于点A ,C ,与直线BD 相交于点B ,D.若∠1=∠2,∠3=75°,求∠4的度数.10.如图,AB ∥CD ,AE 交CD 于C ,∠A =34°,∠DEC =90°,则∠D 的度数为() A .17° B .34° C .56° D .124°11.如图,已知AB ∥CD ,∠C =65°,∠E =30°,则∠A 的度数为( )A .30°B .32.5°C .35°D .37.5°12.如图所示,AB ∥CD ∥EF ,则∠BAD +∠ADE +∠DEF 等于( )A .180°B .270°C .360°D .540°13.如图所示,∠A =60°,∠4=45°,DE ∥BC ,EF ∥AB ,则∠1=___ _, ∠2=__ __, ∠3=__ _,∠B =__ _,∠C =___ _. (第5题图) (第6题图,(第10题图)) ,(第11题图)(第7题图) (第8题图)14.如图,直线l1∥l2∥l3,点A ,B ,C 分别在直线l1,l2,l3上.若∠1=70°,∠2=50°,则∠ABC =____.15.如图,l ∥m ,等边△ABC 的顶点A 在直线m 上,则∠α=__.16.(8分)如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3.请问:AD 平分∠BAC 吗?若平分,请说明理由.17.(10分)如图所示,CD ⊥AB ,垂足为D ,F 是BC 上任意一点,EF ⊥AB ,垂足为E ,且∠1=∠2,∠3=80°,求∠BCA 的度数.18.(12分)如图所示,∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的大小关系,并(第12题图)(第13题图) ,(第14题图)),(第15题图)说明你的理由.第五章相交线与平行线专题(五)平行线的性质与判定变式训练【教材母题】(教材P36第8题(2)改编)如图,∠1+∠2=180°,∠3=108°,求∠4的度数.变式1.(2014·菏泽)如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°变式2.(2014·邵阳)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°,(第1题图)),(第2题图))变式3.(2014·聊城)如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()A.53°B.55°C.57°D.60°变式4.(2014·遵义)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=() A.30°B.35°C.36°D.40°,(第3题图)),(第4题图))变式5.如果一个角的两边分别与另一个角的两边平行,且一个角比另一个角的3倍少40°,则这两个角的度数分别为__变式6.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.变式7.如图所示,已知AD⊥BC于D,E是AB上一点,EF⊥BC于F,且∠1=∠2,试判断∠B与∠CDG的大小关系,并说明理由.变式8.如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.变式9.如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F.变式10.若AB∥CD,∠1=∠2,∠3=∠4,AD与BC平行吗?为什么?变式11.如图,已知∠1=∠2,∠MAE=45°,∠FEG=15°,∠NCE=75°,EG平分∠AEC,试说明AB∥EF∥CD.变式12.(探究题)(1)如图①,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图②的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图③的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图④中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?。

初中数学相交线与平行线全章知识点归纳及典型题目练习(含答案)

初中数学相交线与平行线全章知识点归纳及典型题目练习(含答案)

第五章相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:____________________________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11.判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是____________,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______.⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.14. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________;b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.15. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.16. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.17. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( )又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .18. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.19. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )20. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.21. 如图,已知ABC ∆ABC ∆,AD BC ⊥AD BC ⊥于D ,E E 为AB AB 上一点,EF BC ⊥EF BC ⊥于F ,//DG BA //DG BA 交CA 于G .求证12∠=∠12∠=∠.22. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.参考答案1.邻补角2. 对顶角,对顶角相等3.垂直 有且只有 垂线段最短4.点到直线的距离5.同位角 内错角 同旁内角6.平行 相交 平行7.平行 这两直线互相平行8.同位角相等 两直线平行; 内错角相等 两直线平行; 同旁内角互补 两直线平行.9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补.11.命题 题设 结论 由已知事项推出的事项 题设 结论 真命题 假命题 12.平移 相同 平行且相等 13.6cm 8cm 10cm 4.8cm. 14.平行 平行 垂直 15. 28° 118° 59° 16. OD ⊥OE 理由略 17. 1(两直线平行,内错角相等)DE ∥CF (平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 18.⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a ∥b (同位角相等 两直线平行) ⑵∵a ∥b ∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 19. 两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 20. 96°,12°.21.,AD BC FE BC ⊥⊥,AD BC FE BC ⊥⊥90EFB ADB ∴∠=∠=//EF AD ∴//EF AD ∴23∴∠=∠//,31DG BA ∴∠=∠//,31DG BA ∴∠=∠ 1 2.∴∠=∠1 2.∴∠=∠ 22. ∠A =∠F .∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。

第五章相交线与平行线复习课件(共37张ppt)

第五章相交线与平行线复习课件(共37张ppt)

如图,两平面镜а、β的夹角为θ,入射光线AO平行于β入
射到а上,经两次反射后的反射光线 O' B 平行于а,则角
θ=__6_0__0度
分析 : 依题意有OA // ,O ' B // ,
а
B 且1 2,3 4,
O1 2
由OA // 得1 A 由O ' B //得4 ,5 2
2. 对顶角: (1)两条直线相交所构成的四个角中,
有公共顶点但没有公共边的两个角是对顶角。
如图(2). 1与2, 3与4是对顶角。
21
(1)
(2)一个角的两边分别是另一个角的两边的 反向延长线,这两个角是对顶角。
3. 邻补角的性质: 同角的补角相等。
1与3互补,2与3互补
3 12
4
种:(1)相交; (2)平行。 3. 平行线的基本性质: (1) 平行公理(平行线的存在性和唯一性)
经过直线外一点,有且只有一条直线与已知直线平行。 (2) 推论(平行线的传递性) 如果两条直线都和第三条直线平行, 那么这两条直线也互相平行。 4.同位角、内错角、同旁内角的概念 同位角、内错角、同旁内角,指的是一条直线分别与两条直线 相交构成的八个角中,不共顶点的角之间的特殊位置关系。 它们与对顶角、邻补角一样,总是成对存在着的。
内错角相等,两直线平行。 同旁内角互补,两直线平行。 在这五种方法中,定义一般不常用。
读下列语句,并画出图形
• 点p是直线AB外的一点, 直线CD经过点P,且与直 线AB平行;
• 直线AB、CD是相交直线, 点P是直线AB外的一点, 直线EF经过点P与直线 AB平行,与直线CD交于E.
A
P.
A
D
.P

(必考题)初中七年级数学下册第五章《相交线与平行线》复习题(含答案解析)

(必考题)初中七年级数学下册第五章《相交线与平行线》复习题(含答案解析)

一、选择题1.下列定理中,没有逆定理的是().A.两直线平行,同旁内角互补B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.等腰三角形两个底角相等D.同角的余角相等D解析:D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意;B、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故本选项符合题意.故选:D.【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.2.下列命题:①相等的角是对顶角;②同角的余角相等;③垂直于同一条直线的两直线互相平行;④在同一平面内,如果两条直线不平行,它们一定相交;⑤同位角相等;⑥如果直线a∥b,b⊥c,那么a⊥c,其中真命题的个数是()A.4个B.3个C.2个D.以上都不对B解析:B【分析】利用对顶角的定义、余角的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故错误,是假命题;②同角的余角相等,正确,为真命题;③在同一平面内,垂直于同一条直线的两直线互相平行,故错误,是假命题;④在同一平面内,如果两条直线不平行,它们一定相交,正确,为真命题;⑤两直线平行,同位角相等,故错误,是假命题;⑥如果直线a ∥b ,b ⊥c ,那么a ⊥c ,正确,为真命题,故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、余角的定义、两直线的位置关系等知识,属于基础题,难度不大.3.如图://AB DE ,50B ∠=︒,110D ∠=︒,BCD ∠的度数为( )A .160︒B .115︒C .110︒D .120︒D解析:D【分析】 如图(见解析),利用平行线的判定与性质、角的和差即可得.【详解】如图,过点C 作//CF AB ,//AB DE ,////AB DE CF ∴,,180BCF B DCF D ∴∠=∠∠+∠=︒,50,110B D ∠=︒∠=︒,50,18070BCF DCF D ∴∠=︒∠=︒-∠=︒,120BCD BCF DCF ∴∠=∠+∠=︒,故选:D .【点睛】本题考查了平行线的判定与性质、角的和差,熟练掌握平行线的判定与性质是解题关键. 4.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A.∠1+∠2−∠3=90°B.∠1−∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3−∠1=180°D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D.【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.5.在同一平面内,有3条直线a,b,c,其中直线a与直线b相交,直线a与直线c平行,那么b与c的位置关系是()A.平行B.相交C.平行或相交D.不能确定B解析:B【分析】根据a∥c,a与b相交,可知c与b相交,如果c与b不相交,则c与b平行,故b与a 平行,与题目中的b与a相交矛盾,从而可以解答本题.【详解】解:假设b∥c,∵a∥c,∴a∥b,而已知a与b相交于点O,故假设b∥c不成立,故b与c相交,故选:B.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.6.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB∥CE,且∠ADC=∠B:④AB∥CE,且∠BCD=∠BAD.其中能推出BC∥AD的条件为()A.①②B.②④C.②③D.②③④D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.7.如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c C.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c C解析:C【解析】试题分析:根据平行线的判定进行判断即可.解:A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B 、若∠1=∠2,则a ∥c ,利用了内错角相等,两直线平行,正确;C 、∠3=∠2,不能判断b ∥c ,错误;D 、若∠3+∠5=180°,则a ∥c ,利用同旁内角互补,两直线平行,正确;故选C .考点:平行线的判定.8.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒B解析:B【分析】 根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。

相交线与平行线全章教案

相交线与平行线全章教案

相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。

2. 掌握平行线的性质及判定方法。

3. 能够运用平行线的性质解决实际问题。

教学内容:1. 相交线的定义及特点。

2. 平行线的定义及特点。

3. 平行线的性质及判定方法。

4. 运用平行线的性质解决实际问题。

教学方法:1. 采用多媒体演示,让学生直观地了解相交线与平行线的特点。

2. 利用几何模型,让学生亲手操作,加深对相交线与平行线性质的理解。

3. 例题讲解,让学生学会运用平行线的性质解决实际问题。

教学步骤:1. 引入相交线与平行线的概念,展示相关图片,让学生直观地感受。

3. 引导学生通过实际操作,发现并证明平行线的性质。

4. 讲解平行线的判定方法,让学生学会判断两条直线是否平行。

5. 利用例题,让学生运用平行线的性质解决实际问题。

教学评价:1. 课堂问答,检查学生对相交线与平行线概念的理解。

2. 课后作业,检验学生对平行线性质及判定方法的掌握。

第二章:相交线与平行线的性质探究教学目标:1. 掌握相交线与平行线的性质。

2. 学会运用相交线与平行线的性质解决实际问题。

教学内容:1. 相交线的性质。

2. 平行线的性质。

3. 运用相交线与平行线的性质解决实际问题。

教学方法:1. 采用多媒体演示,让学生直观地了解相交线与平行线的性质。

2. 利用几何模型,让学生亲手操作,加深对相交线与平行线性质的理解。

3. 例题讲解,让学生学会运用相交线与平行线的性质解决实际问题。

教学步骤:1. 复习相交线与平行线的定义,引导学生回顾已学的性质。

2. 通过多媒体演示,让学生直观地感受相交线与平行线的性质。

4. 利用几何模型,让学生亲手操作,加深对相交线与平行线性质的理解。

5. 讲解运用相交线与平行线的性质解决实际问题的方法,引导学生学会运用。

教学评价:1. 课堂问答,检查学生对相交线与平行线性质的理解。

2. 课后作业,检验学生对相交线与平行线性质的掌握。

第五章 相交线与平行线复习题附解析

第五章 相交线与平行线复习题附解析

第五章 相交线与平行线复习题附解析一、选择题1.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 22.下列各命题中,原命题成立,而它逆命题不成立的是( )A .平行四边形的两组对边分别平行B .矩形的对角线相等C .四边相等的四边形是菱形D .直角三角形中,斜边的平方等于两直角边的平方和3.如图,直角三角形ABC 的直角边AB =6,BC =8,将直角三角形ABC 沿边BC 的方向平移到三角形DEF 的位置,DE 交AC 于点G ,BE =2,三角形CEG 的面积为13.5,下列结论:①三角形ABC 平移的距离是4;②EG =4.5;③AD ∥CF ;④四边形ADFC 的面积为6.其中正确的结论是A .①②B .②③C .③④D .②④ 4.如图,直线a ∥b ,把三角板的直角顶点放在直线b 上,若∠1=60°,则∠2的度数为( )A .45°B .35°C .30°D .25°5.如图,四边形ABCD 是正方形,直线a ,b ,c 分别通过A 、D 、C 三点,且a ∥b ∥c .若a 与b 之间的距离是3,b 与c 之间的距离是6,则正方形ABCD 的面积是( )A.36 B.45 C.54 D.646.如图,已知AB∥CD,BE和DF分别平分∠ABF和∠CDE,2∠E-∠F=48°,则∠CDE的度数为( ).A.16°B.32°C.48°D.64°7.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为()A.1个B.2个C.3个D.4个8.光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=()A.61°B.58°C.48°D.41°9.命题“垂直于同一条直线的两条直线互相平行”的条件是()A.垂直B.两条直线互相平行C.同一条直线D.两条直线垂直于同一条直线10.如图,△ABC经平移得到△EFB,则下列说法正确的有()①线段AC的对应线段是线段EB;②点C的对应点是点B;③AC∥EB;④平移的距离等于线段BF的长度.A.1 B.2 C.3 D.4二、填空题11.如图,直线l1∥l2∥l3,等边△ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角∠1=25°,则边AB与直线l1的夹角∠2=________.12.如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=_____(度).13.如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.14.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.15.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有____对,内错角有_____对,同旁内角有_____对;(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有____对,内错角有___对,同旁内角有___对;(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有______对,内错角有_______对,同旁内角有______对.(用含n的式子表示)16.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.17.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC∥DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为________.18.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOD=120°,则∠BOD=__________°.19.如图,∠AOB=60°,在∠AOB的内部有一点P,以P为顶点,作∠CPD,使∠CPD的两边与∠AOB的两边分别平行,∠CPD的度数为_______度.20.跳格游戏:如图,人从格外只能进入第1格;在格中,每次可向前跳l格或2格,那么人从格外跳到第6格可以有_________种方法.三、解答题21.阅读下面材料:彤彤遇到这样一个问题:已知:如图甲,AB //CD ,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED . 求证:∠BED =∠B +∠D .彤彤是这样做的:过点E 作EF //AB ,则有∠BEF =∠B .∵AB //CD ,∴EF //CD .∴∠FED =∠D .∴∠BEF +∠FED =∠B +∠D .即∠BED =∠B +∠D .请你参考彤彤思考问题的方法,解决问题:如图乙.已知:直线a //b ,点A ,B 在直线a 上,点C ,D 在直线b 上,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,且BE ,DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若∠ABC =60°,∠ADC =70°,求∠BED 的度数; (2)如图2,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,直接写出∠BED 的度数(用含有α,β的式子表示).22.如图①,已知直线12l l //,且3l 和12,l l 分别相交于,A B 两点,4l 和12,l l 分别相交于,C D 两点,点P 在线段AB 上,记1 23ACP BDP CPD ∠∠∠∠∠∠=,=,=.(1)若120,355︒︒∠=∠=,则2∠=_____;(2)试找出123∠∠∠,,之间的数量关系,并说明理由;(3)应用(2)中的结论解答下列问题;如图②,点A 在B 处北偏东42︒的方向上, 若88BAC ︒∠=,则点 A 在C 处的北偏西_____的方向上;(4)如果点P 在直线3l 上且在,A B 两点外侧运动时,其他条件不变,试探究1 23∠∠∠,,之间的关系(点 P 和,A B 两点不重合),直接写出结论即可.23.已知AB ∥CD ,点C 在点D 的右侧,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 相交于点E .(1)如图1,当点B 在点A 的左侧时,①若∠ABC =50º,∠ADC =70º,求∠BED 的度数;②请直接写出∠BED 与∠ABC ,∠ADC 的数量关系;(2)如图2,当点B 在点A 的右侧时,试猜想∠BED 与∠ABC ,∠ADC 的数量关系,并说明理由.24.已知直线AB CD ∥,直线EF 与直线AB 、CD 分别相交于点E 、F .(1)如图1,若160∠=︒,求2∠,3∠的度数;(2)若点P 是平面内的一个动点,连接PE 、PF ,探索EPF ∠、PEB ∠、PFD ∠之间的数量关系;①当点P 在图2的位置时,请写出EPF ∠、PEB ∠、PFD ∠之间的数量关系并证明; ②当点P 在图3的位置时,请写出EPF ∠、PEB ∠、PFD ∠之间的数量关系并证明; ③当点P 在图4的位置时,请直接写出EPF ∠、PEB ∠、PFD ∠之间的数量关系.25.问题情境:如图1,//AB CD ,128PAB ∠=︒,124PCD ∠=︒,求APC ∠的度数.小明的思路是过点P 作//PE AB ,通过平行线性质来求APC ∠.(1)按照小明的思路,写出推算过程,求APC ∠的度数.(2)问题迁移:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,当点P 在线段OB 上时,请直接写出APC ∠与α、β之间的数量关系.26.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=︒,60B ∠=︒,45D E ∠=∠=︒.(1)猜想BCD ∠与ACE ∠的数量关系,并说明理由;(2)若3BCD ACE ∠=∠,求BCD ∠的度数;(3)若按住三角板ABC 不动,绕顶点C 转动三角DCE ,试探究BCD ∠等于多少度时//CE AB ,并简要说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【详解】解:由图可知:矩形ABCD 中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102-2)米,宽为(51-1)米.所以草坪的面积应该是长×宽=(102-2)(51-1)=5000(米2).故选B .2.B解析:B【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项.【详解】解:A、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C、四边相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意;故选:B.【点睛】本题主要考查的是命题和定理的知识,正确的写出它的逆命题是解题的关键.3.B解析:B【解析】分析:(1)对应线段的长度即是平移的距离;(2)根据EC的长和△CEG的面积求EG;(3)平移前后,对应点的连线平行且相等;(4)根据平行四边形的面积公式求.详解:(1)因为点B,E是对应点,且BE=2,所以△ABC平行的距离是2,则①错误;②根据题意得,13.5×2=(8-2)EG,解得EG=4.5,则②正确;③因为A,D是对应点,C,F是对应点,所以AD∥CF,则③正确;④平行四边形ADFC的面积为AB·CF=AB·BE=6×2=12,则④错误.故选B.点睛:本题考查了平移的性质,平移的性质有:①平移只改变图形的位置,不改变图形的形状和大小;②平移得到的图形与原图形中的对应线段平行(或在同一条直线上)且相等,对应角相等;对应点连线平行(或在同一条直线上)且相等.4.C解析:C【分析】由a与b平行,利用两直线平行同位角相等求出∠3的度数,再利用平角定义及∠4为直角,即可确定出所求角的度数.【详解】【解答】解:∵a∥b,∴∠3=∠1=60°,∵∠4=90°,∠3+∠4+∠2=180°,∴∠2=30°.故选:C.【点睛】本题考查了根据平行线的性质求角的度数,利用直角转化角是一种比较常见的方法,在一条直线上,3个角共顶点,且有一个角为直角,则另两个角的和为90°.5.B解析:B【分析】过A 作AM ⊥直线b 于M ,过D 作DN ⊥直线c 于N ,求出∠AMD =∠DNC =90°,AD =DC ,∠1=∠3,根据AAS 推出△AMD ≌△CND ,根据全等得出AM =CN ,求出AM =CN =4,DN =8,在Rt △DNC 中,由勾股定理求出DC 2即可.【详解】解:如图:过A 作AM ⊥直线b 于M ,过D 作DN ⊥直线c 于N ,则∠AMD =∠DNC =90°,∵直线b ∥直线c ,DN ⊥直线c ,∴∠2+∠3=90°,∵四边形ABCD 是正方形,∴AD =DC ,∠1+∠2=90°,∴∠1=∠3,在△AMD 和△CND 中1390AMD CND AD CD ⎧∠=∠⎪∠=∠=︒⎨⎪=⎩, ∴△AMD ≌△CND (AAS ),∴AM =CN ,∵a 与b 之间的距离是3,b 与c 之间的距离是6,∴AM =CN =3,DN =6,在Rt △DNC 中,由勾股定理得:DC 2=DN 2+CN 2=32+62=45,即正方形ABCD 的面积为45,故选:B .【点睛】本题主要考查了根据平行线的性质证明三角形全等,准确分析是解题的关键.6.B解析:B【解析】【分析】已知BE和DF分别平分∠ABF和∠CDE,根据角平分线分定义可得∠ABE=12∠ABF,∠CDF=12∠CDE;过点E作EM//AB,点F作FN//AB,即可得////AB CD EM//FN,由平行线的性质可得∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,由此可得∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,又因2∠BED-∠BFD=48°,即可得2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,由此即可求得∠CDE=32°.【详解】∵BE和DF分别平分∠ABF和∠CDE,∴∠ABE=12∠ABF,∠CDF=12∠CDE,过点E作EM//AB,点F作FN//AB,∵//AB CD,∴////AB CD EM//FN,∴∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,∴∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,∵2∠BED-∠BFD=48°,∴2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,∴∠CDE=32°.故选B.【点睛】本题考查了平行线的性质,根据平行线的性质确定有关角之间的关系是解决问题的关键. 7.B解析:B【分析】根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【详解】①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形;③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);④平行于同一条直线的两直线互相平行,是真命题;故选B.【点睛】本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念.8.B解析:B【分析】由水面和杯底互相平行,利用“两直线平行,同旁内角互补”可求出∠3的度数,由水中的两条折射光线平行,利用“两直线平行,同位角相等”可得出∠2的度数.【详解】如图,∵水面和杯底互相平行,∴∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣122°=58°.∵水中的两条折射光线平行,∴∠2=∠3=58°.故选:B.【点睛】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”和“两直线平行,同位角相等”是解题的关键.9.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.10.D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.二、填空题11.【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35解析:035【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考点:1.平行线的性质;2.等边三角形的性质.12.75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.13.68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意解析:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.14.24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和解析:24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和E有2对;A和F有2对.B和C有2对;B和D有2对;B和E有2对;B和F没有同旁内角.C和D有2对,C和E没有同旁内角,C和F有2对.D和E有2对;D和F有2对.E和F有2对.共有2×12=24对.故答案是:24.【点睛】本题主要考察三线八角中的同旁内角,正确理解同旁内角和准确的分类是解题的关键. 15.(1)4,2,2;(2)12,6,6;(3)2n(n-1),n(n-1),n(n-1)【解析】试题分析:根据同位角是两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角是两个角都解析:(1)4,2,2;(2)12,6,6;(3)2n(n-1),n(n-1),n(n-1)【解析】试题分析:根据同位角是两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角是两个角都在截线的两侧,又分别处在被截的两条直线中间的位置的角,根据同旁内角是两个角都在截线的同旁,又分别处在被截的两条直线中间的位置的角,可得答案.试题解析:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有4对,内错角有 2对,同旁内角有 2对.(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有 12对,内错角有 6对,同旁内角有 6对.(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有2n(n-1)对,内错角有 n(n-1)对,同旁内角有n(n-1)对,点睛:本题考查了同位角、内错角、同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.16.50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC 内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线解析:50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线BD平分∠FBC,∴∠5=12(180°﹣∠4)=12(180°﹣80°+2x)=50°+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5=180°﹣x﹣(80°﹣2x)﹣(50°+x)=180°﹣x﹣80°+2x﹣50°﹣x=50°.故答案为50°.点睛:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并理清图中各角度之间的关系是解题的关键.17.45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAE=∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAE=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故答案为45°,60°,105°,135°.点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).18.30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA平分∠EOC,∴∠AOC=∠EOC=解析:30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA平分∠EOC,∴∠AOC=12∠EOC=30°(角平分线定义),∴∠BOD=30°(对顶角相等).故答案为:30.【点睛】本题考查由角平分线的定义,结合补角的性质,易求该角的度数.19.60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:(1)如图1,,(两直线平行,同位角相等),(两直线平行,内错解析:60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:PC OB PD OA,(1)如图1,//,//∠︒(两直线平行,同位角相等),∴=∠=AOBPDB60CPD∠︒(两直线平行,内错角相等);∴=∠=PDB60PC OB PD OA,(2)如图2,//,//∴=∠=∠︒(两直线平行,同位角相等),AOBPDB60∠=︒-∴∠=︒(两直线平行,同旁内角互补);DP D180120C P B∠的度数为60︒或120︒,综上,CPD故答案为:60或120.【点睛】本题考查了平行线的性质,依据题意,正确分两种情况讨论是解题关键.20.8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1解析:8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1格时,1种方法;当有1次跳2格,其他全部1格,有4种方法;当有2次跳2格时,其他全部1格,有3种方法;不存在3次或者更多跳2格的情况综上共有1+4+3=8种方法.【点睛】本题考查数列的递推式,实际上我们解题时抓住实际问题的本质,写出满足条件的数列,利用数列的递推式写出结果.三、解答题21.(1)65°;(2)11 18022αβ︒-+【分析】(1)如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考彤彤思考问题的方法即可求∠BED的度数;(2)如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考彤彤思考问题的方法即可求出∠BED的度数.【详解】(1)如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=30°,∠EDC=12∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;(2)如图2,过点E作EF∥AB,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD ,∴EF ∥CD ,∴∠FED =∠EDC .∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣12α +12β. 答:∠BED 的度数为180°﹣12α +12β. 【点睛】 本题考查了平行线的判定与性质以及角平分线的定义,解决本题的关键是熟练掌握平行线的判定与性质.22.(1)35︒;(2)123∠+∠=∠,理由见解析;(3)46︒;(4)当P 点在A 的上方时,321∠=∠-∠,当P 点在B 的下方时,312∠=∠-∠.【分析】(1)由题意直接根据平行线的性质和三角形内角和定理进行分析即可求解; (2)由题意过点P 作//PM AC ,进而利用平行线的性质进行分析证明即可;(3)根据题意过A 点作//AF BD ,则////A BD CE ,进而利用平行线的性质即可求解;(4)根据题意分当P 点在A 的上方与当P 点在B 的下方两种情况进行分类讨论即可.【详解】解:()1∵12l l //,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD 中,∠3+∠PCD+∠PDC=180°,∴∠3=∠1+∠2,则有∠2=∠3-∠1=35︒,故答案为:35︒;()2123∠+∠=∠理由如下:过点P 作//PM AC//AC BD////AC PM BD ∴12CPM DPM ∴∠=∠∠=∠,12CPM DPM CPD ∴∠+∠=∠+∠=∠()3过A 点作//AF BD ,则////A BD CE ,则BAC DBA ACE ∠∠+∠=,故答案为:46︒;()4当P 点在A 的上方时,如图 2,∴∠1=∠FPC .∵14//l l ,∴2//PF l ,∴∠2=∠FPD∵∠CPD=∠FPD-∠FPC∴∠CPD=∠2-∠1,即321∠=∠-∠.当P 点在B 的下方时,如图 3,∴∠2=∠GPD∵12l l //,∴1//PG l ,∴∠1=∠CPG∵∠CPD=∠CPG-∠GPD∴∠CPD=∠1-∠2,即312∠=∠-∠.【点睛】本题考查平行线的判定与性质,利用了等量代换的思想,熟练掌握平行线的判定与性质是解答本题的关键.23.(1)①∠BED=60º;②∠BED=12∠ABC+12∠ADC;(2)∠BED=180º-1 2∠ABC+12∠ADC,理由见解析.【分析】(1)①过点E作EF∥AB,然后说明AB∥CD∥EF,再运用平行线的性质、角平分线的性质和角的和差即可解答;②利用平行线的性质和角平分线的性质即可确定它们的关系.(2)过点E作EF∥AB,再运用平行线的性质、角平分线的定义和角的和差即可确定它们的关系.【详解】(1)①如图1,过点E作EF∥AB.∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF,∠EDC=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∴∠ABC=50º,∠ADC=70º∴∠ABE=12∠ABC=150252⨯=°°,∠EDC=12∠ADC=170352⨯︒=︒, ∴∠BEF=25º,∠DEF=35º,∴∠BED=∠BEF+∠DEF=25º+35º=60º;②∵AB ∥CD∴AB ∥CD ∥EF∴∠ABE=∠BEF=12∠ABC ,∠EDC=∠DEF=12∠ADC ;. ∴∠BED=∠BEF +∠DEF =12∠ABC+12∠ADC ∴∠BED=12∠ABC+12∠ADC (2)如图2,过点E 作EF ∥AB .∵AB ∥CD∴AB ∥CD ∥EF∴∠EDC=∠DEF ,∵∠ABE+∠BEF=180º,∴∠BEF=180º-∠ABE .∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠ABE=12∠ABC ,∠DEF=12∠ADC , ∴∠BED=∠BEF+∠DEF=180º-12∠ABC+12∠ADC .【点睛】本题考查了平行线的判定与性质,添加辅助线构造平行线并灵活利用平行线的性质是解答本题的关键.24.(1)360∠=︒;(2)①EPF PEB PFD ∠=∠+∠,证明见解析;②360EPF PEB PFD ︒∠+∠+∠=,证明见解析;③EPF PEB PFD ∠=∠-∠或EPF PFD PEB ∠+∠=∠.【分析】(1)根据对顶角相等求∠2,根据两直线平行,同位角相等求∠3;(2)①过点P 作MN ∥AB ,根据平行线的性质得∠EPM =∠PEB ,且有MN ∥CD ,所以∠MPF =∠PFD ,然后利用等式性质易得∠EPF =∠PEB +∠PFD .②③的解题方法与①一样,分别过点P 作MN ∥AB ,然后利用平行线的性质得到三个角之间的关系.【详解】(1)解:∵12∠=∠,160∠=︒,∴260∠=︒;∵AB CD ∥,∴3160∠=∠=︒ .(2)①EPF PEB PFD ∠=∠+∠.过点P 作MN AB ,则EPM PEB ∠=∠.∵AB CD ∥,MN AB , ∴MN CD ∥,∴MPF PFD ∠=∠,∴EPM MPF PEB PFD ∠+∠=∠+∠,即EPF PEB PFD ∠=∠+∠.②360EPF PEB PFD ︒∠+∠+∠=,过点P 作MN AB ,则180PEB EPN ∠+∠=︒,∵AB CD ∥,MN AB , ∴MN CD ∥,∴180NPF PFD ∠+∠=︒,∴360PEB EPN NPF PFD ∠+∠+∠+∠=︒.即360EPF PEB PFD ︒∠+∠+∠=.③EPF PEB PFD ∠=∠-∠或EPF PFD PEB ∠+∠=∠.写对一种即可.理由:如图4,过点P 作PM ∥AB ,∵AB ∥CD ,MP ∥AB ,∴MP∥CD,∴∠PEB=∠MPE,∠PFD=∠MPF,∵∠EPF+∠FPM=∠MPE,∴∠EPF+∠PFD=∠PEB.【点睛】本题主要考查了平行公理的推论和平行线的性质,结合图形作出辅助线构造出三线八角是解决此题的关键.25.(1)108°;(2)∠APC=α+β,理由见解析;(3)∠APC=β-α.【分析】(1)过P作PE∥AB,先推出PE∥AB∥CD,再通过平行线性质可求出∠APC;(2)过P作PE∥AB交AC于E,先推出AB∥PE∥DC,然后根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案;(3)过点P作PE∥AB交OA于点E,同(2)中方法根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=128°,∠PCD=124°,∴∠APE=52°,∠CPE=56°,∴∠APC=∠APE+∠CPE=108°;(2)∠APC=α+β.理由如下:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)∠APC=β-α.理由如下:过点P作PE∥AB交OA于点E,同(2)可得,α=∠APE ,β=∠CPE ,∴∠APC=∠CPE-∠APE=β-α.【点睛】本题主要考查了平行线的性质与平行公理,解题的关键是过拐点作平行线,利用平行线的性质解决问题.26.(1)180BCD ACE ∠+∠=︒,理由详见解析;(2)135°;(3)BCD ∠等于150︒或30时,//CE AB .【分析】(1)依据∠BCD=∠ACB+∠ACD=90°+∠ACD ,即可得到∠BCD+∠ACE 的度数;(2)设∠ACE=α,则∠BCD=3α,依据∠BCD+∠ACE=180°,即可得到∠BCD 的度数; (3)分两种情况讨论,依据平行线的性质,即可得到当∠BCD 等于150°或30°时,CE//4B.【详解】解:(1)180BCD ACE ∠+∠=︒,理由如下:90BCD ACB ACD ACD ∠=∠+∠=︒+∠,∴90BCD ACE ACD ACE ∠+∠=︒+∠+∠9090180=︒+︒=︒;(2)如图①,设ACE α∠=,则3BCD α∠=,由(1)可得180BCD ACE ∠+∠=︒,∴3180αα+=︒,∴45α=,∴3135BCD α∠==︒;(3)分两种情况:①如图1所示,当//AB CE 时,180120BCE B ∠=︒-∠=︒, 又90DCE ∠=︒,∴36012090150BCD ∠=︒-︒-︒=︒;②如图2所示,当//AB CE 时,60BCE B ∠=∠=︒, 又90DCE ∠=︒,∴906030BCD ∠=︒-︒=︒.综上所述,BCD ∠等于150︒或30时,//CE AB .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.。

华师版七年级数学上册第4章 相交线和平行线小结与复习

华师版七年级数学上册第4章  相交线和平行线小结与复习

知识回顾
4. 同位角、同旁内角、内错角
角的 名称
位置特征
基本 结构 图形 特征
相同点
共同特征
同位 截线:同侧 1 角 被截线:同旁 2
同旁 截线:同侧 内角 被截线:之间
内错 截线:两侧 角 被截线:之间
12
F 都在截 线同侧 都没有公
U 都在 共顶点
被截线 Z 之间
知识回顾
5. 平行线 在同一平面内不相交的两条直线叫做平行线.
第4章 相交线和平行线
华东师大版
知识梳理
两条 直线 相交
相 交 线
邻补角
邻补角互补
对顶角
对顶角相等
基本事实:同一平面内,过一点有且只有一 条直线与已知直线垂直
垂直平分线:垂直并且平分一条线段的直线 垂 线 垂线段的性质:垂线段最短
点到直线的距离:从直线外一点到这 条直线的垂线段的长度
两条直线被第 三条直线所截
∴ ∠DOG=∠DOF-∠FOG=90°-35°=55°.
能力提升
2.如图,AD 为三角形 ABC 的高,能表示点到直线
(线段)的距离的线段B有( A )到 BC 的距离 A
A. 2条
B. 3条
C. 4条
D. 5条
B
B 到 AD 的距离
DC
C 到 AD 的距离
能力提升
3. 如图,直线 AB,CD 被两条直线所截,若∠1=64°,
2. 如图,已知∠DAC=∠ACB,∠D+∠DFE=180°,
求证:EF//BC.
DF C
证明:∵∠DAC= ∠ACB (已知),
∴ AD//BC(内错角相等,两直线平行). ∵ ∠D+∠DFE=180°(已知),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线与平行线全章复习 (答题时间:60分钟)、选择题1. 如图所示,不能通过基本图形平移得到的是*8.如果在同 则甲和乙是(A.两个点B.两个半径相等的圆C.两个点或两个半径相等的圆D.两个能够完全重合的多边形*9.有一条直的等宽纸带,按下图折叠时,纸带重叠部分中的/ a=()A. 60 °B. 75 °C. 50 °■B ・2.如图所示,是同位角关系的是( A. / 3 和/ 4 B. / 1 和/ 43. 一个人从A 点出发向北偏东 于()60。

方向走到B 点,再从B 点出发向南偏西 15。

方向走到C 点,那么/ ABC 等A.75 °B.1054. 下列说法中,正确的是( A. 过点P 画线段AB 的垂线B. P 是直线AB 外一点,Q 是直线AB 上一点,连接 PQ ,使PQ 丄ABC. 过一点有且只有一条直线垂直于已知直线D. 过一点有且只有一条直线平行于已知直线5. 将已知点P 平移5cm 后得到点P '满足条件的点 P'构成的图形是( A. 一个点6. 如图所示, 相等的角是(A. / CODB.两个点 / AOB = 180 ° )B. / COEC. 45)D. 135)C. 一条5cm 长的线段D. 一个半径为5cm 的圆OD 是/ COB 的平分线,OE 是/ AOC 的平分线,设/ DOB = a,则与C. / DOAa 的余角7.如图所示,A. 23 °AB // EF //CD ,B. 16 °/ ABC = 46 ° / CEF = 154 ° 则/ BCE 等于()C. 20 °D. 26 °平面内有两个图形甲和乙,通过平移,总可以完全重合在一起(不论甲和乙的初始位置如何) ))DD. / COABD Da= A**10.将一个直角三角板和一把直尺如图放置,如果/ a= 43°则/ B的度数是()A.43 °B.47 °C. 30 °D.60 °、填空题*11.如图所示,把长方形纸条 ABCD 沿EF 对折后使两部分重合,若/**12.如图所示, 0E 是/ BOC 的一条三等分线,且/BOE </ COE ,/ AOC =/ BOE + 20 ° 则/ BOC =三、解答题15•如图所示,甲、乙两只蚂蚁觅食后,都想早点回去向蚁王浦东汇报成绩,它们同时经过 A 处向洞口 B 处走,甲走的是红色路线,乙走的是蓝色路线,图中线段分别平行,如果它们爬行的速度相等,你能判断出甲、乙 两只蚂蚁谁先回到洞中吗?F1 = 50 ° 贝AEF =**13.如图所示,直线 AD 、BE 、CF 相交于一点 O ,/ B0C 的同位角有__________ , / AB0 的内错角有 ______________ ,由/ 0ED = / B0C 得 _________ // _,/ 0ED 的同旁内角有 ,由/ 0ED =/ AB0 得____ //,由 AB // DE , CF // DE 可得ABBC则/3的度数是**14.如图所示,16.如图所示,/ 1 = Z 2,Z D = 90° EF ± CD .试说明/ 3 =Z B 。

**17.如图所示,(1) 已知 AB // CD , BE // CF ,试说明/ 1 = Z 2; (2) 已知 AB // CD ,/ 1 = Z 2,试说明 BE // CF ;**18.如图所示,已知11/ 12, MN 分别和直线11、12交于点A 、B , ME 分别和直线1仆12交于点C 、D ,点P 在MN 上(P 点与A 、B 、M 三点不重合)(3) 已知 BE 1〃 CF ,/ 仁 2 / ABC ,/(1) 如果点P 在A 、B 两点之间运动时,/(2) 如果点P 在A 、B 两点外侧运动时,/a /伙/ 丫之间有何数量关系,请说明理由; a /伙/ 丫之间有何数量关系(只须写出结论)D F C天好的結居往往来自于艰难rase, .初一数学人教新课标版(2012教材)第五章全章复习同步练习参考答案1. D2. B 解析:同位角必须是在截线同旁,并且在两条被截直线的同一方向上,/ 3和/4在截线两旁,A错误,/2和/4没有一条边在同一条直线上(无截线),所以不能为三种角中的一种,C错误,/ 1和/ 4符合同位角的特征,故B 正确。

3. C 解析:根据两直线平行,内错角相等,A点北偏东60。

方向等于B点南偏西60。

方向,从B点向南偏西15。

方向到C点,/ ABC应等于这两个角的差,故C正确。

4. C 解析:应是过一点画线段所在直线的垂线,不能是画线段的垂线,故A错误;P是直线AB外一点,Q是直线AB上一点,如果P点不在过Q点与AB垂直的直线上,或Q点不在过P点与AB垂直的直线上,连接PQ,不可能有PQ丄AB,故B错误;过一点画直线的平行线,这点不能在直线上,否则是同一条直线,故D错误;只有C是垂线的性质,故C正确。

5. D 解析:此题并没有指明平移方向,故所构成的图形是一个半径为5cm的圆。

1 16. B 解析:因为/ AOC + / COB = 180 ° 所以AOC + ㊁/ COB = 90°,即/ COE +Z BOD = 90°.所以/ COE=90°— / BOD = 90°— a.7. C 解析:因为AB // CD, / ABC = 46° 所以/ BCD =/ ABC = 46° 因为EF// CD,所以/ DCE + / CEF =180° 所以/ DCE = 180°—154°= 26° 所以/ BCE = / BCD —/ DCE = 46°—26°= 20°8. C 解析:两个能够完全重合的多边形,如果把其中一个多边形旋转一个角度,那么另一个多边形不论怎样平移,也不可能和这个多边形(指旋转一个角度的多边形)完全重合在一起,只有两个点或两个半径相等的圆总能完全重合在一起,故选C .这里两个半径相等的圆,如果其中一个旋转了就不是平移,但仍能重合。

9. B 解析:由于纸带等宽,则AD // BC,所以/ DAC = 30。

根据展开图可知/ DAC + 2 / a= 180 °所以/ a= 75 °10. B 解析:过直角三角板的直角顶点作一条平行于直尺一边的平行线,根据对顶角相等和平行线的性质可得/ a+Z 3= 90°,所以/ 3= 90°—43°= 47°.11. 115。

解析:因为把长方形纸条ABCD沿EF对折后两部分重合,所以Z BFE =/ B' FE且Z BFE +/ B' FE1 1+ Z 1= 180° 所以Z BFE = (180°—Z 1)= ? (180°—50° = 65° 又因为AD // BC,所以Z AEF + Z BFE = 180 °所以Z AEF = 180 °—Z BFE = 180 °—65 °= 115 °12. 120 ° 解析:因为Z AOC = Z BOE + 20°,Z AOC + Z BOC = 180,所以Z BOE + 20°= 180 °—Z BOC,又1 1因为Z BOE =才Z BOC,所以才Z BOC + 20°= 180°—Z BOC,解得Z BOC = 120°3 313. Z AFO、Z OED , Z EOD、Z EOC、Z OBC、Z EDO、Z EDC , Z COB、Z DEB、Z DOB , OC , DE, DE , AB ,//14. 20°解析:过三角尺的Z 1的顶点作直尺的一边的平行线,则Z 5 = 180 °—Z 2 = 180 °—50°= 130 ° Z 4=Z 3= 180°— Z 1 —Z 5= 180°—30°—130°= 20°15. 解:经过平移后,甲、乙两只蚂蚁所走的路程相同,而且它们爬行的速度相同,所以两只蚂蚁同时回到洞中。

16. 解:因为Z 1 = Z 2,所以AD // BC (内错角相等,两直线平行)。

因为Z D = 90。

及EF丄CD,所以AD // EF (同位角相等,两直线平行).所以BC // EF (平行公理),所以Z 3=Z B (两直线平行,同位角相等)。

17. 解:(1)因为AB // CD (已知),所以Z ABC =Z BCD (两直线平行,内错角相等)。

即Z 1 + Z 3=Z 2 + Z 4•因为BE // CF (已知),所以Z 3=Z 4 (两直线平行,内错角相等)。

所以Z 1 = Z 2 (等式的性质)。

(2)同(1)可得Z 1 + Z 3=Z 2+Z 4,因为Z 1 = Z 2 (已知),所以Z 3=Z 4 (等式的性质)。

所以BE // CF (内错角相等,两直线平行)。

(3)因为Z 1 =寸Z ABC (已知),所以Z ABC = 2 Z 1 (等式的性质)。

又因为Z ABC =Z 1 + Z 3, 即卩2Z 1 = Z 1 + Z 3,所以Z 1 = Z 3 (等式的性质),所以Z ABC = 2Z 3。

同理可得Z BCD = 2Z 4。

因为BE // CF (已知),所以Z 3=Z 4(两直线平行,内错角相等)。

所以Z ABC =Z BCD (等式的性质),所以AB // CD(内错角相等,两直线平行)。

18•解:(1)如图1所示,过点P作直线11的平行线,则它必与直线12平行,所以/ 尸/ a+Z 3;(2所示,当点P在射线AN上时,Z 尸Z a—Z 3如图3所示,当点P在线段BM上时,/尸Z 3—Z 4所示,当点P在线段BM的延长线上时,Z 尸Z a—Z 3M)如图;如图。

相关文档
最新文档