最新二次根式的化简与计算

合集下载

二次根式的化简与运算

二次根式的化简与运算

二次根式的化简与运算二次根式是指含有根号的代数表达式,通常是一种简化和运算方式,可以将复杂的表达式化简为简单的形式,并进行加减乘除等基本运算。

本文将介绍二次根式化简与运算的基本方法和技巧。

一、二次根式的化简1. 同底数的根式相加减:当根式的底数相同且指数相同时,可以直接对系数进行加减运算,保持根号不变。

例如:√2 + √2 = 2√22. 二次根式的有理化:当二次根式的底数是一个整数,但含有一个或多个根号时,可以通过有理化的方法化简。

例如:√(2/3) = (√2)/(√3) = (√2)/(√3) × (√3)/(√3) = √6/33. 二次根式的合并:当二次根式的底数相同,但系数不同时,可以合并为一个根式,将系数加在一起,并保持底数不变。

例如:3√2 + 2√2 = 5√24. 二次根式的分解:当二次根式的底数是一个整数,且无法进行合并时,可以进行分解,并找出其中可以合并的部分。

例如:√12 = √(4 × 3) = 2√3二、二次根式的运算1. 加减运算:当二次根式的底数和指数都相同时,可以直接对系数进行加减运算,保持底数和指数不变。

例如:2√5 + 3√5 = 5√52. 乘法运算:当二次根式相乘时,可以将根式的系数分别相乘,并保持底数和指数不变。

例如:2√3 × 3√2 = 6√63. 除法运算:当二次根式相除时,可以将根式的系数分别相除,并保持底数和指数不变。

例如:6√8 ÷ 2√2 = 3√24. 乘方运算:当二次根式进行乘方运算时,可以将指数分别应用到系数和根号上,并保持底数不变。

例如:(2√3)^2 = 2^2 × (√3)^2 = 4 × 3 = 12总结:二次根式的化简与运算是一种常见的数学操作,在代数表达式的计算中经常会遇到。

通过适当的化简和运算,可以简化复杂的根式,得到更加简单和规范的表达形式。

熟练掌握二次根式的化简和运算方法,有助于提高数学计算的效率和准确性。

二次根式的计算和化简

二次根式的计算和化简

二次根式的计算和化简二次根式是指包含平方根的表达式。

在数学中,我们经常需要进行二次根式的计算和化简。

本文将介绍如何进行二次根式的计算和化简,并提供一些相关的例子和方法。

一、二次根式的计算二次根式的计算主要包括加减乘除四则运算和指数运算。

下面将分别介绍这些运算的方法。

1. 加减运算对于两个二次根式的加减运算,首先要确定根号下的数(即被开方数)是否相同。

如果相同,则可以直接对根号下的数进行加减运算,并保持根号不变。

如果根号下的数不同,则需要进行化简,使根号下的数相同,再进行加减运算。

例如,计算√3+ √5。

由于根号下的数不同,我们可以进行化简。

将√3与√5相加,得到√3 + √5。

这就是最简形式的结果,无法再进行化简。

2. 乘法运算对于两个二次根式的乘法运算,可以直接将根号下的数相乘,并保持根号不变。

例如,计算√3 × √5。

将根号下的数相乘,得到√15。

这就是最简形式的结果。

3. 除法运算对于两个二次根式的除法运算,可以将被除数与除数的根号下的数相除,并保持根号不变。

例如,计算√15 ÷ √3。

将根号下的数相除,得到√5。

这就是最简形式的结果。

4. 指数运算对于二次根式的指数运算,可以将指数应用于根号下的数,并保持根号不变。

例如,计算(√2)²。

将指数应用于根号下的数2,得到2。

因此,(√2)² = 2。

二、二次根式的化简化简二次根式的目的是使根号下的数尽量小。

下面将介绍一些常用的化简方法。

1. 提取公因数如果根号下的数可以被某个数整除,可以将其提取出来,并保持根号不变。

这是一种常见的化简方法。

例如,化简√16。

16可以被4整除,所以可以将16写成4×4,即√(4×4)。

继续化简,得到2×√4。

最后,我们得到2×2 = 4。

因此,√16 = 4。

2. 合并同类项如果有多个二次根式相加或相乘,可以合并同类项,使根号下的数相加或相乘。

二次根式的运算与化简

二次根式的运算与化简

二次根式的运算与化简二次根式是指形如√a的数,其中a是一个非负实数。

在数学中,我们经常需要对二次根式进行运算和化简。

本文将介绍二次根式的运算规则和化简方法。

一、二次根式的运算规则1. 加减运算当二次根式的被开方数相同时,可用下面的规则进行加减运算:√a ± √a = 2√a例如:√3 + √3 = 2√3当二次根式的被开方数不同时,无法进行加减运算,需要化简为最简形式:√a ± √b = √a ± √b例如:√2 + √3 无法化简2. 乘法运算二次根式的乘法运算可以按照下列规则进行:√a × √b = √(a × b)例如:√2 × √3 = √6乘法运算的一种特殊情况是平方运算:(√a)² = a例如:(√2)² = 23. 除法运算二次根式的除法运算可以按照下列规则进行:√a ÷ √b = √(a ÷ b)例如:√6 ÷ √2 = √3除法运算的一种特殊情况是倒数运算:1/√a = √a/ a例如:1/√2 = √2/2二、二次根式的化简方法1. 提取因子法当二次根式中有相同的因子时,可以使用提取因子的方法进行化简。

例如:√8 = √(4 × 2) = 2√22. 有理化分母法当二次根式的分母为二次根式时,可以使用有理化分母的方法进行化简。

例如:1/√2 = √2/2 (有理化分母为2)3. 合并同类项法当二次根式中出现相同的根数时,可以使用合并同类项的方法进行化简。

例如:√2 + √2 = 2√24. 化简最简形式当无法再进行其他化简方法时,二次根式已经达到最简形式。

例如:√7 无法化简以上是对二次根式的运算和化简方法的介绍。

掌握了这些方法,我们可以在解决数学问题时更加灵活地利用二次根式进行运算和化简,简化计算过程。

希望本文能对你有所帮助。

二次根式的化简与计算

二次根式的化简与计算

二次根式的化简与计算二次根式在数学中扮演着重要的角色,它们常被用于解决各种数学问题。

在本文中,我们将讨论如何化简和计算二次根式。

一、二次根式的化简化简二次根式的目的是将其写成最简形式,即约分到根号下的数不能再存在平方因子。

下面是几种常见的二次根式化简方法:1. 取出公因数法当二次根式的根号下部分含有多个因子时,我们可以尝试通过取出公因数的方式进行化简。

例如,对于√18,我们可以将其分解为√(9*2),进一步化简为3√2。

2. 平方因式分解法当二次根式的根号下部分可以进行平方因式分解时,我们可以利用这个特性进行化简。

例如,对于√75,我们可以将其分解为√(25*3),进一步化简为5√3。

3. 有理化分母法当二次根式的根号下部分含有分母时,我们可以通过有理化分母的方式进行化简。

具体来说,我们需要将根号下的分母用有理数表示,并将分子乘以相应的因子,以消除根号下的分母。

例如,对于(2/√3),我们可以用有理数的形式表示为(2*√3/3),从而实现了化简。

二、二次根式的计算计算二次根式主要指的是进行加减乘除等数学运算。

下面是几种常见的二次根式计算方法:1. 加减运算进行二次根式的加减运算时,我们需要首先化简每个二次根式,然后按照相同根号下的内容进行合并,并化简结果。

例如,计算√3 + 2√3,我们首先化简两个根号下的3,然后合并系数得到3√3。

2. 乘法运算进行二次根式的乘法运算时,我们需要将每个二次根式展开,并按照指数规则进行计算。

具体来说,对于√a * √b,我们可以将其化简为√(a*b)。

例如,计算√2 * √3,我们可以化简为√6。

3. 除法运算进行二次根式的除法运算时,我们需要利用有理化分母的方法,将除数有理化,并利用分数的除法规则进行计算。

例如,计算(2√3) / √2,我们可以有理化分母,化简为(2√3 * √2) / (√2 * √2),进一步计算得到(2√6) / 2,最终化简为√6。

综上所述,二次根式的化简与计算是解决数学问题中常见的基本技巧。

二次根式的化简与运算

二次根式的化简与运算

二次根式的化简与运算二次根式是指含有平方根的代数式。

化简和运算二次根式是我们在数学中常见的操作。

下面将详细介绍二次根式的化简和运算方法。

一、二次根式的化简化简二次根式旨在将其写成简化形式,以便更方便地进行运算。

下面是一些常用的化简方法:1. 提取公因子:当二次根式中存在公因子时,可以将这些公因子提取出来。

例如,√18可以化简为3√2。

2. 合并同类项:当二次根式中含有相同根号下的项时,可以将其合并。

例如,2√3+√3可以化简为3√3。

3. 有理化:对于分母中含有二次根式的情况,可以通过有理化的方法将其化为不含二次根式的形式。

例如,将1/√2有理化为√2/2。

二、二次根式的加减运算二次根式的加减运算与常规的代数式加减运算类似,但需要注意根号下的项是否相同。

下面是一些加减运算的方法:1. 合并同类项:对于具有相同根号下的项,可以合并它们,得到它们系数的和或差。

例如,2√3 + 3√3可以合并为5√3。

2. 分配律:对于含有括号的二次根式,可以使用分配律进行运算。

例如,(2√3 + √2)(3√3 - √2)可以通过分配律展开后再合并同类项进行简化。

三、二次根式的乘法运算二次根式的乘法运算可以通过展开后合并同类项的方法进行简化。

下面是乘法运算的步骤:1. 使用分配律将两个二次根式相乘,得到展开的结果。

2. 合并同类项,即合并具有相同根号下的项。

3. 通过化简的方法化简展开后的结果。

四、二次根式的除法运算二次根式的除法运算可以通过有理化的方法将分母有理化,然后进行乘法运算的简化。

下面是除法运算的步骤:1. 对于含有分母为二次根式的除法运算,先使用有理化的方法将分母有理化,得到不含有二次根式的形式。

2. 将除法运算转化为乘法运算,即将分子乘以倒数。

3. 使用乘法运算的方法对二次根式进行简化。

综上所述,二次根式的化简与运算涉及到提取公因子、合并同类项、有理化、加减运算、乘法运算和除法运算等方法。

通过合理运用这些方法,我们可以简化和计算二次根式,更好地解决数学问题。

二次根式的化简与计算

二次根式的化简与计算

二次根式的化简与计算【知识要点】1.最简二次根式:①被开方数的因数是整数,因式是整式即被开方数不含有分母。

②被开方数中不含有能开得尽方的因式或因数。

2.化为最简二次根式的方法:①把被开方数的分子、分母尽量分解出一些平方数或平方式;②将这些平方数或平方式,用它的算术平方根代替移到根号外;③化去被开方数中的分母。

3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式。

判断同类二次根式时,注意以下三点:①都是二次根式,即根指数都是2;②必须先化成最简二次根式;③被开方数相同。

4.二次根式的加减法:先把各根式化成最简二次根式,再合并同类二次根式。

合并同类二次根式的方法与合并同类项类似。

5.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。

有理化因式确定方法如下:=①单项二次根式:利用a理化因式。

②两项二次根式:利用平方差公式来确定。

如a与a,,6.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式。

7.二次根式的混合运算:①二次根式的混合运算的运算顺序与有理式的混合运算的顺序相同;②在二次根式的混合运算中,有理式的运算法则、定律、公式等同样适用。

【典型例题】例1 解答下列各题:(1)下列根式中,哪些是最简二次根式?哪些不是?为什么?,(其中0x >,0y >)。

(2)下列根式中,哪些是同类二次根式?为什么?(题中字母都为正数)2x ,127,(3)如果最简根式,m +m ,n 的值。

例2 计算下列各题:(1)⎛- ⎝ (2)-⎝(3例3 (1)把下列各式分母有理化:)a b ≠(2)把下列各式化简:练 习A 组1.下列各式正确的是( )A ===B =C a b =+D =2.下列各式正确的是( )A =B ()230,0a b a b =><C = D== 3.在下列二次根式中,若0,0a b >>,则属于最简二次根式的是( )A B C D4 ) A .4x < B .1x ≥ C .14x ≤< D .14x ≤≤5.化简的结果是( )A B .3 C . D .a6的相反数的倒数为 。

第6讲 二次根式的混合运算与化简求值(解析版)

第6讲  二次根式的混合运算与化简求值(解析版)

第06讲二次根式的混合运算与化简求值一.解答题1.(2023秋•新蔡县期中)计算:;【分析】(1)先计算二次根式的除法,再算减法,即可解答;【解答】解:(1)=3﹣2+=3﹣2+2=3;2.(2023秋•和平区校级期中)计算:(1)()﹣1+(1﹣)0+|﹣2|;(2)÷﹣×+.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1)()﹣1+(1﹣)0+|﹣2|=2+1+2﹣=5﹣;(2)÷﹣×+=﹣+4=﹣+4=4﹣2+4=2+4.3.(2023秋•金塔县期中)计算:(1);(2);(3);(4).【分析】(1)把各个二次根式化成最简二次根式,然后合并同类二次根式即可;(2)先把各个二次根式化成最简二次根式,然后利用乘法分配律进行计算即可;(3)先根据二次根式的乘法法则进行计算,再把二次根式化成最简二次根式,进行合并即可;(4)先根据二次根式的除法法则进行计算,再把二次根式化成最简二次根式,进行合并即可;【解答】解:(1)原式==;(2)原式==9+1=10;(3)原式===;(4)原式===4.(2023秋•太原期中)计算下列各题:(1);(2);(3);(4).【分析】(1)先化简,然后合并同二次根式即可;(2)先算乘法,再化简即可;(3)根据完全平方公式将式子展开,然后合并同类二次根式和同类项即可;(4)先化简,然后合并同二次根式即可.【解答】解:(1)=3﹣5+4=2;(2)===;(3)=20﹣4+1+4=21;(4)=﹣3+5=.5.(2023秋•郓城县期中)计算:(1)﹣+;(2)|﹣1|+﹣;(3)+×﹣|2﹣|;(4)﹣(+1)2﹣(+3)×(﹣3).【分析】(1)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答;(4)利用完全平方公式,平方差公式,进行计算即可解答.【解答】解:(1)﹣+=3﹣2+=2;(2)|﹣1|+﹣=﹣1+3﹣2=;(3)+×﹣|2﹣|=2+5×﹣(﹣2)=2+2﹣+2=3+2;(4)﹣(﹣(+3)×(﹣3)=﹣(4+2)﹣(5﹣9)=﹣4﹣2+4=﹣2.6.(2023秋•太和区期中)计算:(1);(2);(3);(4);(5);(6).【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(3)先计算二次根式的乘除法,再算加减,即可解答;(4)先计算二次根式的乘除法,零指数幂,再算加减,即可解答;(5)先化简各式,然后再进行计算即可解答;(6)利用完全平方公式,平方差公式进行计算,即可解答.【解答】解:(1)=﹣5=6﹣5=1;(2)=+3﹣3=;(3)=(﹣)÷=÷﹣÷=﹣=2﹣;(4)=+1﹣=+1﹣4=﹣3;(5)=﹣3+4﹣+﹣1=0;(6)=3﹣2+2﹣(6﹣1)=3﹣2+2﹣5=﹣2.7.(2022秋•青羊区校级期末)计算:(1);(2)|﹣2|+(2023+π)0+﹣(﹣)﹣2.【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1)=2+﹣3+=3﹣2;(2)|﹣2|+(2023+π)0+﹣(﹣)﹣2=2﹣+1+﹣4=2﹣+1+3﹣4=2﹣.8.(2023秋•锦江区校级期中)计算:(1);(2).【分析】(1)先化简各式,然后再进行计算即可解答;(2)利用平方差公式,完全平方公式进行计算,即可解答.【解答】解:(1)=1+|5﹣5|﹣=1+5﹣5﹣3=5﹣7;(2)=3﹣4+4﹣(3﹣2)=3﹣4+4﹣1=6﹣4.9.(2023秋•汝阳县期中)计算:(1)5;(2)()2﹣(2+3)2024(2﹣3)2023.【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先计算二次根式的乘法,再算加减,即可解答.【解答】解:(1)5=+﹣×﹣×2=+﹣5﹣2=﹣5;(2)()2﹣(2+3)2024(2﹣3)2023.=2﹣2+1﹣[(2+3)2023(2﹣3)2023]×(2+3)=2﹣2+1﹣[(2+3)(2﹣3)]2023×(2+3)=2﹣2+1﹣(8﹣9)2023×(2+3)=2﹣2+1﹣(﹣1)2023×(2+3)=2﹣2+1﹣(﹣1)×(2+3)=2﹣2+1+2+3=6.10.(2023秋•皇姑区校级期中)计算:(1)﹣(+1)2+(+1)(﹣1).(2)﹣(﹣1)2023+(π﹣2021)0﹣|5﹣|﹣()﹣2;【分析】(1)利用平方差公式,完全平方公式进行计算,即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)﹣(+1)2+(+1)(﹣1)=3﹣(2+2+1)+3﹣1=3﹣2﹣2﹣1+3﹣1=﹣1;(2)﹣(﹣1)2023+(π﹣2021)0﹣|5﹣|﹣()﹣2=﹣(﹣1)+1﹣(﹣5)﹣4=1+1﹣3+5﹣4=3﹣3.11.(2023秋•潞城区校级期中)阅读与思考.下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.双层二次根式的化简二次根式的化简是一个难点,稍不留心就会出错,我在上网还发现了一类带双层根号的式子,就是根号内又带根号的式子、它们能通过完全平方公式及二次根式的性质消掉外面的一层根号.例如:要化简,可以先思考(根据1)..通过计算,我还发现设(其中m,n,a,b都为正整数),则有a+b.∴a=m2+2n2,b=2mn.这样,我就找到了一种把部分化简的方法.任务:(1)文中的“根据1”是完全平方式,b=2mn.(2)根据上面的思路,化简:.(3)已知,其中a,x,y均为正整数,求a的值.【分析】(1)根据完全平方公式进行解答即可;(2)根据题干中提供的信息,进行变形计算即可;(3)根据,得出a=x2+3y2,4=2xy,根据x,y为正整数,求出x=2,y=1或x=1,y=2,最后求出a的值即可.【解答】解:(1)的根据是完全平方公式;∵,∴a=m2+2n2,b=2mn.故答案为:完全平方公式;2mn.(2)===.(3)由题意得,∴a=x2+3y2,4=2xy,∵x,y为正整数,∴x=2,y=1或x=1,y=2,∴a=22+3×12=7或a=12+3×22=13.12.(2023秋•龙泉驿区期中)已知x=,y=.(1)求x2+y2+xy的值;(2)若x的小数部分是m,y的小数部分是n,求(m+n)2021﹣的值.【分析】(1)先利用分母有理化化简x和y,从而求出x+y和xy的值,然后再利用完全平方公式进行计算,即可解答;(2)利用(1)的结论可得:m=2﹣,n=﹣1,然后代入式子中进行计算,即可解答.【解答】解:(1)∵x===2﹣,y===2+,∴x+y=2﹣+2+=4,xy=(2﹣)(2+)=4﹣3=1,∴x2+y2+xy=(x+y)2﹣xy=42﹣1=16﹣1=15;(2)∵1<<2,∴﹣2<﹣<﹣1,∴0<2﹣<1,∴2﹣的小数部分是2﹣,∴m=2﹣,∵1<<2,∴3<2+<4,∴2+的小数部分=2+﹣3=﹣1,∴n=﹣1,∴(m+n)2021﹣=(2﹣+﹣1)2021﹣(n﹣m)=12021﹣[﹣1﹣(2﹣)]=1﹣(﹣1﹣2+)=1﹣+1+2﹣=4﹣2.13.(2023秋•双流区校级期中)阅读下列材料,然后回答问题.在进行二次根式运算时,我们有时会碰上这样的式子,其实我们还可以将其进一步化简:﹣1,以上这种化简的步骤叫作分母有理化.(1)化简:;(2)已知的整数部分为a,小数部分为b,求a2+b2的值.(3)计算:+++…++.【分析】(1)利用分母有理化进行计算,即可解答;(2)先利用分母有理化进行化简,然后再估算出的值的范围,从而估算出2+的值的范围,进而可求出a,b的值,最后代入式子中进行计算,即可解答;(3)先利用分母有理化化简各式,然后再进行计算即可解答.【解答】解:(1)===﹣,故答案为:﹣;(2)===2+,∵1<3<4,∴1<<2,∴3<2+<4,∴2+的整数部分是3,小数部分=2+﹣3=﹣1,∴a=3,b=﹣1,∴a2+b2=32+(﹣1)2=9+3﹣2+1=13﹣2;(3)+++…++=+++…++=﹣1+﹣+﹣+…+﹣+﹣=﹣1=10﹣1=9.14.(2023秋•大东区期中)观察下列各式:第一个式子:=1=1+(1﹣);第二个式子:=1=1+();第三个式子:=1=1+();…(1)求第四个式子为:;(2)求第n个式子为:(n为正整数)(用n表示);(3)求+…+的值.【分析】(1)观察题中所给式子各部分的变化规律即可解决问题.(2)利用(1)中的发现即可解决问题.(3)根据(2)中的结论即可解决问题.【解答】解:(1)观察题中所给式子可知,第四个式子为:.故答案为:.(2)由(1)中的发现可知,第n个式子为:.故答案为:(n为正整数).(3)原式==1×2022+=2022+1﹣=.15.(2023秋•晋中期中)阅读与思考:观察下列等式:第1个等式=;第2个等式;第3个等式:;…按照以上规律,解决下列问题:(1)=4﹣;(填计算的结果)(2)计算:.【分析】(1)利用分母有理化进行化简计算,即可解答;(2)利用材料的规律进行计算,即可解答.【解答】解:(1)===4﹣,故答案为:4﹣;(2)=(﹣1+﹣+2﹣+…+﹣)×(+1)=(﹣1)×(+1)=2023﹣1=2022.16.(2023秋•郁南县期中)综合探究:像,…两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,2与等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;.根据以上信息解答下列问题(1)与+互为有理化因式;(2)请你猜想=﹣;(n为正整数)(3)<(填“>”“<”或“=”);(4)计算:(+++…+)×(+1).【分析】(1)利用互为有理化因式的定义,即可解答;(2)利用分母有理化进行化简计算,即可解答;(3)先求出它们的倒数,然后再进行比较,即可解答;(4)利用分母有理化先化简各数,然后再进行计算即可解答.【解答】解:(1)与+互为有理化因式,(2)==﹣,故答案为:﹣;(3)∵==+,==+,+>+,∴>,∴<,故答案为:<;(4)(+++…+)×(+1)=[+++…+]×(+1)=(+++…+)×(+1)=(﹣1+﹣+﹣+…+﹣)×(+1)=(﹣1)×(+1)=×(2023﹣1)=×2022=1011.17.(2023秋•平阴县期中)阅读下列材料,然后解决问题.在进行二次根式的化简时,我们有时会遇到形如,,的式子,其实我们可以将其进一步化简:,=,如上这种化简的步骤叫做“分母有理化”.(1)化简=,=,=﹣.(2)化简:.【分析】(1)利用例题的解题思路进行计算,即可解答;(2)先进行分母有理化,然后再进行计算即可解答.【解答】解:(1)==,==,===﹣,故答案为:;;﹣;(2)=+++=+++=(﹣1+﹣+﹣+﹣)=.18.(2023春•莱芜区月考)观察下列一组等式,然后解答问题:,,,,…….(1)利用上面的规律,计算:;(2)请利用上面的规律,比较与的大小.【分析】(1)归纳总结得到一般性规律,计算即可求出式子的值;(2)利用得出的规律将与进行转化,再进行比较即可.【解答】解:(1)原式===;(2)由题意得,,,∵,∴.19.(2023春•宁海县期中)已知:a=+2,b=﹣2,求:(1)ab的值;(2)a2+b2﹣3ab的值;(3)若m为a整数部分,n为b小数部分,求的值.【分析】(1)代入求值即可;(2)代入求值,可将(1)的结果代入;(3)根据题意估算出m、n的值,代入分式,化简计算.【解答】解:(1)∵a=+2,b=﹣2,∴ab=(+2)(﹣2)=7﹣4=3;(2)∵a=+2,b=﹣2,ab=3,∴a2+b2﹣3ab=a2+b2﹣2ab﹣ab=(a﹣b)2﹣ab=[(+2)﹣(﹣2)]2﹣3=(+2﹣+2)2﹣3=42﹣3=16﹣3=13;(3)∵m为a整数部分,n为b小数部分,a=+2,b=﹣2,∴m=4,n=b=﹣2∴===,∴的值.20.(2023•沈丘县校级开学)已知a,b,c是△ABC的三边长.(1)若a,b,c满足(a﹣b)(b﹣c)=0,试判断△ABC的形状;(2)化简:﹣.【分析】(1)根据若ab=0,则a=0或b=0,求出a与b,b与c的关系,进行解答即可;(2)先根据三角形三边关系,判断a+b﹣c和a﹣b﹣c的正负,再利用二次根式的性质进行计算化简即可.【解答】解:(1)∵a,b,c满足(a﹣b)(b﹣c)=0,∴a﹣b=0或b﹣c=0,∴a=b或b=c,∴△ABC是等腰三角形;(2)∵a,b,c是△ABC的三边长,∴a+b>c,a﹣b<c,∴a+b﹣c>0,a﹣b﹣c<0,∴=a+b﹣c﹣(﹣a+b+c)=a+b﹣c+a﹣b﹣c=2a﹣2c21.(2023•江北区开学)求值:(1)若,,求的值;(2)若的整数部分为a,小数部分为b,求的值.【分析】(1)先求出ab和a+b的值,然后利用完全平方公式进行计算即可解答;(2)先利用分母有理化进行化简可得=,然后估算出的值的范围,从而求出a,b 的值,然后代入式子中进行计算,即可解答.【解答】解:(1)∵,,∴ab=(﹣1)(+1)=3﹣1=2,a+b=﹣1++1=2,∴=====4,∴的值为4;(2)==,∵4<7<9,∴2<<3,∴5<3+<6,∴<<3,∴的整数部分为2,小数部分为﹣2=,∴a=2,b=,∴=22+(1+)×2×+=4+7﹣1+=10+=,∴的值为.22.(2023春•清江浦区期末)像、、…两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,例如,和、与、与等都是互为有理化因式,在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)计算:①=,②=;(2)计算:.【分析】(1)①分子、分母都乘即可;②分子、分母都乘即可;(2)第一项分子、分母都乘以,第二项分子、分母都乘以,再计算即可.【解答】解:(1)①,故答案为:;②,故答案为:;(2)===2+﹣﹣1=1.23.(2023春•珠海校级期中)观察式子:,反过来:,∴,仿照上面的例子:(1)化简①;②;(2)如果x+y=m,xy=n且x>y>0,化简.【分析】(1)模仿示例将更号里面算式变形为完全平方式的形式进行化简;(2)将算式变形为,再运用二次根式的性质进行化简.【解答】解:(1)①====+1;②====;(2)∵x+y=m,xy=n且x>y>0,∴====+.24.(2023春•濮阳期中)已知,,求下列代数式的值.(1)a2﹣2ab+b2;(2)a2﹣b2.【分析】(1)先计算a+b和a﹣b的值,将原式分解因式,再将a﹣b的值代入计算即可;(2)将原式分解因式,再将a+b和a﹣b的值代入计算即可.【解答】解:(1)∵,,∴,,∴a2﹣2ab+b2=(a﹣b)2=42=16;(2)a2﹣b2=(a+b)(a﹣b)==.25.(2023春•张店区期末)阅读材料,解答下列问题.材料:已知,求的值.小明同学是这样解答的:∵==5﹣x﹣2+x=3,∵,∴,这种方法称为“构造对偶式”.问题:已知.(1)求的值;(2)求x的值.【分析】(1)利用例题的解题思路进行计算,即可解答;(2)利用(1)的结论可得2=5,从而可得=2.5,进而可得9+x=6.25,然后进行计算即可解答.【解答】解:(1)∵(﹣)(+)=()2﹣()2=9+x﹣3﹣x=6,∵,∴=2,∴的值为2;(2)由(1)得:﹣=2,+=3,∴2=5,∴=2.5,∴9+x=6.25,∴x=﹣2.75,∴x的值为﹣2.75.。

二次根式的化简与运算

二次根式的化简与运算
用于计算几何图形中线段、面积和体积等量
通过将线段、面积和体积等量表示为二次根式的形式,可以简化计算过程。
在解析几何中的应用
在平面直角坐标系中,二次根式常用于表示直线、圆和圆锥曲线等解析几何图形 的方程。
在代数中的应用
用于因式分解
通过观察二次根式的系数和指数之间的关系,可以将其进行 因式分解。
在代数方程求解中的应用
《二次根式的化简与运算 》
xx年xx月xx日
目录
• 二次根式的化简 • 二次根式的运算 • 二次根式化简与运算的应用
01
二次根式的化简
定义与性质
二次根式的定义
形如$\sqrt{a}(a \geq 0)$的式子叫做二次根式。
二次根式的性质
$\sqrt{a^2} = |a|$;$\sqrt{ab} = \sqrt{a} \times \sqrt{b}(a \geq 0,b \geq 0)$。
除了二次根式的化简,还可以在解一元二次方程、求二次三项式的最值等问题中 使用配方法。
公式法
公式法定义
利用平方差公式、完全平方公式、立方和公式、立方差公式 等,将二次根式进行化简。
公式法的应用
在二次根式的各种运算中,公式法都扮演着非常重要的角色 ,可以帮助我们快速求解和化简。
02
二次根式的运算
加减运算
注意项
系数相乘除,根式外的因式移 到根号外。
次方运算
幂的运算性质
同底数幂相乘,底数不变,指 数相加;幂的乘方,底数不变
指数相乘。
运算法则
非零数的零次幂等于$1$;非零数 的正整数次幂等于原数;负数的 偶数次幂是正数,奇次幂是负数 。
注意项
运算时注意符号和顺序。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的化简与计算
1 【知识要点】
2 1.定义:一般地,式子()0≥a a 叫做二次根式,这里的a 可以是数,也可以是代数
3 式,它们都必须是非负数(即不小于0),a 的结果也是非负数.
4 2.二次根式的性质
5 (1)
()
()02
≥=a a
a
6
(2)()
()()⎪⎩

⎨⎧<-=>==000
02a a a a a a a 7
(3)()0,0≥≥⋅=⋅b a b
a b a
8 (4)
()0,0>≥=b a b
a b a
9 3.运算法则:
10 (1)乘法运算:()0,0≥≥=⋅b a ab
b a
11
(2)除法运算:
()0,0>≥=
b a b
a
b
a
12 4.最简的二次根式:
13 (1)被开方数因数是整数,因式是整式.
14 (2)被开方数中不含有能开得尽方的因式或因数. 15 5.分母有理化
16 定义:把分母中的根号化去,叫做分母有理化. 17 方法:①单项
a =来确定.
18
②两项二次根式:利用平方差公式()()22b a b a b a -=-+来确定.
19
如: a b +与a b -,a b a b +-与,
20 a x b y a x b y +-与分别互为有理化因式。

21 练习:
22 1.判断下列各式,是二次根式有_________________.
23
,12,4,,4,27,824233+--a a a 2,21122+⎪⎭⎫ ⎝

<-a a a
24
2.下列各组二次根式中是同类二次根式的是( ) 25 A .
B .
C .
D .
26
3.
与最简二次根式是同类二次根式,则m=______.
27
28 4.若1<x <2,则的值为( )
29
A .2x ﹣4
B .﹣2
C .4﹣2x
D .2
30 5.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+
的结果是( )
31
32 A .﹣2a+b B .2a ﹣b C .﹣b D .b
33
6.若式子有意义,则x 的取值范围为( )
34 A .x ≥2 B .x ≠3 C .x ≥2或x ≠3 D .x ≥2且x ≠3
35
7.化简﹣()2,结果是( )
36 A .6x ﹣6 B .﹣6x+6 C .﹣4 D .4
37 8.已知xy <0,化简二次根式的正确结果为 ( )
38 A . B . C . D .
39 9.若2(3)3x x -=-,则x 的取值范围是______. 40 10.(2-3)2002·(2+3)2003=______. 41 11.当a <-2时,|1-2)1(a +|=______.
42
12.对于任意不相等的两个数a ,b ,定义一种运算※如下:a※b=,如3※2==,
43 那么6※3=______.
44 13.若x 是不等于1的实数,我们把称为x 的差倒数,如2的差倒数是=﹣1,
45 ﹣1的差倒数为
=,现已知x 1=﹣,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3
46 的差倒数,…,依此类推,则x 2015=______.
47
48 14.把下列各式分母有理化
49
(1)12
1 (2)
2
33 (3)50351-
(432
-50 51
52 15.计算
53
(1
(3)2 54 55
56 (4)⎪⎪⎭

⎝⎛-⨯614123
(5)
0(3)1π-- 57
58
59
60 (7)(
)0
1
21232-⎛⎫⎛⎫
-+ ⎪ ⎪ ⎪⎝⎭⎝⎭
(8)
61
62
63 64 65 66
67 16
先化简,再求值:22,其中1,39
a b ==。

68 69
70
71 17.
计算:)
...1+
72
73
74 75 76 77
78 18.
已知:11a a +
=+221
a a
+的值。

79
80 81 82 83 84 19.已知
()1
1039
32
2++=+-+-y x x x y x ,求
的值。

85
86。

相关文档
最新文档