噪声控制基本原理与方法2解析讲述
噪声控制的基本原理

噪声控制的基本原理
噪声控制的基本原理是通过降低或消除噪声源的产生、传播和接收路径上的噪声能量来减少噪声的影响。
在噪声控制的过程中,需要从三个方面进行考虑和处理:噪声源的控制、噪声传播路径的控制以及噪声接收端的控制。
首先,对于噪声源的控制,可以通过减少噪声源的产生或改进噪声源的结构来降低噪声的能量。
例如,在机械设备中可以使用减振措施或改进机械部件的设计来减少噪声的产生。
在声学设备中,可以使用消音器、隔声板等来减少噪声的产生。
其次,对于噪声传播路径的控制,可以采用隔声、隔振等措施来降低噪声的传播。
隔声是通过使用隔声材料或构造隔声结构来阻碍噪声的传播。
隔振是通过使用隔振装置或材料来减少噪声的传递。
这些措施可以有效地阻止噪声的传播,从而降低噪声的影响范围。
最后,对于噪声接收端的控制,可以使用主动噪声控制技术或被动噪声控制技术来减少噪声的影响。
主动噪声控制技术是通过使用传感器和控制系统来监测和反馈噪声信号,然后产生与噪声相反的声波,以抵消噪声。
被动噪声控制技术则是通过使用隔音材料或隔离装置来吸收或阻挡噪声,减少其对接收端的影响。
综上所述,噪声控制的基本原理是通过控制噪声源的产生、传
播和接收路径来减少噪声的影响。
通过采取有效的措施,可以有效地降低噪声对人们生活和工作的干扰。
噪音控制原理技术控制方法

噪音控制原理技术控制方法1变速器产生的振动2动力传动系统产生的噪声3其它噪声1变速器产生的震动汽车变速器噪声是汽车的主要声源之一。
首先,变速器振动常常会诱发与其相连接部件的振动,影响整车的工作性能;其次,齿轮噪声的频率一般处于200Hz一5000Hz的范围内,对这一频率范围的噪声人耳尤为敏感;此外,由于变速器载荷和速度的提高,由此产生的齿轮噪声比其他声源的噪声更突出。
因此,从某种程度上说,控制了汽车变速器齿轮振动噪声,也就大大提高了汽车乘坐舒适性。
一般来说,变速器的振动噪声主要是齿轮噪声。
齿轮系统的噪声强度不仅与齿轮啮合的动态激励力有关,而且还与轮体、传动轴、轴承及箱体等的结构形式、动态特性以及动态啮合力在它们之间的传递特性有关。
2动力传动系统产生的噪声发动机燃烧和惯性力引起的震动传至车身引起弯曲振动和扭曲振动,向车内辐射中、低频噪声;发动机运行产生的排气噪声、进气噪声、风扇噪声等,由空气通过车身的孔、缝隙传至车内或通过车身板壁透声至车内。
主动降噪功能就是通过降噪系统产生与外界噪音相等的反向声波,将噪音中和,从而实现降噪的效果。
汽车减振降噪主动控制技术其主要分为:1变速箱箱体的降噪技术2噪声的有源控制3智能结构系统的噪声主动控制1变速箱箱体的降噪技术提高刚度——对变速箱的箱体进行加固,尤其是提高关键点处的刚度,降低变速箱箱体的辐射噪声是降低该变速箱箱体噪声的主要措施。
主要采用增加加强筋的方法,提高整体刚度,达到减振降噪的目的。
提高箱体内齿轮啮合质量——齿轮啮合动态激励是汽车变速器产生振动的基本原因,提高箱体内常啮合齿轮的啮合质量,减小振动激励源,达到降低噪声的目的。
2噪声的有源控制原始声源产生噪声以后,置于声场中的多个传声器迅速检测到声源信号,并通过信号放大及相位调节送入相应的附加声源中,使该附加声源产生的声能量与原始声源产生的噪声相互抵消,从而达到噪声控制的目的。
所需要的设备:多个传声器及具有运算、信号放大等功能的计算元件,以及多个执行器件(如扬声器等)。
噪声控制的基本原理

噪声控制的基本原理
噪声控制是指通过各种手段和方法,减少或消除环境中的噪声,以保护人们的
健康和提高生活质量。
噪声控制的基本原理是通过控制噪声源、传播途径和受声体的三个方面来实现的。
首先,控制噪声源是噪声控制的基本手段之一。
噪声源可以分为工业设备、交
通工具、家用电器等。
对于工业设备和交通工具来说,可以通过改进设备结构、采用低噪声材料、加装隔音设施等方式来减少噪声的产生。
对于家用电器来说,可以选择低噪声产品,减少使用噪声较大的设备,或者采取隔音措施来控制噪声。
其次,控制传播途径也是噪声控制的重要手段之一。
噪声的传播途径主要有空
气传播和固体传播两种形式。
在空气传播方面,可以通过加装隔音墙、采用吸音材料、设置隔音窗等方式来减少噪声的传播。
在固体传播方面,可以通过减少机械振动、加装减震设施、改善建筑结构等方式来控制噪声的传播。
最后,控制受声体是噪声控制的最终目的。
受声体可以是人体、动物、设备等。
对于人体来说,可以采取个人防护措施,如佩戴耳塞、耳罩等来减少噪声对听觉系统的影响。
对于动物来说,可以采取隔离措施,将其远离噪声源。
对于设备来说,可以通过改进设备结构、加装隔音设施等方式来保护设备不受噪声影响。
综上所述,噪声控制的基本原理是通过控制噪声源、传播途径和受声体三个方
面来实现的。
只有全面控制这三个方面,才能有效地减少或消除环境中的噪声,保护人们的健康,提高生活质量。
在实际应用中,需要根据具体情况,采取相应的控制措施,以达到最佳的噪声控制效果。
噪声的产生和控制原理

噪声的产生和控制原理噪声是指在信号或数据中与感兴趣的信息不相关的随机干扰波形,带来了不良的影响。
噪声的产生与控制原理涉及到噪声的来源、传播方式以及噪声的控制方法。
下面我将详细介绍噪声的产生和控制原理。
一、噪声的产生原理1. 热噪声(热运动噪声):由于物体内部的热运动引起的,是一种宏观上的随机运动,主要源于电子器件内部的电子热运动。
例如,导体中的自由电子在温度作用下的热运动会引起电流的涨落,从而在电路中产生热噪声。
2. 间隙噪声(气动噪声):由于气体流动引起的,主要是由物体周围媒质(如空气)在流动过程中的速度、压力、温度等参数发生变化而引起的,如风扇引起的噪声、风声、汽车行驶时空气的喧哗声等。
3. 振荡噪声:由于振动系统的非线性特性、机械接触、材料的非均匀性等引起的,如发动机的机械震动、电机的电磁振动等。
4. 火花产生的电磁噪声:在高压设备、继电器、点火系统等电气设备中,由于电流的突变或开关操作产生火花或电弧,产生高频电磁辐射,导致电磁波噪声。
5. 量子噪声:原子、分子、光子等微观粒子与宏观领域的相互作用引起的噪声。
例如,在光学通信中,光子的波动性引起的光学信号的涨落就属于量子噪声。
二、噪声的传播方式噪声的传播方式有以下几种:1. 空气传播:声波是由介质中的分子振动传播的,其中最常见的噪声即为空气传播的噪声,例如人声、喇叭声等。
2. 固体传播:固体是能够传递声波的另一种介质,例如车辆的振动噪声通过车轮传递给地面,再通过空气传播,到达人耳。
3. 水传播:水是固体和气体之间的中介,可以传递声波,如声波在水中传播的潜艇声音等。
4. 电磁波传播:电磁波通过空气、空间来传播,如手机、电视、无线网络等通信设备,通过电磁波将信息传递到接收端。
三、噪声的控制原理噪声的控制主要包括预防控制和后期控制两种方式。
1. 预防控制预防控制是在噪声产生环节进行控制,目的是减少或消除噪声的产生。
(1)优化设计:在产品的设计阶段,使用低噪声敏感器件、减少电流和电压的幅度变化、优化线路布局等措施,降低电路中噪声的产生。
噪声控制的基本原理

噪声控制的基本原理噪声控制是指通过各种手段和技术来减少或消除环境中的噪声,以改善人们的生活和工作环境。
噪声是指任何不需要的、令人不悦的声音,它可以来自于各种源头,如机械设备、交通工具、建筑施工等。
噪声对人类健康和心理状态产生负面影响,因此噪声控制成为了一个重要的研究领域。
1. 噪声的特性了解噪声的特性对于进行有效的噪声控制至关重要。
噪声可以通过其频率、振幅和持续时间等参数进行描述。
频率是指声音波形中每秒钟所发生的周期数,单位为赫兹(Hz);振幅则表示波形在空气中传播时产生的压力变化大小;持续时间则是指噪声持续存在的时间长度。
2. 声音传播了解声音在空气中传播的原理有助于我们理解噪音控制技术。
当源头产生声音时,它会引起周围空气分子振动,并形成一系列压力波。
这些波会沿着空气中的分子传播,直到达到听者的耳朵。
在传播过程中,声音会受到各种因素的影响,如反射、散射和吸收等。
3. 噪声源控制噪声源控制是噪声控制的首要步骤。
通过减少或消除噪声源头的产生,可以有效地降低环境中的噪音水平。
这可以通过以下几种方法实现:3.1. 设备维护与改进对于机械设备和交通工具等噪声源,定期进行维护和保养是非常重要的。
检查设备是否存在故障、磨损或松动等问题,并及时进行修复或更换有问题的部件,可以降低其产生的噪音水平。
对于设计新设备时,应考虑采用降噪技术来减少其噪音产生。
3.2. 隔离与屏蔽隔离和屏蔽是一种常用的噪音控制方法。
隔离是指将噪声源与周围环境隔离开来,防止其传播到室内或其他敏感区域。
这可以通过使用隔音材料、建造隔音墙或采取其他隔离措施来实现。
屏蔽则是指在噪声源和接收者之间放置一些屏蔽物,以减少噪声的传播。
在工业场所中,可以使用声屏障或噪音围挡来降低机械设备产生的噪音。
3.3. 声学设计在建筑设计中,声学设计是一种重要的手段来控制噪音。
通过合理的建筑布局、选择合适的材料和结构等,可以减少外界噪音对室内环境的影响。
在医院和学校等需要安静环境的场所,可以采用吸音材料和隔音窗等措施来降低室内噪音水平。
第八章噪声控制基本原理与方法2解析.讲述

3.个体防护
①耳塞②耳罩③防声头盔
(三)噪声控制工作程序
噪声控制工作应当在工厂、车间和机器安装前对噪声进行预测, 根据预测的结果和允许标准,确定减噪量,选定合适的噪声控 制措施,在建厂和机器安装的同时进行噪声控制措施的施工。 对已经投产的工厂,所存在的噪声间,因受现场条件的限制,噪 控有不少困难,常常仅是采取一些补救措施。 具体噪声控制程序如下图所示。
Y系列电机的A声级如下:
Lpy 13LgP H 17.5Lgn0
PH -电机额定功率(千瓦)
n0 -电机同步转速(转/分)
治理方法:①加隔声罩②罩的进排风口加消声器。
第9章 噪声控制的基本方法
(一)噪声污染的特点 噪声与废水、气、渣不同,在环境中不积累不持久,声源停止 振动,噪声立即消失。 (二)造成危害的必备因素及控制方法 只有声源、传播途径和听者三者同时存在时,噪声才能成为危 害,治理需从这三方面着手。
d
式中: u -气流速度,叶片与气体的相对速度(m/s) d -气流受阻时,障碍物的特征尺寸。对于圆管为直径(m)
v r
一定时,叶片上各点圆周速率不同,从圆点到圆周连续变化,
所以涡流噪声表现为宽频段的连续谱。
(3)影响风机声功率的因素
6 u W 2 D2 3 C0
-正面阻力系数
4、由于机械零件与外圈或内包介质之间相互作用发出声音。 此时往往它与空气动力性噪声复杂出现。 5、工具和工件间相互作用产生噪声 如切割、剪切、磨削和成型时,由于工具和工件的相互作用产生 各种噪声。
三 电磁噪声
电磁噪声属于机械类噪声。 电动机、发电机的电磁噪声是由交变磁场对定子和转子作用,产 生周期性的交变力,引起振动产生的。这个交变力与磁通密度 的平方成正比。 电机的电磁振动一般在100~4kHZ范围内。 目前,电机噪声已列入国际标准。电机噪声的大小反映了电机 设计、工艺、加工、装配和材料的质量水平,所以国内外已把 安装电机噪声大小作为考核电机质量的主要指标。电机噪声一 般是由电磁、轴承、风扇、机械等几个方面噪声组成。但电机 噪声主要与电动机功率和转速有关。
噪声讲义(4)第五章噪声控制,第六章吸声

第五章 噪声控制技术概述
一、噪声控制基本原理
噪声系统:声源——传播途径——接受者 1,声源控制 选用低噪声设备,改革工艺,采用 非金属材料等 2 ,传播途径控制 采用声学技术控制措施-吸声、隔 声、消声、阻尼与隔振等 3, 接受者控制 个人防护用品等
二、噪声控制工作程序
利用声波指向性降低噪声实例
利用声波指向性降低噪声实例
第六章
吸声技术
一、 吸声系数和吸声量
1、吸声系数 α=(Ea+ Et)/ Ei
Ei –入射声能 Et-透射声能 Ea- 吸收声能
吸声系数是小于1的数, 常用材料的吸声系数如 表7—2所示。
2、吸声量
A=Sα
吸声量A的单位是 m2
平均吸声系数:
α =(Σ Si.α i)/Σ Si Σ Si.α i
吸声面积与吸声系数乘积的总和;
二、吸声材料的种类
种类:多孔吸声材料——玻璃棉,岩棉,木质纤
维制品,泡沫材料,等
共振吸声材料——穿孔板共振吸声结构,
薄板共振吸声结构。
微孔板吸声结构--在0.2——1.0mm薄板上,每平方米穿孔一万到几万 个,K =1%——2%,孔径0.5——1.0mm。吸声频带 宽,易清洗,无二次污染,耐高温,防火,防腐蚀等。
2、室内声压级
•
LP=LW+10Lg(
Q 4 2 4r R
)
式中:LW—声功率级,dB;Q—指向系数,在空 中央Q=1,在地面上Q=2,在墙角上Q=4,在犄角 上Q=8;R—房间常数;r—声源距离。
3、吸声减噪量计算
2 LP 10Lg 1
式中:1 、 分别为治理前和治 2 理后的平均吸声系数。
建筑声环境第五章噪声控制2

此式适用于远离声源处的吸声降噪时的估算。 对于一般室内稳态声场,如工厂厂房,都是砖及混凝土砌墙、水泥地面与天 花板,吸声系数都 很小,
1ห้องสมุดไป่ตู้2 远小于 1 或 2
,则利用吸声系数和混响
时间的关系,避免了计算吸声系数的麻烦和不准确。上式又可简化为:
2 A2 T1 Lp 10lg 10lg 10lg 1 A1 T2
倍频程中心频率/Hz 次 序 项 目
125 250 62 58 4 2.4 0.07 0.16 500 63 54 9 2.0 0.08 0.41 1000 59 50 9 1.8 0.09 0.47 2000 57 47 10 1.6 0.1 0.53 4000 54 45 9 1.2 0.13 0.54
4 .吸 声 降 噪 量 : L
p
( 1 - 1) 2 1 0 lg ( 1 - 2) 1
p
近 似 计 算 公 式 : L
2 T1 1 0 lg 1 0 lg 1 T2
三、吸声降噪的设计原则和程序
总原则:应先对声源进行隔声、消声等处理,当噪声源不宜采用隔声措施,或采 用了隔声手段后仍不能达到噪声的标准时,可采用吸声处理来作为辅助手段。 基本原则: 1.房间的平均吸声系数很小时,吸声降噪才有较好效果; 2.根据噪声的频率特性选择吸声材料或结构,多孔吸声材料对中高频噪声具有较 好的降噪效果,共振吸声结构对于中低频具有较好的降噪效果; 3.车间面积较大时.宜采用空间吸声体,平顶吸声处理; 4.声源集中在局部区域时,宜采用局部吸声处理,并同时设置隔声屏障; 5.噪声源比较多而且较分散的生产车间宜作吸声处理; 6.选择吸声材料时,要充分考虑防潮、防火、防尘、耐腐蚀等方面的要求,安装 时应考虑采光、通风、照明及装饰等方面的功能要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)风机噪声的估算 由于影响风机声功率的因素很多,精确计算不太可能,需进行估 算。估算风机声功率级的公式
Lw 10 LgQ 20 Lg H s K f 40(dB)
式中:
-Q 体积流量,风量 m3/s
H-s静压(cm H2O) -k f 常数,取决于风机类型,如径向离心式风机, k f 72dB
d
式中: u -气流速度,叶片与气体的相对速度(m/s)
d -气流受阻时,障碍物的特征尺寸。对于圆管为直径(m)
v r
一 定时,叶片上各点圆周速率不同,从圆点到圆周连续变化,所
以涡流噪声表现为宽频段的连续谱。
(3)影响风机声功率的因素
W
2D2
u6 C03
-正面阻力系数
u -圆周速度
D -风机直径
d
(3)射流噪声功率
Wu6d 2
(4)治理方法:加消声器
2.风机噪声
(1)风机噪声的产生
风扇和风机噪声主要由旋转噪声和涡流噪声两种成分组成 ①旋转噪声——是由旋转的叶片周期性地打击空气质点, 引起空气质点脉动,产生噪声。 单位时间内打击空气质点的次数,也是旋转噪声的频率。
式中:
zn 303200 f1 60 60 1600HZ
4、由于机械零件与外圈或内包介质之间相互作用发出声音。 此时往往它与空气动力性噪声复杂出现。 5、工具和工件间相互作用产生噪声 如切割、剪切、磨削和成型时,由于工具和工件的相互作用产生
各种噪声。
三 电磁噪声
电磁噪声属于机械类噪声。 电动机、发电机的电磁噪声是由交变磁场对定子和转子作用,产
生周期性的交变力,引起振动产生的。这个交变力与磁通密度 的平方成正比。 电机的电磁振动一般在100~4kHZ范围内。 目前,电机噪声已列入国际标准。电机噪声的大小反映了电机设 计、工艺、加工、装配和材料的质量水平,所以国内外已把安 装电机噪声大小作为考核电机质量的主要指标。电机噪声一般 是由电磁、轴承、风扇、机械等几个方面噪声组成。但电机噪 声主要与电动机功率和转速有关。
卫星火箭的声功率级以达195dB.
1. 排气放空噪声——射流噪声
(1)射流噪声——由管口喷出高速气流生成,也叫喷注噪声。 气流从孔口高速喷出,与周围空气强烈混合,周围大气稳定状 态,受到巨大扰动,产生强大噪声。
(2)来源 ①锅炉生产系统的排气——排放高压、高温水蒸气 ②空压机、风机的排空 ③生产系统的工艺气体或液体排放
上式仅适用于叶片通道频率在500~4000HZ四个倍频带(500、1K、 2K、4K)以外的条件下,若在这四个倍频带之内,则应在按上式算得 的声功率的基础上再加3dB。
(5)风机噪声的治理
①选低噪风机 ②入风口加集流器 ③消声器 ④隔振 ⑤隔声罩
4 空气压缩机噪声
(一)它是用来提高气体的压力的设备,由马达或透平机拖动,造成 空压机噪声的主要原因是拖动空压机的马达和冷却风扇。
1. 降低声源噪声
降低声源噪声为最彻底最积极的方法,即把发声大的设备改造成 发声小或不发声的设备。事实上,这方面的潜力也很大。
(1)改进机械设计降低噪声
①设计中,选用发声小的材料
一般的金属,如钢、铜、铝等,内摩擦小,消耗振动的能量小, 用它们制造机器,机器噪声大;但若用减振合金(如锰-铜-锌 合金),内阻大,消耗振动能量的本领也大,用它制造的机器 Lpy 13LgPH 17.5Lgn0
P-H电机额定功率(千瓦) n-0电机同步转速(转/分)
治理方法:①加隔声罩②罩的进排风口加消声器。
第9章 噪声控制的基本方法
(一)噪声污染的特点 噪声与废水、气、渣不同,在环境中不积累不持久,声源停止振 动,噪声立即消失。
(二)造成危害的必备因素及控制方法 只有声源、传播途径和听者三者同时存在时,噪声才能成为危害, 治理需从这三方面着手。
(二)声功率的计算 对离心式和往复式空压机
LW dB10 lg N kc
式中 , -N电机额定功率,马力
-空k c压机常数,
kc 86dB
(三)噪声治理
(1)空压机噪声处理-进出口安装消声器
(2)造值班室
5 泵噪声 泵噪声来源于液体压力和机械两大类,如液体压力的波动,机械
零件的冲击、偏心、不平衡旋转等。在500、1k、2k、4k四个 频段内,泵的总声功率级为
1、由机械零件运动产生的噪声 机械的上下、左右、前后的往复运动和绕以此三方向为轴的旋转
运动都会产生噪声。 这种噪声是由于旋转零件不平衡,往复机械不平衡运动产生的。 2、机械零件之间接触产生的噪声
固体之间的滚动、滑动和敲击接触,相互作用发出声音。 3、由于机械零件之间力的传递产生噪声
机械传动零件:如离合器、齿轮、链条机构 液压传动零件:如液压泵、液压缸、控制阀等。
LW 10 lg N k p
式中: N-额定功率,马力
-k泵p 常数
离心泵 螺旋泵
k p 95dB k p 100 dB
往复泵 k p 105 dB
对于额定转数低于1600转/分的,减去5dB
二 机械性噪声
机械性噪声是由固体振动产生的。机械的金属板、轴承、齿轮等 发生碰撞、冲击、摩擦、滚动等都会产生噪声。 机械性噪声声源有:
第八章 噪声源
声源——发声的机器设备和车辆等(从一个房间来说,一个设 备不认为是一个声源,从全厂范围来看,车间内数台机器视为 一个声源) 分类: 空气动力性噪声——空气振动 机械性噪声 ——机械零件振动产生 电磁噪声 ——由电磁引起零件振动,也属机械性噪声
1.空气动力性噪声
定义: 气体的流动或物体在气体中高速运动引起空气振动而产生的, 也称气流噪声,如风机、空压机、锅炉放气、喷气飞机、火箭 等产生的噪声。空气动力性噪声一般高于机械性噪声,影响广, 范围也大。 现代技术的发展,空气动力机械功率愈来愈大,转速也越来越高, 产生的噪声也愈强。 如:火力发电厂的排气噪声,达150以上; 喷气式飞机声功率级已达150-160dB;
-转数(n转/分)
-叶片数z
60 -将分换算成秒
[例]汽车驾驶室用EQ140暖风机,其转数=3200转/分,叶片数 为30,求旋转频率。
解:
f1
zn 60
30 3200 60
1600HZ
(2)涡流噪声
叶片在旋转时,周围气体在叶片后面产生涡流,形成压缩与稀疏的 过程,从而产生噪声。 涡流噪声的频率可由下式求得:f u