2018年凉山州中考数学试题、答案

合集下载

2018年四川省凉山州中考数学试卷附详细答案(原版+解析版)

2018年四川省凉山州中考数学试卷附详细答案(原版+解析版)

2018年四川省凉山州中考数学试卷一、选择题:(共10个小题,每小题3分,共30分)在每个小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置。

1.(3分)比1小2的数是()A.﹣1 B.﹣2 C.﹣3 D.12.(3分)下列运算正确的是()A.a3•a4=a12B.a6÷a3=a2C.2a﹣3a=﹣a D.(a﹣2)2=a2﹣43.(3分)长度单位1纳米=10﹣9米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是()A.25.1×10﹣6米B.0.251×10﹣4米C.2.51×105米 D.2.51×10﹣5米4.(3分)小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是()A.B.C.D.5.(3分)一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.凉D.山6.(3分)一组数据:3,2,1,2,2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4 C.3,1,2 D.2,1,0.27.(3分)若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.8.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.9.(3分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A.AD=BC′B.∠EBD=∠EDB C.△ABE∽△CBD D.sin∠ABE=10.(3分)如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.40°B.30°C.45°D.50°二、填空题(共4小题,每小题3分,共12分)11.(3分)分解因式:9a﹣a3=,2x2﹣12x+18=.12.(3分)已知△ABC∽△A′B′C′且S△ABC:S△A′B′C′=1:2,则AB:A′B′=.13.(3分)有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.14.(3分)已知一个正数的平方根是3x﹣2和5x+6,则这个数是.三、解答题(共4小题,每小题7分,共28分)15.(7分)计算:|3.14﹣π|+3.14÷()0﹣2cos45°+()﹣1+(﹣1)2009.16.(7分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:(1+).17.(7分)观察下列多面体,并把如表补充完整.观察表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.18.(7分)如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C'的面积S.四、解答题(共2小题,每小题7分,共14分)19.(7分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)20.(7分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.21.(8分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区,为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(8分)如图,在平面直角坐标系中,点O1的坐标为(﹣4,0),以点O1为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成60°的角,且交y轴于C点,以点O2(13,5)为圆心的圆与x轴相切于点D.(1)求直线l的解析式;(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,当⊙O2第一次与⊙O1外切时,求⊙O2平移的时间.23.(3分)若不等式组的解集是﹣1<x<1,则(a+b)2009=.24.(3分)将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为cm2.七、解答题(共2小题,25题4分,26题10分,共14分)25.(4分)我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?26.(10分)如图,已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.(1)求抛物线的解析式;(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y 轴平移后经过点C,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.2018年四川省凉山州中考数学试卷参考答案与试题解析一、选择题:(共10个小题,每小题3分,共30分)在每个小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置。

2018年凉山州中考数学试卷含答案解析(word版)

2018年凉山州中考数学试卷含答案解析(word版)

2018年四川省凉山州中考数学试卷一、选择题(本大题共10小题,共30分)1.比1小2的数是()A. −1B. −2C. −3D. 1【答案】A【解析】解:1−2=−1.故选:A.求比1小2的数就是求1与2的差.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.2.下列运算正确的是()A. a3⋅a4=a12B. a6÷a3=a2C. 2a−3a=−aD. (a−2)2=a2−4【答案】C【解析】解:A、应为a3⋅a4=a7,故本选项错误;B、应为a6÷a3=a3,故本选项错误;C、2a−3a=−a,正确;D、应为(a−2)2=a2−4a+4,故本选项错误.故选:C.根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,计算时要认真.3.长度单位1纳米=10−9米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是()A. 25.1×10−6米B. 0.251×10−4米C. 2.51×105米D. 2.51×10−5米【答案】D【解析】解:2.51×104×10−9=2.51×10−5米.故选D.先将25100用科学记数法表示为2.51×104,再和10−9相乘.a×10n中,a的整数部分只能取一位整数,1≤|a|<10.此题中的n应为负数.4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是()A. 12B. 18C. 38D. 12+12+12【答案】B【解析】解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是1,8故选:B.列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A. 和B. 谐C. 凉D. 山【答案】D【解析】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.注意正方体的空间图形,从相对面入手,分析及解答问题.6.一组数据:3,2,1,2,2的众数,中位数,方差分别是()A. 2,1,0.4B. 2,2,0.4C. 3,1,2D. 2,1,0.2【答案】B【解析】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,[(3−2)2+2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为153×(2−2)2+(1−2)2]=0.4,即中位数是2,众数是2,方差为0.4.故选:B.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均)数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.利用方差公式计算方差.本题属于基础题,考查了确定一组数据的中位数、方差和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.7.若ab<0,则正比例函数y=ax与反比例函数y=b在同一坐标系中的大致图象可x能是()A. B. C. D.【答案】B【解析】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A. AD=BC′B. ∠EBD=∠EDBC. △ABE∽△CBDD. sin∠ABE=AEED【答案】C【解析】解:A、BC=BC′,AD=BC,∴AD=BC′,所以正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB正确.D、∵sin∠ABE=AE,BE∴∠EBD=∠EDB∴BE=DE∴sin∠ABE=AE.ED故选:C.主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.10.如图,⊙O是△ABC的外接圆,已知∠ABO=50∘,则∠ACB的大小为()A. 40∘B. 30∘C. 45∘D. 50∘【答案】A【解析】解:△AOB中,OA=OB,∠ABO=50∘,∴∠AOB=180∘−2∠ABO=80∘,∠AOB=40∘,∴∠ACB=12故选:A.首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.二、填空题(本大题共6小题,共24分)11.分解因式:9a−a3=______,2x2−12x+18=______.【答案】a(3+a)(3−a);2(x−3)2【解析】解:9a−a3=a(9−a2)=a(3+a)(3−a);2x2−12x+18=2(x2−6x+9)=2(x−3)2.观察原式9a−a3,找到公因式a后,发现9−a2符合平方差公式的形式,直接运用公式可得;观察原式2x2−12x+18,找到公因式2后,发现x2−6x+9符合完全平方差公式的形式,直接运用公式可得.本题考查整式的因式分解.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.12.已知△ABC∽△A′B′C′且S△ABC:S△A′B′C′=1:2,则AB:A′B′=______.【答案】1:√2【解析】解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:√2.根据相似三角形的面积比等于相似比的平方求解即可.本题的关键是理解相似三角形的面积比等于相似比的平方.13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______.【答案】小林【解析】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14. 已知一个正数的平方根是3x −2和5x +6,则这个数是______. 【答案】494【解析】解:根据题意可知:3x −2+5x +6=0,解得x =−12, 所以3x −2=−72,5x +6=72,∴(±72)2=494故答案为:494.由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.本题主要考查了平方根的逆运算,平时注意训练逆向思维.15. 若不等式组{b −2x >0x−a>2的解集是−1<x <1,则(a +b)2009=______. 【答案】−1【解析】解:由不等式得x >a +2,x <12b , ∵−1<x <1, ∴a +2=−1,12b =1∴a =−3,b =2,∴(a +b)2009=(−1)2009=−1. 故答案为−1.解出不等式组的解集,与已知解集−1<x <1比较,可以求出a 、b 的值,然后相加求出2009次方,可得最终答案.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.16. 将△ABC 绕点B 逆时针旋转到△A′BC′,使A 、B 、C′在同一直线上,若∠BCA =90∘,∠BAC =30∘,AB =4cm ,则图中阴影部分面积为______cm 2. 【答案】4π【解析】解:∵∠BCA =90∘,∠BAC =30∘,AB =4cm , ∴BC =2,AC =2√3,∠A′BA =120∘,∠CBC′=120∘, ∴阴影部分面积=(S △A′BC′+S 扇形BAA ′)−S 扇形BCC′−S △ABC =120π360×(42−22)=4πcm 2.故答案为:4π.易得整理后阴影部分面积为圆心角为120∘,两个半径分别为4和2的圆环的面积.本题利用了直角三角形的性质,扇形的面积公式求解.三、计算题(本大题共3小题,共24分)17.先化简,再选择一个你喜欢的数(要合适哦!)代入求值:(1+1x )÷x2−1x.【答案】解:(1+1x )÷x2−1x=x+1x⋅x(x+1)(x−1)=1x−1,当x=2时,原式=12−1=1.【解析】根据分式的加法和除法可以化简题目中的式子,再选取一个使得原分式有意义的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的计算方法.18.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45∘方向上,从A向东走600米到达B处,测得C在点B的北偏西60∘方向上.(1)MN是否穿过原始森林保护区,为什么?(参考数据:√3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?【答案】解:(1)理由如下:如图,过C作CH⊥AB于H.设CH=x,由已知有∠EAC=45∘,∠FBC=60∘,则∠CAH=45∘,∠CBA=30∘.在Rt△ACH中,AH=CH=x,在Rt△HBC中,tan∠HBC=CHHB∴HB=CHtan30∘=x√33=√3x,∵AH+HB=AB,∴x+√3x=600,解得x=6001+√3≈220(米)>200(米).∴MN不会穿过森林保护区.(2)设原计划完成这项工程需要y天,则实际完成工程需要(y−5)天.根据题意得:1y−5=(1+25%)×1y解得:y=25.经检验知:y=25是原方程的根.答:原计划完成这项工程需要25天.【解析】(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离.要构造直角三角形,再解直角三角形;(2)根据题意列方程求解.考查了构造直角三角形解斜三角形的方法和分式方程的应用.19.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【答案】解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.【解析】利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.四、解答题(本大题共7小题,共72分)20.计算:|3.14−π|+3.14÷(√32+1)0−2cos45∘+(√2−1)−1+(−1)2009.【答案】解:原式=π−3.14+3.14−2×√22+1√2−1−1=π−√2+√2+1−1=π.【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.观察下列多面体,并把如表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a61012棱数b912面数c58观察表中的结果,你能发现、、之间有什么关系吗?请写出关系式.【答案】解:填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a681012棱数b9121518面数c5678根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:a+c−b=2.【解析】结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.此题主要考查了欧拉公式,熟记常见棱柱的特征,可以总结一般规律:n棱柱有(n+2)个面,2n个顶点和3n条棱是解题关键.22.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算的面积S.【答案】解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:即为所求;.【解析】(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出;(3)直接利用(2)中图形求出三角形面积即可.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.23.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)【答案】解:设涨到每股x元时卖出,根据题意得1000x−(5000+1000x)×0.5%≥5000+1000,(4分)解这个不等式得x≥1205199,即x≥6.06.(6分)答:至少涨到每股6.06元时才能卖出.(7分)【解析】根据关系式:总售价−两次交易费≥总成本+1000列出不等式求解即可.本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价−两次交易费≥总成本+1000”列出不等关系式.24.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,求y与x之间的函数关系式.【答案】解:(1)∵一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,∴从中随机抽取出一个黑球的概率是:47;(2)∵往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,∴x+37+x+y =14,则y=3x+5.【解析】(1)直接利用概率公式直接得出取出一个黑球的概率;(2)直接利用从口袋中随机取出一个白球的概率是14,进而得出答案函数关系式.此题主要考查了概率公式,正确掌握概率求法是解题关键.25.如图,在平面直角坐标系中,点O1的坐标为(−4,0),以点O1为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成60∘的角,且交y轴于C 点,以点O2(13,5)为圆心的圆与x轴相切于点D.(1)求直线l的解析式;(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,当⊙O2第一次与⊙O1外切时,求⊙O2平移的时间.【答案】解:(1)由题意得OA =|−4|+|8|=12, ∴A 点坐标为(−12,0).∵在Rt △AOC 中,∠OAC =60∘,OC =OAtan∠OAC =12×tan60∘=12√3. ∴C 点的坐标为(0,−12√3).设直线l 的解析式为y =kx +b , 由l 过A 、C 两点,得{−12√3=b 0=−12k +b ,解得{b =−12√3k =−√3∴直线l 的解析式为:y =−√3x −12√3.(2)如图,设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1.则O 1O 3=O 1P +PO 3=8+5=13. ∵O 3D 1⊥x 轴,∴O 3D 1=5,在Rt △O 1O 3D 1中,O 1D 1=√O 1O 32−O 3D 12=√132−52=12.∵O 1D =O 1O +OD =4+13=17,∴D 1D =O 1D −O 1D 1=17−12=5, ∴t =51=5(秒).∴⊙O 2平移的时间为5秒.【解析】(1)求直线的解析式,可以先求出A 、C 两点的坐标,就可以根据待定系数法求出函数的解析式.(2)设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1.在直角△O 1O 3D 1中,根据勾股定理,就可以求出O 1D 1,进而求出D 1D 的长,得到平移的时间.本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.26. 如图,已知抛物线y =x 2+bx +c 经过A(1,0),B(0,2)两点,顶点为D .(1)求抛物线的解析式;(2)将△OAB 绕点A 顺时针旋转90∘后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为B 1,顶点为D 1,若点N 在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.【答案】解:(1)已知抛物线y=x2+bx+c经过A(1,0),B(0,2),∴{2=0+0+c0=1+b+c,解得{c=2b=−3,∴所求抛物线的解析式为y=x2−3x+2;(2)∵A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2−3x+2得y=2,可知抛物线y=x2−3x+2过点(3,2),∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2−3x+1;(3)∵点N在y=x2−3x+1上,可设N点坐标为(x0,x02−3x0+1),将y=x2−3x+1配方得y=(x−32)2−54,∴其对称轴为直线x=32.①0≤x0≤32时,如图①,∵S△NBB1=2S△NDD1,∴12×1×x0=2×12×1×(32−x0)∵x0=1,此时x02−3x0+1=−1,∴N点的坐标为(1,−1).②当x0>32时,如图②,同理可得12×1×x0=2×12×(x0−32),∴x0=3,此时x02−3x0+1=1,∴点N的坐标为(3,1).③当x<0时,由图可知,N点不存在,∴舍去.综上,点N的坐标为(1,−1)或(3,1).【解析】(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2−3x+2得y=2,可知抛物线y= x2−3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2−3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.。

2018年四川省凉山州中考数学试卷(答案解析版)-精编.doc

2018年四川省凉山州中考数学试卷(答案解析版)-精编.doc

四川省凉山州2018年中考数学试卷一、选择题(本大题共10小题,共30分)1.比1小2的数是A. B. C. D. 1【答案】A【解析】解:.故选:A.求比1小2的数就是求1与2的差.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数这是需要熟记的内容.2.下列运算正确的是A. B. C. D.【答案】C【解析】解:A、应为,故本选项错误;B、应为,故本选项错误;C、,正确;D、应为,故本选项错误.故选:C.根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,计算时要认真.3.长度单位1纳米米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是A. 米B. 米C. 米D.米【答案】D【解析】解:米故选D.先将25100用科学记数法表示为,再和相乘.中,a的整数部分只能取一位整数,此题中的n应为负数.4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是A. B. C. D.【答案】B【解析】解:画树状图,得共有8种情况,经过每个路口都是绿灯的有一种,实际这样的机会是,故选:B.列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形用到的知识点为:概率所求情况数与总情况数之比.5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是6.7.A. 和B. 谐C. 凉D. 山【答案】D【解析】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.注意正方体的空间图形,从相对面入手,分析及解答问题.8.一组数据:3,2,1,2,2的众数,中位数,方差分别是A. 2,1,B. 2,2,C. 3,1,2D. 2,1,【答案】B【解析】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数平均数为,方差为,即中位数是2,众数是2,方差为.故选:B.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个利用方差公式计算方差.本题属于基础题,考查了确定一组数据的中位数、方差和众数的能力注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数.9.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是A. B. C. D.【答案】B【解析】解:,分两种情况:当,时,正比例函数数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;当,时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.根据及正比例函数与反比例函数图象的特点,可以从,和,两方面分类讨论得出答案.本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.10.下列图形中既是轴对称图形,又是中心对称图形的是A. B. C. D.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.如图将矩形ABCD沿对角线BD折叠,使C落在处,交AD于点E,则下到结论不一定成立的是A.B.C. ∽D.【答案】C【解析】解:A、,,,所以正确.B、,,EDB正确.D、,.故选:C.主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.12.如图,是的外接圆,已知,则的大小为A.B.C.D.【答案】A【解析】解:中,,,,,故选:A.首先根据等腰三角形的性质及三角形内角和定理求出的度数,再利用圆周角与圆心角的关系求出的度数.本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.二、填空题(本大题共6小题,共24分)13.分解因式:______,______.【答案】;【解析】解:;.观察原式,找到公因式a后,发现符合平方差公式的形式,直接运用公式可得;观察原式,找到公因式2后,发现符合完全平方差公式的形式,直接运用公式可得.本题考查整式的因式分解一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.14.已知∽且::2,则AB:______.【答案】1:【解析】解:∽,:::2,::.根据相似三角形的面积比等于相似比的平方求解即可.本题的关键是理解相似三角形的面积比等于相似比的平方.15.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______.【答案】小林【解析】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16.已知一个正数的平方根是和,则这个数是______.【答案】【解析】解:根据题意可知:,解得,所以,,故答案为:.由于一个非负数的平方根有2个,它们互为相反数依此列出方程求解即可.本题主要考查了平方根的逆运算,平时注意训练逆向思维.17.若不等式组的解集是,则______.【答案】【解析】解:由不等式得,,,,,,.故答案为.解出不等式组的解集,与已知解集比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.18.将绕点B逆时针旋转到,使A、B、在同一直线上,若,,,则图中阴影部分面积为______.19.20.21.【答案】【解析】解:,,,,,,,阴影部分面积.故答案为:.易得整理后阴影部分面积为圆心角为,两个半径分别为4和2的圆环的面积.本题利用了直角三角形的性质,扇形的面积公式求解.三、计算题(本大题共3小题,共24分)22.先化简,再选择一个你喜欢的数要合适哦代入求值:.【答案】解:,当时,原式.【解析】根据分式的加法和除法可以化简题目中的式子,再选取一个使得原分式有意义的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的计算方法.23.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东方向上,从A向东走600米到达B处,测得C在点B的北偏西方向上.24.是否穿过原始森林保护区,为什么?参考数据:25.若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高,则原计划完成这项工程需要多少天?【答案】解:理由如下:如图,过C作于H.设,由已知有,,则,.在中,,在中,,,,解得米米.不会穿过森林保护区.设原计划完成这项工程需要y天,则实际完成工程需要天.根据题意得:解得:.经检验知:是原方程的根.答:原计划完成这项工程需要25天.【解析】要求MN是否穿过原始森林保护区,也就是求C到MN的距离要构造直角三角形,再解直角三角形;根据题意列方程求解.考查了构造直角三角形解斜三角形的方法和分式方程的应用.26.我们常用的数是十进制数,如,数要用10个数码又叫数字:0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数那么二进制中的数101011等于十进制中的哪个数?【答案】解:,所以二进制中的数101011等于十进制中的43.【解析】利用新定义得到,然后根据乘方的定义进行计算.本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.四、解答题(本大题共7小题,共72分)27.计算:.【答案】解:原式.【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.28.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a61012棱数b912面数c58观察表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a681012棱数b9121518面数c5678根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有个面,共有2n 个顶点,共有3n条棱;故a,b,c之间的关系:.【解析】结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.此题主要考查了欧拉公式,熟记常见棱柱的特征,可以总结一般规律:n棱柱有个面,2n个顶点和3n条棱是解题关键.29.如图,在方格纸中30.请在方格纸上建立平面直角坐标系,使,,并求出B点坐标;31.以原点O为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;32.计算的面积S.【答案】解:如图所示,即为所求的直角坐标系;;如图:即为所求;.【解析】直接利用A,C点坐标得出原点位置进而得出答案;利用位似图形的性质即可得出;直接利用中图形求出三角形面积即可.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和关键点;根据位似比,确定位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.33.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?精确到元【答案】解:设涨到每股x元时卖出,根据题意得,分解这个不等式得,即分答:至少涨到每股元时才能卖出分【解析】根据关系式:总售价两次交易费总成本列出不等式求解即可.本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价两次交易费总成本”列出不等关系式.34.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.35.求从中随机抽取出一个黑球的概率是多少?36.若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.【答案】解:一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,从中随机抽取出一个黑球的概率是:;往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,,则.【解析】直接利用概率公式直接得出取出一个黑球的概率;直接利用从口袋中随机取出一个白球的概率是,进而得出答案函数关系式.此题主要考查了概率公式,正确掌握概率求法是解题关键.37.如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成的角,且交y轴于C点,以点为圆心的圆与x 轴相切于点D.38.求直线l的解析式;39.将以每秒1个单位的速度沿x轴向左平移,当第一次与外切时,求平移的时间.【答案】解:由题意得,点坐标为.在中,,.点的坐标为设直线l的解析式为,由l过A、C两点,得,解得直线l的解析式为:.如图,设平移t秒后到处与第一次外切于点P,与x轴相切于点,连接,.则.轴,,在中,.,,秒.平移的时间为5秒.【解析】求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.设平移t秒后到处与第一次外切于点P,与x轴相切于点,连接,.在直角中,根据勾股定理,就可以求出,进而求出的长,得到平移的时间.本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.40.如图,已知抛物线经过,两点,顶点为D.41.求抛物线的解析式;42.将绕点A顺时针旋转后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;43.设中平移后,所得抛物线与y轴的交点为,顶点为,若点N在平移后的抛物线上,且满足的面积是面积的2倍,求点N的坐标.44.45.【答案】解:已知抛物线经过,,,解得,所求抛物线的解析式为;,,,,可得旋转后C点的坐标为,当时,由得,可知抛物线过点,将原抛物线沿y轴向下平移1个单位后过点C.平移后的抛物线解析式为:;点N在上,可设N点坐标为,将配方得,其对称轴为直线.时,如图,,,此时,点的坐标为.当时,如图,同理可得,,此时,点N的坐标为.当时,由图可知,N点不存在,舍去.综上,点N的坐标为或.【解析】利用待定系数法,将点A,B的坐标代入解析式即可求得;根据旋转的知识可得:,,,,可得旋转后C点的坐标为,当时,由得,可知抛物线过点将原抛物线沿y轴向下平移1个单位后过点平移后的抛物线解析式为:;首先求得,的坐标,根据图形分别求得即可,要注意利用方程思想.此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.。

2018年中考真题-四川省凉山州2018年中考数学试卷及答案解析(word版)

2018年中考真题-四川省凉山州2018年中考数学试卷及答案解析(word版)

2018年四川省凉山州中考数学试卷一、选择题(本大题共10小题,共30分)1.比1小2的数是A. B. C. D. 1【答案】A【解析】解:.故选:A.求比1小2的数就是求1与2的差.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数这是需要熟记的内容.2.下列运算正确的是A. B. C. D.【答案】C【解析】解:A、应为,故本选项错误;B、应为,故本选项错误;C、,正确;D、应为,故本选项错误.故选:C.根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公第2页,共21页式,计算时要认真.3. 长度单位1纳米米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是A.米B. 米C.米D.米【答案】D 【解析】解:米故选D . 先将25100用科学记数法表示为,再和相乘.中,a 的整数部分只能取一位整数,此题中的n 应为负数.4. 小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是A.B.C.D.【答案】B【解析】解:画树状图,得共有8种情况,经过每个路口都是绿灯的有一种, 实际这样的机会是,故选:B .列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形用到的知识点为:概率所求情况数与总情况数之比.5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是A. 和B. 谐C. 凉D. 山【答案】D【解析】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.注意正方体的空间图形,从相对面入手,分析及解答问题.6.一组数据:3,2,1,2,2的众数,中位数,方差分别是A. 2,1,B. 2,2,C. 3,1,2D. 2,1,【答案】B【解析】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数平均数为,方差为,即中位数是2,众数是2,方差为.故选:B.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个利用方差公式计算方差.本题属于基础题,考查了确定一组数据的中位数、方差和众数的能力注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数.7.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是A.B.C.D.【答案】B【解析】解:,分两种情况:当,时,正比例函数数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;当,时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.根据及正比例函数与反比例函数图象的特点,可以从,和,两方面分类讨论得出答案.第4页,共21页本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.下列图形中既是轴对称图形,又是中心对称图形的是A. B. C. D.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图将矩形ABCD沿对角线BD折叠,使C落在处,交AD于点E,则下到结论不一定成立的是A.B.C. ∽D.【答案】C【解析】解:A 、,,,所以正确.B 、,,EDB正确.D 、,.故选:C.主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.的大小为A.B.C.D.【答案】A第6页,共21页【解析】解:中,,,,,故选:A.首先根据等腰三角形的性质及三角形内角和定理求出的度数,再利用圆周角与圆心角的关系求出的度数.本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.二、填空题(本大题共6小题,共24分)11.分解因式:______,______.【答案】;【解析】解:;.观察原式,找到公因式a后,发现符合平方差公式的形式,直接运用公式可得;观察原式,找到公因式2后,发现符合完全平方差公式的形式,直接运用公式可得.本题考查整式的因式分解一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.12.已知∽且::2,则AB:______.【答案】1:【解析】解:∽,:::2,::.根据相似三角形的面积比等于相似比的平方求解即可.本题的关键是理解相似三角形的面积比等于相似比的平方.13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______.【答案】小林【解析】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.已知一个正数的平方根是和,则这个数是______.第8页,共21页【答案】【解析】解:根据题意可知:,解得,所以,,故答案为:.由于一个非负数的平方根有2个,它们互为相反数依此列出方程求解即可.本题主要考查了平方根的逆运算,平时注意训练逆向思维.15.若不等式组的解集是,则______.【答案】【解析】解:由不等式得,,,,,,.故答案为.解出不等式组的解集,与已知解集比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未第10页,共21页知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数. 16. 将绕点B 逆时针旋转到,使A 、B 、在同一直线上,若,,,则图中阴影部分面积为______.【答案】 【解析】解:,,,,,,,阴影部分面积.故答案为:.易得整理后阴影部分面积为圆心角为,两个半径分别为4和2的圆环的面积.本题利用了直角三角形的性质,扇形的面积公式求解.三、计算题(本大题共3小题,共24分)17. 先化简,再选择一个你喜欢的数要合适哦代入求值:.【答案】解:,当时,原式.【解析】根据分式的加法和除法可以化简题目中的式子,再选取一个使得原分式有意义的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的计算方法.18.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东方向上,从A向东走600米到达B处,测得C在点B的北偏西方向上.是否穿过原始森林保护区,为什么?参考数据:若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高,则原计划完成这项工程需要多少天?【答案】解:理由如下:如图,过C作于H.设,由已知有,,则,.在中,,在中,,,,解得米米.不会穿过森林保护区.设原计划完成这项工程需要y 天,则实际完成工程需要天.根据题意得:解得:.经检验知:是原方程的根.答:原计划完成这项工程需要25天.【解析】要求MN是否穿过原始森林保护区,也就是求C到MN的距离要构造直角三角形,再解直角三角形;根据题意列方程求解.考查了构造直角三角形解斜三角形的方法和分式方程的应用.第12页,共21页19.我们常用的数是十进制数,如,数要用10个数码又叫数字:0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数那么二进制中的数101011等于十进制中的哪个数?【答案】解:,所以二进制中的数101011等于十进制中的43.【解析】利用新定义得到,然后根据乘方的定义进行计算.本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.四、解答题(本大题共7小题,共72分)20.计算:.【答案】解:原式.【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.观察下列多面体,并把如表补充完整.观察表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.【答案】解:填表如下:根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:.【解析】结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有个面,2n个顶点和3n 条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.此题主要考查了欧拉公式,熟记常见棱柱的特征,可以总结一般规律:n棱第14页,共21页柱有个面,2n个顶点和3n条棱是解题关键.22.如图,在方格纸中请在方格纸上建立平面直角坐标系,使,,并求出B点坐标;以原点O为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;计算的面积S.【答案】解:如图所示,即为所求的直角坐标系;;如图:即为所求;.【解析】直接利用A,C点坐标得出原点位置进而得出答案;利用位似图形的性质即可得出;直接利用中图形求出三角形面积即可.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和关键点;根据位似比,确定位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.23.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?精确到元【答案】解:设涨到每股x元时卖出,根据题意得,分解这个不等式得,即分答:至少涨到每股元时才能卖出分【解析】根据关系式:总售价两次交易费总成本列出不等式求解即可.本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价两次交易费总成本”列出不等关系式.24.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.求从中随机抽取出一个黑球的概率是多少?第16页,共21页若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.【答案】解:一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,从中随机抽取出一个黑球的概率是:;往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,,则.【解析】直接利用概率公式直接得出取出一个黑球的概率;直接利用从口袋中随机取出一个白球的概率是,进而得出答案函数关系式.此题主要考查了概率公式,正确掌握概率求法是解题关键.25.如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成的角,且交y轴于C点,以点为圆心的圆与x轴相切于点D.求直线l的解析式;将以每秒1个单位的速度沿x轴向左平移,当第一次与外切时,求平移的时间.【答案】解:由题意得,点坐标为.在中,,.点的坐标为设直线l的解析式为,由l过A、C两点,得,解得直线l的解析式为:.如图,设平移t 秒后到处与第一次外切于点P ,与x轴相切于点,连接,.则.轴,,在中,.,,秒.平移的时间为5秒.第18页,共21页【解析】求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.设平移t秒后到处与第一次外切于点P,与x轴相切于点,连接,.在直角中,根据勾股定理,就可以求出,进而求出的长,得到平移的时间.本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.26.如图,已知抛物线经过,两点,顶点为D.求抛物线的解析式;将绕点A顺时针旋转后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;设中平移后,所得抛物线与y轴的交点为,顶点为,若点N在平移后的抛物线上,且满足的面积是面积的2倍,求点N 的坐标.【答案】解:已知抛物线经过,,,解得,第20页,共21页所求抛物线的解析式为;,,,,可得旋转后C 点的坐标为, 当时,由得, 可知抛物线过点,将原抛物线沿y 轴向下平移1个单位后过点C . 平移后的抛物线解析式为:;点N 在上,可设N 点坐标为,将配方得,其对称轴为直线.时,如图,,,此时,点的坐标为.当时,如图,同理可得,,此时,点N的坐标为.当时,由图可知,N点不存在,舍去.综上,点N的坐标为或.【解析】利用待定系数法,将点A,B的坐标代入解析式即可求得;根据旋转的知识可得:,,,,可得旋转后C点的坐标为,当时,由得,可知抛物线过点将原抛物线沿y轴向下平移1个单位后过点平移后的抛物线解析式为:;首先求得,的坐标,根据图形分别求得即可,要注意利用方程思想.此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.。

四川省凉山州2018年中考数学真题试题(含解析)

四川省凉山州2018年中考数学真题试题(含解析)

四川省凉山州2018年中考数学真题试题一、选择题(本大题共10小题,共30分)1.比1小2的数是A. B. C. D. 1【答案】A【解析】解:.故选:A.求比1小2的数就是求1与2的差.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数这是需要熟记的内容.2.下列运算正确的是A. B. C. D.【答案】C【解析】解:A、应为,故本选项错误;B、应为,故本选项错误;C、,正确;D、应为,故本选项错误.故选:C.根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,计算时要认真.3.长度单位1纳米米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是A. 米B. 米C.米 D. 米【答案】D【解析】解:米故选D.先将25100用科学记数法表示为,再和相乘.中,a的整数部分只能取一位整数,此题中的n应为负数.4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是A. B. C. D.【答案】B【解析】解:画树状图,得共有8种情况,经过每个路口都是绿灯的有一种,实际这样的机会是,故选:B.列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形用到的知识点为:概率所求情况数与总情况数之比.5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是A. 和B. 谐C. 凉D. 山【答案】D【解析】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.注意正方体的空间图形,从相对面入手,分析及解答问题.6.一组数据:3,2,1,2,2的众数,中位数,方差分别是A. 2,1,B. 2,2,C. 3,1,2D. 2,1,【答案】B【解析】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数平均数为,方差为,即中位数是2,众数是2,方差为.故选:B.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个利用方差公式计算方差.本题属于基础题,考查了确定一组数据的中位数、方差和众数的能力注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数.7.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是A. B. C. D.【答案】B【解析】解:,分两种情况:当,时,正比例函数数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;当,时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.根据及正比例函数与反比例函数图象的特点,可以从,和,两方面分类讨论得出答案.本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.下列图形中既是轴对称图形,又是中心对称图形的是A. B. C. D.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图将矩形ABCD沿对角线BD折叠,使C落在处,交AD于点E,则下到结论不一定成立的是A.B.C. ∽D.【答案】C【解析】解:A、,,,所以正确.B 、,,EDB正确.D、,.故选:C.主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.10.如图,是的外接圆,已知,则的大小为A.B.C.D.【答案】A【解析】解:中,,,,,故选:A.首先根据等腰三角形的性质及三角形内角和定理求出的度数,再利用圆周角与圆心角的关系求出的度数.本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.二、填空题(本大题共6小题,共24分)11.分解因式:______,______.【答案】;【解析】解:;.观察原式,找到公因式a后,发现符合平方差公式的形式,直接运用公式可得;观察原式,找到公因式2后,发现符合完全平方差公式的形式,直接运用公式可得.本题考查整式的因式分解一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.12.已知∽且::2,则AB:______.【答案】1:【解析】解:∽,:::2,::.根据相似三角形的面积比等于相似比的平方求解即可.本题的关键是理解相似三角形的面积比等于相似比的平方.13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______.【答案】小林【解析】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.已知一个正数的平方根是和,则这个数是______.【答案】【解析】解:根据题意可知:,解得,所以,,故答案为:.由于一个非负数的平方根有2个,它们互为相反数依此列出方程求解即可.本题主要考查了平方根的逆运算,平时注意训练逆向思维.15.若不等式组的解集是,则______.【答案】【解析】解:由不等式得,,,,,,.故答案为.解出不等式组的解集,与已知解集比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.16.将绕点B逆时针旋转到,使A、B、在同一直线上,若,,,则图中阴影部分面积为______.【答案】【解析】解:,,,,,,,阴影部分面积.故答案为:.易得整理后阴影部分面积为圆心角为,两个半径分别为4和2的圆环的面积.本题利用了直角三角形的性质,扇形的面积公式求解.三、计算题(本大题共3小题,共24分)17.先化简,再选择一个你喜欢的数要合适哦代入求值:.【答案】解:,当时,原式.【解析】根据分式的加法和除法可以化简题目中的式子,再选取一个使得原分式有意义的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的计算方法.18.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东方向上,从A向东走600米到达B处,测得C在点B的北偏西方向上.是否穿过原始森林保护区,为什么?参考数据:若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高,则原计划完成这项工程需要多少天?【答案】解:理由如下:如图,过C作于H.设,由已知有,,则,.在中,,在中,,,,解得米米.不会穿过森林保护区.设原计划完成这项工程需要y天,则实际完成工程需要天.根据题意得:解得:.经检验知:是原方程的根.答:原计划完成这项工程需要25天.【解析】要求MN是否穿过原始森林保护区,也就是求C到MN的距离要构造直角三角形,再解直角三角形;根据题意列方程求解.考查了构造直角三角形解斜三角形的方法和分式方程的应用.19.我们常用的数是十进制数,如,数要用10个数码又叫数字:0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数那么二进制中的数101011等于十进制中的哪个数?【答案】解:,所以二进制中的数101011等于十进制中的43.【解析】利用新定义得到,然后根据乘方的定义进行计算.本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.四、解答题(本大题共7小题,共72分)20.计算:.【答案】解:原式.【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.观察下列多面体,并把如表补充完整.观察表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.【答案】解:填表如下:根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:.【解析】结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.此题主要考查了欧拉公式,熟记常见棱柱的特征,可以总结一般规律:n棱柱有个面,2n个顶点和3n条棱是解题关键.22.如图,在方格纸中请在方格纸上建立平面直角坐标系,使,,并求出B点坐标;以原点O为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;计算的面积S.【答案】解:如图所示,即为所求的直角坐标系;;如图:即为所求;.【解析】直接利用A,C点坐标得出原点位置进而得出答案;利用位似图形的性质即可得出;直接利用中图形求出三角形面积即可.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和关键点;根据位似比,确定位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.23.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?精确到元【答案】解:设涨到每股x元时卖出,根据题意得,分解这个不等式得,即分答:至少涨到每股元时才能卖出分【解析】根据关系式:总售价两次交易费总成本列出不等式求解即可.本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价两次交易费总成本”列出不等关系式.24.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.求从中随机抽取出一个黑球的概率是多少?若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.【答案】解:一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,从中随机抽取出一个黑球的概率是:;往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,,则.【解析】直接利用概率公式直接得出取出一个黑球的概率;直接利用从口袋中随机取出一个白球的概率是,进而得出答案函数关系式.此题主要考查了概率公式,正确掌握概率求法是解题关键.25.如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成的角,且交y轴于C点,以点为圆心的圆与x轴相切于点D.求直线l的解析式;将以每秒1个单位的速度沿x轴向左平移,当第一次与外切时,求平移的时间.【答案】解:由题意得,点坐标为.在中,,.点的坐标为设直线l的解析式为,由l过A、C两点,得,解得直线l的解析式为:.如图,设平移t秒后到处与第一次外切于点P,与x轴相切于点,连接,.则.轴,,在中,.,,秒.平移的时间为5秒.【解析】求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.设平移t秒后到处与第一次外切于点P,与x轴相切于点,连接,.在直角中,根据勾股定理,就可以求出,进而求出的长,得到平移的时间.本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.26.如图,已知抛物线经过,两点,顶点为D.求抛物线的解析式;将绕点A顺时针旋转后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;设中平移后,所得抛物线与y轴的交点为,顶点为,若点N在平移后的抛物线上,且满足的面积是面积的2倍,求点N的坐标.【答案】解:已知抛物线经过,,,解得,所求抛物线的解析式为;,,,,可得旋转后C点的坐标为,当时,由得,可知抛物线过点,将原抛物线沿y轴向下平移1个单位后过点C.平移后的抛物线解析式为:;点N在上,可设N点坐标为,将配方得,其对称轴为直线.时,如图,,,此时,点的坐标为.当时,如图,同理可得,,此时,点N的坐标为.当时,由图可知,N点不存在,舍去.综上,点N的坐标为或.【解析】利用待定系数法,将点A,B的坐标代入解析式即可求得;根据旋转的知识可得:,,,,可得旋转后C点的坐标为,当时,由得,可知抛物线过点将原抛物线沿y轴向下平移1个单位后过点平移后的抛物线解析式为:;首先求得,的坐标,根据图形分别求得即可,要注意利用方程思想.此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.。

2018年凉山州中考数学试卷包括答案解析

2018年凉山州中考数学试卷包括答案解析

2018年四川省凉山州中考数学试卷一、选择题(本大题共10小题,共30分)1.比1小2的数是()A. −1B. −2C. −3D. 1【答案】A【解析】解:1−2=−1.故选:A.求比1小2的数就是求1与2的差.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.2.下列运算正确的是()A. a3⋅a4=a12B. a6÷a3=a2C. 2a−3a=−aD. (a−2)2=a2−4【答案】C【解析】解:A、应为a3⋅a4=a7,故本选项错误;B、应为a6÷a3=a3,故本选项错误;C、2a−3a=−a,正确;D、应为(a−2)2=a2−4a+4,故本选项错误.故选:C.根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,计算时要认真.3.长度单位1纳米=10−9米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是()A. 25.1×10−6米B. 0.251×10−4米C. 2.51×105米D. 2.51×10−5米【答案】D【解析】解:2.51×104×10−9=2.51×10−5米.故选D.先将25100用科学记数法表示为2.51×104,再和10−9相乘.a×10n中,a的整数部分只能取一位整数,1≤|a|<10.此题中的n应为负数.4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是()A. 12B. 18C. 38D. 12+12+12【答案】B【解析】解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是1,8故选:B.列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A. 和B. 谐C. 凉D. 山【答案】D【解析】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.注意正方体的空间图形,从相对面入手,分析及解答问题.6.一组数据:3,2,1,2,2的众数,中位数,方差分别是()A. 2,1,0.4B. 2,2,0.4C. 3,1,2D. 2,1,0.2【答案】B【解析】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位[(3−2)2+3×(2−2)2+(1−2)2]=0.4,为中位数.平均数为(3+2+1+2+2)÷5=2,方差为15即中位数是2,众数是2,方差为0.4.故选:B.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均)数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.利用方差公式计算方差.本题属于基础题,考查了确定一组数据的中位数、方差和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.7.若ab<0,则正比例函数y=ax与反比例函数y=b在同一坐标系中的大致图象可能是()xA. B. C. D.【答案】B【解析】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A. AD=BC′B. ∠EBD=∠EDBC. △ABE∽△CBDD. sin∠ABE=AEED【答案】C【解析】解:A、BC=BC′,AD=BC,∴AD=BC′,所以正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB正确.D、∵sin∠ABE=AE,BE∴∠EBD=∠EDB∴BE=DE∴sin∠ABE=AE.ED故选:C.主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.10.如图,⊙O是△ABC的外接圆,已知∠ABO=50∘,则∠ACB的大小为()A. 40∘B. 30∘C. 45∘D. 50∘【答案】A【解析】解:△AOB中,OA=OB,∠ABO=50∘,∴∠AOB=180∘−2∠ABO=80∘,∠AOB=40∘,∴∠ACB=12故选:A.首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.二、填空题(本大题共6小题,共24分)11.分解因式:9a−a3=______,2x2−12x+18=______.【答案】a(3+a)(3−a);2(x−3)2【解析】解:9a−a3=a(9−a2)=a(3+a)(3−a);2x2−12x+18=2(x2−6x+9)=2(x−3)2.观察原式9a−a3,找到公因式a后,发现9−a2符合平方差公式的形式,直接运用公式可得;观察原式2x2−12x+18,找到公因式2后,发现x2−6x+9符合完全平方差公式的形式,直接运用公式可得.本题考查整式的因式分解.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.12.已知△ABC∽△A′B′C′且S△ABC:S△A′B′C′=1:2,则AB:A′B′=______.【答案】1:√2【解析】解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:√2.根据相似三角形的面积比等于相似比的平方求解即可.本题的关键是理解相似三角形的面积比等于相似比的平方.13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______.【答案】小林【解析】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14. 已知一个正数的平方根是3x −2和5x +6,则这个数是______. 【答案】494【解析】解:根据题意可知:3x −2+5x +6=0,解得x =−12, 所以3x −2=−72,5x +6=72,∴(±72)2=494故答案为:494.由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.本题主要考查了平方根的逆运算,平时注意训练逆向思维.15. 若不等式组{b −2x >0x−a>2的解集是−1<x <1,则(a +b)2009=______. 【答案】−1【解析】解:由不等式得x >a +2,x <12b , ∵−1<x <1, ∴a +2=−1,12b =1∴a =−3,b =2,∴(a +b)2009=(−1)2009=−1. 故答案为−1.解出不等式组的解集,与已知解集−1<x <1比较,可以求出a 、b 的值,然后相加求出2009次方,可得最终答案.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.16. 将△ABC 绕点B 逆时针旋转到△A′BC′,使A 、B 、C′在同一直线上,若∠BCA =90∘,∠BAC =30∘,AB =4cm ,则图中阴影部分面积为______cm 2. 【答案】4π【解析】解:∵∠BCA =90∘,∠BAC =30∘,AB =4cm , ∴BC =2,AC =2√3,∠A′BA =120∘,∠CBC′=120∘, ∴阴影部分面积=(S △A′BC′+S 扇形BAA ′)−S 扇形BCC′−S △ABC =120π360×(42−22)=4πcm 2.故答案为:4π.易得整理后阴影部分面积为圆心角为120∘,两个半径分别为4和2的圆环的面积. 本题利用了直角三角形的性质,扇形的面积公式求解.三、计算题(本大题共3小题,共24分)17.先化简,再选择一个你喜欢的数(要合适哦!)代入求值:(1+1x )÷x2−1x.【答案】解:(1+1x )÷x2−1x=x+1x⋅x(x+1)(x−1)=1x−1,当x=2时,原式=12−1=1.【解析】根据分式的加法和除法可以化简题目中的式子,再选取一个使得原分式有意义的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的计算方法.18.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45∘方向上,从A向东走600米到达B处,测得C在点B的北偏西60∘方向上.(1)MN是否穿过原始森林保护区,为什么?(参考数据:√3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?【答案】解:(1)理由如下:如图,过C作CH⊥AB于H.设CH=x,由已知有∠EAC=45∘,∠FBC=60∘,则∠CAH=45∘,∠CBA=30∘.在Rt△ACH中,AH=CH=x,在Rt△HBC中,tan∠HBC=CHHB∴HB=CHtan30∘=x√33=√3x,∵AH+HB=AB,∴x+√3x=600,解得x=6001+√3≈220(米)>200(米).∴MN不会穿过森林保护区.(2)设原计划完成这项工程需要y天,则实际完成工程需要(y−5)天.根据题意得:1y−5=(1+25%)×1y解得:y=25.经检验知:y=25是原方程的根.答:原计划完成这项工程需要25天.【解析】(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离.要构造直角三角形,再解直角三角形;(2)根据题意列方程求解.考查了构造直角三角形解斜三角形的方法和分式方程的应用.19.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【答案】解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.【解析】利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.四、解答题(本大题共7小题,共72分)20.计算:|3.14−π|+3.14÷(√32+1)0−2cos45∘+(√2−1)−1+(−1)2009.【答案】解:原式=π−3.14+3.14−2×√22+1√2−1−1=π−√2+√2+1−1=π.【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.观察下列多面体,并把如表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a61012棱数b912面数c58观察表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.【答案】解:填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a681012棱数b9121518面数c5678根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:a+c−b=2.【解析】结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.此题主要考查了欧拉公式,熟记常见棱柱的特征,可以总结一般规律:n棱柱有(n+2)个面,2n个顶点和3n条棱是解题关键.22.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算的面积S.【答案】解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:即为所求;.【解析】(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出;(3)直接利用(2)中图形求出三角形面积即可.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.23.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)【答案】解:设涨到每股x元时卖出,根据题意得1000x−(5000+1000x)×0.5%≥5000+1000,(4分)解这个不等式得x≥1205199,即x≥6.06.(6分)答:至少涨到每股6.06元时才能卖出.(7分)【解析】根据关系式:总售价−两次交易费≥总成本+1000列出不等式求解即可.本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价−两次交易费≥总成本+1000”列出不等关系式.24.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,求y与x之间的函数关系式.【答案】解:(1)∵一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,∴从中随机抽取出一个黑球的概率是:47;(2)∵往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,∴x+37+x+y =14,则y=3x+5.【解析】(1)直接利用概率公式直接得出取出一个黑球的概率;(2)直接利用从口袋中随机取出一个白球的概率是14,进而得出答案函数关系式.此题主要考查了概率公式,正确掌握概率求法是解题关键.25.如图,在平面直角坐标系中,点O1的坐标为(−4,0),以点O1为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成60∘的角,且交y轴于C点,以点O2(13,5)为圆心的圆与x轴相切于点D.(1)求直线l的解析式;(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,当⊙O2第一次与⊙O1外切时,求⊙O2平移的时间.【答案】解:(1)由题意得OA =|−4|+|8|=12, ∴A 点坐标为(−12,0).∵在Rt △AOC 中,∠OAC =60∘,OC =OAtan∠OAC =12×tan60∘=12√3. ∴C 点的坐标为(0,−12√3).设直线l 的解析式为y =kx +b , 由l 过A 、C 两点,得{−12√3=b 0=−12k +b ,解得{b =−12√3k =−√3∴直线l 的解析式为:y =−√3x −12√3.(2)如图,设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1.则O 1O 3=O 1P +PO 3=8+5=13. ∵O 3D 1⊥x 轴,∴O 3D 1=5,在Rt △O 1O 3D 1中,O 1D 1=√O 1O 32−O 3D 12=√132−52=12.∵O 1D =O 1O +OD =4+13=17,∴D 1D =O 1D −O 1D 1=17−12=5, ∴t =51=5(秒).∴⊙O 2平移的时间为5秒.【解析】(1)求直线的解析式,可以先求出A 、C 两点的坐标,就可以根据待定系数法求出函数的解析式.(2)设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1. 在直角△O 1O 3D 1中,根据勾股定理,就可以求出O 1D 1,进而求出D 1D 的长,得到平移的时间.本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.26. 如图,已知抛物线y =x 2+bx +c 经过A(1,0),B(0,2)两点,顶点为D .(1)求抛物线的解析式;(2)将△OAB 绕点A 顺时针旋转90∘后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为B 1,顶点为D 1,若点N 在平移后的抛物线上,且满足△NBB 1的面积是△NDD 1面积的2倍,求点N 的坐标.【答案】解:(1)已知抛物线y=x2+bx+c经过A(1,0),B(0,2),∴{2=0+0+c0=1+b+c,解得{c=2b=−3,∴所求抛物线的解析式为y=x2−3x+2;(2)∵A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2−3x+2得y=2,可知抛物线y=x2−3x+2过点(3,2),∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2−3x+1;(3)∵点N在y=x2−3x+1上,可设N点坐标为(x0,x02−3x0+1),将y=x2−3x+1配方得y=(x−32)2−54,∴其对称轴为直线x=32.①0≤x0≤32时,如图①,∵S△NBB1=2S△NDD1,∴12×1×x0=2×12×1×(32−x0)∵x0=1,此时x02−3x0+1=−1,∴N点的坐标为(1,−1).②当x0>32时,如图②,同理可得12×1×x0=2×12×(x0−32),∴x0=3,此时x02−3x0+1=1,∴点N的坐标为(3,1).③当x<0时,由图可知,N点不存在,∴舍去.综上,点N的坐标为(1,−1)或(3,1).【解析】(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2−3x+2得y=2,可知抛物线y=x2−3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2−3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.第11页,共11页。

2018年四川省凉山州中考数学试卷含答案解析(word版)

2018年四川省凉山州中考数学试卷含答案解析(word版)

2018 年四川省凉山州中考数学试卷一、选择题(本大题共 10 小题,共 30 分) 1. 比 1 小 2 的数是( )A. −1B. −2C. −3D. 1 【答案】A【解析】解:1−2 = −1. 故选:A .求比 1 小 2 的数就是求 1 与 2 的差.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记 的内容.2. 下列运算正确的是( ) A. 푎3 ⋅ 푎4 = 푎12 B. 푎6 ÷ 푎3 = 푎2 C. 2푎−3푎 = −푎 D. (푎−2)2 = 푎2−4 【答案】C【解析】解:A 、应为푎3 ⋅ 푎4 = 푎7,故本选项错误; B 、应为푎6 ÷ 푎3 = 푎3,故本选项错误; C 、2푎−3푎 = −푎,正确;D 、应为(푎−2)2 = 푎2−4푎 + 4,故本选项错误. 故选:C .根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,计算时 要认真. 3.长度单位 1 纳米 = 10−9米,目前发现一种新型病毒直径为 25 100 纳米,用科学记 数法表示该病毒直径是( )A. 25.1 × 10−6米B. 0.251 × 10−4米C. 2.51 × 105米D. 2.51 × 10−5米【答案】D【解析】解:2.51 × 104 × 10−9 = 2.51 × 10−5米.故选 D .先将 25100 用科学记数法表示为2.51 × 104,再和10−9相乘.푎 × 10푛中,a 的整数部分只能取一位整数,1 ≤ |푎| < 10.此题中的 n 应为负数. 4. 小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上 学时经过每个路囗都是绿灯,但实际这样的机会是( )113A.B.C.D. 28812 + 1 2 + 12【答案】B【解析】解:画树状图,得∴ 共有 8 种情况,经过每个路口都是绿灯的有一种,第 1 页,共 12 页∴ 1实际这样的机会是,8故选:B.列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率= 所求情况数与总情况数之比.5. 一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A. 和B. 谐C. 凉D. 山【答案】D【解析】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.注意正方体的空间图形,从相对面入手,分析及解答问题.6. 一组数据:3,2,1,2,2 的众数,中位数,方差分别是()A. 2,1,0.4B. 2,2,0.4C. 3,1,2D. 2,1,0.2【答案】B【解析】解:从小到大排列此数据为:1,2,2,2,3;数据2 出现了三次最多为众数,21处在第3 位为中位数.平均数为(3 + 2 + 1 + 2 + 2) ÷ 5 = 2,方差为 2 + 3 × (2−2[(3−2)5)2 + (1−2)2] = 0.4,即中位数是2,众数是2,方差为0.4.故选:B.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均)数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.利用方差公式计算方差.本题属于基础题,考查了确定一组数据的中位数、方差和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.푏7. 若푎푏< 0,则正比例函数푦= 푎푥与反比例函数푦= 在同一坐标系中的大致图象可能푥是()A. B. C. D.【答案】B【解析】解:∵푎푏< 0,∴分两种情况:(1)当푎> 0,푏< 0时,正比例函数푦= 푎푥数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当푎< 0,푏> 0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.第2 页,共12 页故选:B.根据푎푏< 0及正比例函数与反比例函数图象的特点,可以从푎> 0,푏< 0和푎< 0,푏> 0 两方面分类讨论得出答案.本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8. 下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180 度后两部分重合.9. 如图将矩形ABCD沿对角线BD折叠,使C落在퐶′处,퐵퐶′( )交AD于点E,则下到结论不一定成立的是A. 퐴퐷= 퐵퐶′B. ∠퐸퐵퐷= ∠퐸퐷퐵C. △퐴퐵퐸∽△퐶퐵퐷D. sin∠퐴퐵퐸= 퐴퐸퐸퐷【答案】C【解析】解:A、퐵퐶= 퐵퐶′,퐴퐷= 퐵퐶,∴퐴퐷= 퐵퐶′,所以正确.B、∠퐶퐵퐷= ∠퐸퐷퐵,∠퐶퐵퐷= ∠퐸퐵퐷,∴∠퐸퐵퐷= ∠EDB正确.퐴퐸D、∵sin∠퐴퐵퐸= ,퐵퐸∴∠퐸퐵퐷= ∠퐸퐷퐵∴퐵퐸= 퐷퐸∴sin∠퐴퐵퐸= 퐴퐸퐸퐷.故选:C.主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.10. 如图,⊙푂是△퐴퐵퐶的外接圆,已知∠퐴퐵푂= 50 ∘,则∠퐴퐶퐵的大小为()A. 40 ∘B. 30 ∘C. 45 ∘第3 页,共12 页D. 50 ∘【答案】A【解析】解:△퐴푂퐵中,푂퐴= 푂퐵,∠퐴퐵푂= 50 ∘,∴∠퐴푂퐵= 180 ∘−2∠퐴퐵푂= 80 ∘,∴∠퐴퐶퐵= 12∠퐴푂퐵= 40 ,∘故选:A.首先根据等腰三角形的性质及三角形内角和定理求出∠퐴푂퐵的度数,再利用圆周角与圆心角的关系求出∠퐴퐶퐵的度数.本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.二、填空题(本大题共6小题,共24分)11. 分解因式:9푎−푎3 = ______,2푥2−12푥+ 18 = ______.【答案】푎(3 + 푎)(3−푎);2(푥−3)2【解析】解:9푎−푎3 = 푎(9−푎2) = 푎(3 + 푎)(3−푎);2푥2−12푥+ 18 = 2(푥2−6푥+ 9) = 2(푥−3)2.观察原式9푎−푎3,找到公因式a后,发现9−푎2符合平方差公式的形式,直接运用公式可得;观察原式2푥2−12푥+ 18,找到公因式2 后,发现푥2−6푥+ 9符合完全平方差公式的形式,直接运用公式可得.本题考查整式的因式分解.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.12. 已知△퐴퐵퐶∽△퐴′퐵′퐶′且푆△퐴퐵퐶:푆△퐴′퐵′퐶′= 1:2,则AB:퐴′퐵′= ______.【答案】1: 2【解析】解:∵△퐴퐵퐶∽△퐴′퐵′퐶′,∴푆△퐴퐵퐶:푆△퐴2:퐴′퐵′2 = 1:2,∴퐴′퐵′퐶′= 퐴퐵퐵:퐴′퐵′= 1:2.根据相似三角形的面积比等于相似比的平方求解即可.本题的关键是理解相似三角形的面积比等于相似比的平方.13. 有两名学员小林和小明练习射击,第一轮10 枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______.【答案】小林【解析】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;第4 页,共12 页根据题意,一般新手的成绩不太稳定,故新手是小林.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数 据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布 比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 14. 已知一个正数的平方根是3푥−2和5푥 + 6,则这个数是______. 49 【答案】41【解析】解:根据题意可知:3푥−2 + 5푥 + 6 = 0,解得푥 = − ,277所以3푥−2 = − , ,2 5푥 + 6 =2∴ ( ± 7 2) 2 = 2 =49449 故答案为: .4由于一个非负数的平方根有 2 个,它们互为相反数.依此列出方程求解即可. 本题主要考查了平方根的逆运算,平时注意训练逆向思维.푥 −푎 > 215.若不等式组{的解集是,则 ______.2009 =푏 −2푥 > 0−1 < 푥 < 1(푎 + 푏)【答案】−11【解析】解:由不等式得푥 > 푎 + 2,푥 < 2푏, ∵ −1 < 푥 < 1,1∴ 푎 + 2 = −1,2푏 = 1∴ 푎 = −3,푏 = 2,∴ (푎 + 푏)2009 = (−1)2009 = −1.故答案为−1.解出不等式组的解集,与已知解集−1 < 푥 < 1比较,可以求出 a 、b 的值,然后相加求 出 2009 次方,可得最终答案.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作 已知处理,求出解集与已知解集比较,进而求得零一个未知数. 16. 将 △ 퐴퐵퐶绕点B 逆时针旋转到 △ 퐴′퐵퐶′,使A 、B 、퐶′在同一直线上,若∠퐵퐶퐴 = 90 ∘ ,∠퐵퐴퐶 = 30 ∘ ,퐴퐵 = 4푐푚,则图中阴影部分面积为______푐푚2.【答案】4휋【解析】解: ∵ ∠퐵퐶퐴 = 90 ∘ ,∠퐵퐴퐶 = 30 ∘ ,퐴퐵 = 4푐푚, ∴ 퐵퐶 = 2,퐴퐶 = 2 3,∠퐴′퐵퐴 = 120 ∘ ,∠퐶퐵퐶′ = 120 ∘ ,∴ 阴影部分面积 = (푆 △ 퐴 ′ 퐵 퐶 ′ + 푆扇形퐵 퐴 퐴′)−푆扇形퐵 퐶 퐶 ′−푆 △ 퐴 퐵 퐶 = 120휋 360 × (42−22) = 4휋푐2−22) = 4휋푐 푚2 .故答案为:4휋.第 5 页,共 12 页易得整理后阴影部分面积为圆心角为120 ∘ ,两个半径分别为 4 和 2 的圆环的面积. 本题利用了直角三角形的性质,扇形的面积公式求解. 三、计算题(本大题共 3 小题,共 24 分)1푥2−117. 先化简,再选择一个你喜欢的数(要合适哦!)代入求值:(1 + 푥) ÷ .푥【答案】解:(1 + 1푥) ÷푥2−1 푥= 푥 + 1 푥 ⋅ 푥(푥 + 1)(푥 −1)=1,푥 −11当푥 = 2时,原式 = 2−1 = 1.【解析】根据分式的加法和除法可以化简题目中的式子,再选取一个使得原分式有意义 的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的计算方法.18. 如图,要在木里县某林场东西方向的两地之间修一条公路 MN ,已知 C 点周围 200米范围内为原始森林保护区,在 MN 上的点 A 处测得 C 在 A 的北偏东45 ∘ 方向上, 从 A 向东走 600 米到达 B 处,测得 C 在点 B 的北偏西60 ∘ 方向上. (1)푀푁是否穿过原始森林保护区,为什么?(参考数据: 3 ≈ 1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前 5 天完成,需将原定的工作 效率提高25%,则原计划完成这项工程需要多少天?【答案】解:(1)理由如下: 如图,过 C 作퐶퐻 ⊥ 퐴퐵于 H . 设퐶퐻 = 푥,由已知有∠퐸퐴퐶 = 45 ∘ ,∠퐹퐵퐶 = 60 ∘ , 则∠퐶퐴퐻 = 45 ∘ ,∠퐶퐵퐴 = 30 ∘ . 在푅푡 △ 퐴퐶퐻中,퐴퐻 = 퐶퐻 = 푥, 在푅푡 △ 퐻퐵퐶中,tan ∠퐻퐵퐶 =퐶퐻퐻퐵∴ 퐻퐵 =퐶 퐻tan30 ∘ = 푥 3 3=3푥, ∵ 퐴퐻 + 퐻퐵 = 퐴퐵, ∴ 푥 + 3푥 = 600,600解得푥 =米 米 .1 + 3 ≈ 220( ) > 200( )∴ 푀푁不会穿过森林保护区.(2)设原计划完成这项工程需要 y 天,则实际完成工程需要(푦−5)天.第6 页,共12 页1 根据题意得:푦−5 = (1 + 25%) ×1푦解得:푦= 25.经检验知:푦= 25是原方程的根.答:原计划完成这项工程需要25 天.【解析】(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离.要构造直角三角形,再解直角三角形;(2)根据题意列方程求解.考查了构造直角三角形解斜三角形的方法和分式方程的应用.19. 我们常用的数是十进制数,如4657 = 4 × 103 + 6 × 102 + 5 × 101 + 7 × 100,数要用10 个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0 和1,如二进制中110 = 1 × 22 + 1 × 21 + 0 × 20等于十进制的数6,110101 = 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20等于十进制的数53.那么二进制中的数101011 等于十进制中的哪个数?【答案】解:101011 = 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 = 43,所以二进制中的数101011 等于十进制中的43.【解析】利用新定义得到101011 = 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20,然后根据乘方的定义进行计算.本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.四、解答题(本大题共7小题,共72分)320. 计算:|3.14−휋| + 3.14 ÷ ( 0−2cos45 ∘+ ( 2−1)−1 + (−1)2009.2 + 1)【答案】解:原式= 휋−3.14 + 3.14−2 × 22 +12−1−1= 휋− 2 + 2 + 1−1= 휋.【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21. 观察下列多面体,并把如表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 10 12棱数b9 12面数c 5 8观察表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.【答案】解:填表如下:名称三棱柱四棱柱五棱柱六棱柱第7 页,共12 页图形顶点数a 6 8 10 12棱数b9 12 15 18面数c 5 6 7 8根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有푛+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:푎+푐−푏=2.【解析】结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(푛+2)个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.此题主要考查了欧拉公式,熟记常见棱柱的特征,可以总结一般规律:n棱柱有(푛+2)个面,2n个顶点和3n条棱是解题关键.22. 如图,△퐴퐵퐶在方格纸中(1)请在方格纸上建立平面直角坐标系,使퐴(2,3),퐶(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△퐴퐵퐶放大,画出放大后的图形△퐴′퐵′퐶′;(3)计算的面积S.【答案】解:(1)如图所示,即为所求的直角坐标系;퐵(2,1);(2)如图:即为所求;.第8页,共12页【解析】(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出;(3)直接利用(2)中图形求出三角形面积即可.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.23. 我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5 元的价格买入“西昌电力”股票1000 股,若他期望获利不低于1000 元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)【答案】解:设涨到每股x元时卖出,根据题意得1000푥−(5000+1000푥)×0.5%≥5000+1000,(4分)1205解这个不等式得푥≥,199即푥≥6.06.(6分)答:至少涨到每股6.06元时才能卖出.(7分)【解析】根据关系式:总售价−两次交易费≥总成本+1000列出不等式求解即可.本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价−两次交易费≥总成本+1000”列出不等关系式.24. 已知一个口袋中装有7 个只有颜色不同的球,其中3 个白球,4 个黑球.(1)求从中随机抽取出一个黑球的概率是多少?1(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,4求y与x之间的函数关系式.【答案】解:(1)∵一个口袋中装有7 个只有颜色不同的球,其中3 个白球,4 个黑球,∴4从中随机抽取出一个黑球的概率是:;7(2)∵1往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,4∴푥+37+푥+푦=14,则푦=3푥+5.【解析】(1)直接利用概率公式直接得出取出一个黑球的概率;1(2)直接利用从口袋中随机取出一个白球的概率是,进而得出答案函数关系式.4此题主要考查了概率公式,正确掌握概率求法是解题关键.25. 如图,在平面直角坐标系中,点푂1的坐标为(−4,0),以点푂1为圆心,8 为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成60∘的角,且交y轴于C点,以点푂2(13,5)为圆心的圆与x轴相切于点D.(1)求直线l的解析式;(2)将⊙푂2以每秒1 个单位的速度沿x轴向左平移,当⊙푂2第一次与⊙푂1外切时,求⊙푂2平移的时间.第9页,共12页【答案】解:(1)由题意得푂퐴 = |−4| + |8| = 12, ∴ 퐴点坐标为(−12,0). ∵ 푅푡 △ 퐴푂퐶 ∠푂퐴퐶 = 60 ∘ 在 中, ,푂퐶 = 푂퐴tan ∠푂퐴퐶 = 12 × tan60 ∘ = 12 3. ∴ 퐶点的坐标为(0,−12 3).设直线 l 的解析式为푦 = 푘푥 + 푏, 由 l 过 A 、C 两点, −12 3 = 푏 푏 = −12 3得{0 = −12푘 + 푏,解得{푘 = − 3∴ 直线 l 的解析式为:푦 = − 3푥−12 3.(2)如图,设 ⊙ 푂2平移 t 秒后到 ⊙ 푂3处与 ⊙ 푂1第一次外切于点 P , ⊙ 푂3与 x 轴相切于 퐷1点,连接푂1푂3,푂3퐷1.则푂1푂3 = 푂1푃 + 푃푂3 = 8 + 5 = 13.∵ 푂3퐷1 ⊥ 푥轴, ∴ 푂3퐷1 = 5,在푅푡 △ 푂1푂3퐷1中,푂1퐷1 = 푂1푂32−푂3퐷12 = 132−52 = 12.∵ 푂1퐷 = 푂1푂 + 푂퐷 = 4 + 13 = 17, ∴ 퐷1퐷 = 푂1퐷−푂1퐷1 = 17−12 = 5, ∴ 푡 = 51 = 5( ) 秒 .∴ ⊙ 푂2平移的时间为 5 秒.【解析】(1)求直线的解析式,可以先求出 A 、C 两点的坐标,就可以根据待定系数法求 出函数的解析式.(2)设 ⊙ 푂2平移 t 秒后到 ⊙ 푂3处与 ⊙ 푂1第一次外切于点 P , ⊙ 푂3与 x 轴相切于퐷1点, 连接푂1푂3,푂3퐷1.在直角 △ 푂1푂3퐷1中,根据勾股定理,就可以求出푂1퐷1,进而求出퐷1퐷的长,得到平移 的时间.本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的 作法是经常用到的.26. 如图,已知抛物线푦 = 푥2 + 푏푥 + 푐经过퐴(1,0),퐵(0,2)两点,顶点为 D . (1)求抛物线的解析式;(2)将 △ 푂퐴퐵绕点 A 顺时针旋转90 ∘ 后,点 B 落到点 C 的位置,将抛物线沿 y 轴平移后经过点 C ,求平移后所 得图象的函数关系式;(3)设(2)中平移后,所得抛物线与 y 轴的交点为퐵1, 顶点为퐷1,若点 N 在平移后的抛物线上,且满足 △ 푁퐵 퐵1的面积是 △ 푁퐷퐷1面积的 2 倍,求点 N 的坐标.第10页,共12页【答案】解:(1)已知抛物线푦=푥2+푏푥+푐经过퐴(1,0),퐵(0,2),0=1+푏+푐∴{,2=0+0+푐푏=−3解得{,푐=2∴所求抛物线的解析式为푦=푥2−3푥+2;(2)∵퐴(1,0),퐵(0,2),∴푂퐴=1,푂퐵=2,可得旋转后C点的坐标为(3,1),当푥=3时,由푦=푥2−3푥+2得푦=2,可知抛物线푦=푥2−3푥+2过点(3,2),∴将原抛物线沿y轴向下平移1 个单位后过点C.∴푦=푥2−3푥+1平移后的抛物线解析式为:;(3)∵푦=푥2−3푥+1(푥0,푥20−3点N在上,可设N点坐标为푥0+1),35将푦=푥2−3푥+1配方得푦=(푥−2−,2)43∴其对称轴为直线푥=.2①0≤푥0≤32①时,如图,∵푆△푁퐵퐵1=2푆△푁퐷퐷,1∴12×1×푥0=2×132×1×(2−푥0)∵푥0=1,此时푥20−3푥0+1=−1,∴푁点的坐标为(1,−1).3②푥0>2②当时,如图,113同理可得2×1×푥0=2×2×(푥0−2),∴푥0=3,此时푥20−3푥0+1=1,∴点N的坐标为(3,1).③푥<0当时,由图可知,N点不存在,∴舍去.综上,点N的坐标为(1,−1)或(3,1).【解析】(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:퐴(1,0),퐵(0,2),∴푂퐴=1,푂퐵=2,可得旋转后C点的坐标为(3,1),当푥=3时,由푦=푥2−3푥+2得푦=2,可知抛物线푦=푥2−3푥+2过点(3,2)∴将原抛物线沿y轴向下平移1 个单位后过点퐶.∴平移后的抛物线解析式为:푦=푥2−3푥+1;(3)首先求得퐵1,퐷1的坐标,根据图形分别求得即可,要注意利用方程思想.此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真第11页,共12页审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.第12页,共12页。

2018年四川省凉山州中考数学试卷含答案解析(word版)

2018年四川省凉山州中考数学试卷含答案解析(word版)

2018年四川省凉山州中考数学试卷一、选择题(本大题共10小题,共30分)1.比1小2的数是()A. −1B. −2C. −3D. 1【答案】A【解析】解:1−2=−1.故选:A.求比1小2的数就是求1与2的差.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.2.下列运算正确的是()A. a3⋅a4=a12B. a6÷a3=a2C. 2a−3a=−aD. (a−2)2=a2−4【答案】C【解析】解:A、应为a3⋅a4=a7,故本选项错误;B、应为a6÷a3=a3,故本选项错误;C、2a−3a=−a,正确;D、应为(a−2)2=a2−4a+4,故本选项错误.故选:C.根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,计算时要认真.3.长度单位1纳米=10−9米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是()A. 25.1×10−6米B. 0.251×10−4米C. 2.51×105米D. 2.51×10−5米【答案】D【解析】解:2.51×104×10−9=2.51×10−5米.故选D.先将25100用科学记数法表示为2.51×104,再和10−9相乘.a×10n中,a的整数部分只能取一位整数,1≤|a|<10.此题中的n应为负数.4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是()A. 12B. 18C. 38D. 12+12+12【答案】B【解析】解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是1,8故选:B.列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A. 和B. 谐C. 凉D. 山【答案】D【解析】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.注意正方体的空间图形,从相对面入手,分析及解答问题.6.一组数据:3,2,1,2,2的众数,中位数,方差分别是()A. 2,1,0.4B. 2,2,0.4C. 3,1,2D. 2,1,0.2【答案】B【解析】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,[(3−2)2+2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为153×(2−2)2+(1−2)2]=0.4,即中位数是2,众数是2,方差为0.4.故选:B.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均)数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.利用方差公式计算方差.本题属于基础题,考查了确定一组数据的中位数、方差和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.7.若ab<0,则正比例函数y=ax与反比例函数y=b在同一坐标系中的大致图象可x能是()A. B. C. D.【答案】B【解析】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A. AD=BC′B. ∠EBD=∠EDBC. △ABE∽△CBDD. sin∠ABE=AEED【答案】C【解析】解:A、BC=BC′,AD=BC,∴AD=BC′,所以正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB正确.D、∵sin∠ABE=AE,BE∴∠EBD=∠EDB∴BE=DE∴sin∠ABE=AE.ED故选:C.主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.10.如图,⊙O是△ABC的外接圆,已知∠ABO=50∘,则∠ACB的大小为()A. 40∘B. 30∘C. 45∘D. 50∘【答案】A【解析】解:△AOB中,OA=OB,∠ABO=50∘,∴∠AOB=180∘−2∠ABO=80∘,∠AOB=40∘,∴∠ACB=12故选:A.首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.二、填空题(本大题共6小题,共24分)11.分解因式:9a−a3=______,2x2−12x+18=______.【答案】a(3+a)(3−a);2(x−3)2【解析】解:9a−a3=a(9−a2)=a(3+a)(3−a);2x2−12x+18=2(x2−6x+9)=2(x−3)2.观察原式9a−a3,找到公因式a后,发现9−a2符合平方差公式的形式,直接运用公式可得;观察原式2x2−12x+18,找到公因式2后,发现x2−6x+9符合完全平方差公式的形式,直接运用公式可得.本题考查整式的因式分解.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.12.已知△ABC∽△A′B′C′且S△ABC:S△A′B′C′=1:2,则AB:A′B′=______.【答案】1:√2【解析】解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:√2.根据相似三角形的面积比等于相似比的平方求解即可.本题的关键是理解相似三角形的面积比等于相似比的平方.13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______.【答案】小林【解析】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14. 已知一个正数的平方根是3x −2和5x +6,则这个数是______. 【答案】494【解析】解:根据题意可知:3x −2+5x +6=0,解得x =−12, 所以3x −2=−72,5x +6=72,∴(±72)2=494故答案为:494.由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.本题主要考查了平方根的逆运算,平时注意训练逆向思维.15. 若不等式组{b −2x >0x−a>2的解集是−1<x <1,则(a +b)2009=______. 【答案】−1【解析】解:由不等式得x >a +2,x <12b , ∵−1<x <1, ∴a +2=−1,12b =1∴a =−3,b =2,∴(a +b)2009=(−1)2009=−1. 故答案为−1.解出不等式组的解集,与已知解集−1<x <1比较,可以求出a 、b 的值,然后相加求出2009次方,可得最终答案.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.16. 将△ABC 绕点B 逆时针旋转到△A′BC′,使A 、B 、C′在同一直线上,若∠BCA =90∘,∠BAC =30∘,AB =4cm ,则图中阴影部分面积为______cm 2. 【答案】4π【解析】解:∵∠BCA =90∘,∠BAC =30∘,AB =4cm , ∴BC =2,AC =2√3,∠A′BA =120∘,∠CBC′=120∘, ∴阴影部分面积=(S △A′BC′+S 扇形BAA ′)−S 扇形BCC′−S △ABC =120π360×(42−22)=4πcm 2.故答案为:4π.易得整理后阴影部分面积为圆心角为120∘,两个半径分别为4和2的圆环的面积.本题利用了直角三角形的性质,扇形的面积公式求解.三、计算题(本大题共3小题,共24分)17.先化简,再选择一个你喜欢的数(要合适哦!)代入求值:(1+1x )÷x2−1x.【答案】解:(1+1x )÷x2−1x=x+1x⋅x(x+1)(x−1)=1x−1,当x=2时,原式=12−1=1.【解析】根据分式的加法和除法可以化简题目中的式子,再选取一个使得原分式有意义的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的计算方法.18.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45∘方向上,从A向东走600米到达B处,测得C在点B的北偏西60∘方向上.(1)MN是否穿过原始森林保护区,为什么?(参考数据:√3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?【答案】解:(1)理由如下:如图,过C作CH⊥AB于H.设CH=x,由已知有∠EAC=45∘,∠FBC=60∘,则∠CAH=45∘,∠CBA=30∘.在Rt△ACH中,AH=CH=x,在Rt△HBC中,tan∠HBC=CHHB∴HB=CHtan30∘=x√33=√3x,∵AH+HB=AB,∴x+√3x=600,解得x=6001+√3≈220(米)>200(米).∴MN不会穿过森林保护区.(2)设原计划完成这项工程需要y天,则实际完成工程需要(y−5)天.根据题意得:1y−5=(1+25%)×1y解得:y=25.经检验知:y=25是原方程的根.答:原计划完成这项工程需要25天.【解析】(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离.要构造直角三角形,再解直角三角形;(2)根据题意列方程求解.考查了构造直角三角形解斜三角形的方法和分式方程的应用.19.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【答案】解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.【解析】利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.四、解答题(本大题共7小题,共72分)20.计算:|3.14−π|+3.14÷(√32+1)0−2cos45∘+(√2−1)−1+(−1)2009.【答案】解:原式=π−3.14+3.14−2×√22+1√2−1−1=π−√2+√2+1−1=π.【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.观察下列多面体,并把如表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a61012棱数b912面数c58观察表中的结果,你能发现、、之间有什么关系吗?请写出关系式.【答案】解:填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a681012棱数b9121518面数c5678根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:a+c−b=2.【解析】结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.此题主要考查了欧拉公式,熟记常见棱柱的特征,可以总结一般规律:n棱柱有(n+2)个面,2n个顶点和3n条棱是解题关键.22.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算的面积S.【答案】解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:即为所求;.【解析】(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出;(3)直接利用(2)中图形求出三角形面积即可.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.23.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)【答案】解:设涨到每股x元时卖出,根据题意得1000x−(5000+1000x)×0.5%≥5000+1000,(4分)解这个不等式得x≥1205199,即x≥6.06.(6分)答:至少涨到每股6.06元时才能卖出.(7分)【解析】根据关系式:总售价−两次交易费≥总成本+1000列出不等式求解即可.本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价−两次交易费≥总成本+1000”列出不等关系式.24.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,求y与x之间的函数关系式.【答案】解:(1)∵一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,∴从中随机抽取出一个黑球的概率是:47;(2)∵往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,∴x+37+x+y =14,则y=3x+5.【解析】(1)直接利用概率公式直接得出取出一个黑球的概率;(2)直接利用从口袋中随机取出一个白球的概率是14,进而得出答案函数关系式.此题主要考查了概率公式,正确掌握概率求法是解题关键.25.如图,在平面直角坐标系中,点O1的坐标为(−4,0),以点O1为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成60∘的角,且交y轴于C 点,以点O2(13,5)为圆心的圆与x轴相切于点D.(1)求直线l的解析式;(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,当⊙O2第一次与⊙O1外切时,求⊙O2平移的时间.【答案】解:(1)由题意得OA =|−4|+|8|=12, ∴A 点坐标为(−12,0).∵在Rt △AOC 中,∠OAC =60∘,OC =OAtan∠OAC =12×tan60∘=12√3. ∴C 点的坐标为(0,−12√3).设直线l 的解析式为y =kx +b , 由l 过A 、C 两点,得{−12√3=b 0=−12k +b ,解得{b =−12√3k =−√3∴直线l 的解析式为:y =−√3x −12√3.(2)如图,设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1.则O 1O 3=O 1P +PO 3=8+5=13. ∵O 3D 1⊥x 轴,∴O 3D 1=5,在Rt △O 1O 3D 1中,O 1D 1=√O 1O 32−O 3D 12=√132−52=12.∵O 1D =O 1O +OD =4+13=17,∴D 1D =O 1D −O 1D 1=17−12=5, ∴t =51=5(秒).∴⊙O 2平移的时间为5秒.【解析】(1)求直线的解析式,可以先求出A 、C 两点的坐标,就可以根据待定系数法求出函数的解析式.(2)设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1.在直角△O 1O 3D 1中,根据勾股定理,就可以求出O 1D 1,进而求出D 1D 的长,得到平移的时间.本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.26. 如图,已知抛物线y =x 2+bx +c 经过A(1,0),B(0,2)两点,顶点为D .(1)求抛物线的解析式;(2)将△OAB 绕点A 顺时针旋转90∘后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为B 1,顶点为D 1,若点N 在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.【答案】解:(1)已知抛物线y=x2+bx+c经过A(1,0),B(0,2),∴{2=0+0+c0=1+b+c,解得{c=2b=−3,∴所求抛物线的解析式为y=x2−3x+2;(2)∵A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2−3x+2得y=2,可知抛物线y=x2−3x+2过点(3,2),∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2−3x+1;(3)∵点N在y=x2−3x+1上,可设N点坐标为(x0,x02−3x0+1),将y=x2−3x+1配方得y=(x−32)2−54,∴其对称轴为直线x=32.①0≤x0≤32时,如图①,∵S△NBB1=2S△NDD1,∴12×1×x0=2×12×1×(32−x0)∵x0=1,此时x02−3x0+1=−1,∴N点的坐标为(1,−1).②当x0>32时,如图②,同理可得12×1×x0=2×12×(x0−32),∴x0=3,此时x02−3x0+1=1,∴点N的坐标为(3,1).③当x<0时,由图可知,N点不存在,∴舍去.综上,点N的坐标为(1,−1)或(3,1).【解析】(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2−3x+2得y=2,可知抛物线y= x2−3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2−3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年凉山州中考数学试题、答案2018年凉山州中考数学试题、答案A 卷(共100分)第Ⅰ卷(选择题 共30分)一、选择题(共10个小题,每小题3分,共30分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡相应的位置.1.比1小2的数是( )A .-1B .-2C .-3D .12.下列运算正确的是( )A .3412a a a ⋅=B .632aa a ÷= C .23a a a -=- D .22(2)4a a -=- 3.长度单位1纳米910-=米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A .625.110-⨯米B .40.25110-⨯米 C .52.5110⨯米 D .52.5110-⨯米 4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )A .12B .18C .38D .111222++ 5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )A .B .C .D .9.如图,将矩形ABCD 沿对角线BD 折叠,使C 落在'C 处,'BC 交AD 于E ,则下列结论不一定成立的是( )A .'AD BC =B .EBD EDB ∠=∠C .ABE CBD ∆∆ D .sin AE ABE ED ∠= 10.如图,O 是ABC ∆的外接圆,已知50ABO ∠=,则ACB ∠的大小为( )A .40B .30C .45D .502018年凉山州初中毕业、高中阶段招生统一考试数学试卷第Ⅱ卷(非选择题 共70分)二、填空题(共4小题,每小题3分,共12分)11.分解因式39a a -=________,221218x x -+= .12.已知'''ABCA B C ∆∆且''':1:2ABC A B C S S ∆∆=,则:''AB A B = .13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是 .14.已知一个正数的平方根是32x -和56x +,则这个数是 .三、解答题(共4小题,每小题7分,共28分) 15.计算:033.14 3.1412cos 452π⎛⎫-+÷+- ⎪ ⎪⎝⎭1200921)(1)-++-.16.先化简,再选择一个你喜欢的数(要合适哦!)代入求值:2111x x x -⎛⎫+÷ ⎪⎝⎭.17.观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 10 12 棱数b9 12面数c 5 8 观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.18.如图,ABC∆在方格纸中.(1)请在方格纸上建立平面直角坐标系,使C,并求出B点坐标;(2,3)A,(6,2)(2)以原点O为位似中心,相似比为2,在第一象限内将ABCA B C∆;∆放大,画出放大后的图形'''(3)计算'''∆的面积S.A B C四、解答题(共2小题,每小题7分,共14分)19.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)20.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从,求y与x之口袋中随机取出一个白球的概率是14间的函数关系式.五、解答题(共2小题,每小题8分,共16分)21.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45︒方向上,从A向东走600米到达B处,测得C在点B的北偏西60︒方向上.(1)MN是否穿过原始森林保护区?为什么?(参≈)3 1.732(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.如图,在平面直角坐标系中,点1O 的坐标为(4,0)-,以点1O 为圆心,8为半径的圆与x 轴交于A ,B 两点,过A 作直线l 与x 轴负方向相交成60的角,且交y 轴于C 点,以点2(13,5)O 为圆心的圆与x 轴相切于点D .(1)求直线l 的解析式;(2)将2O 以每秒1个单位的速度沿x 轴向左平移,当2O 第一次与1O 外切时,求2O 平移的时间.B 卷(共20分)六、填空题(共2小题,每小题3分,共6分)23.若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2009()a b +=________.24.将ABC ∆绕点B 逆时针旋转到''A BC ∆使A 、B 、'C 在同一直线上,若90BCA ∠=︒,30BAC ∠=︒,4AB cm =,则图中阴影部分面积为________2cm.七、解答题(共2小题,25题4分,26题10分,共14分)25.我们常用的数是十进制数,如3210=⨯+⨯+⨯+⨯,数要用10个数码(又叫4657410610510710数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210=⨯+⨯+⨯等于十进制的数6,110121202543120212+⨯+⨯+⨯等于十进制的数53.=⨯+⨯+⨯210110101121202那么二进制中的数101011等于十进制中的哪个数?26.如图,已知抛物线2y x bx c=++经过(1,0)B两A,(0,2)点,顶点为D.(1)求抛物线的解析式;(2)将OAB∆绕点A顺时针旋转90︒后,点B落在点C的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为1B ,顶点为1D ,若点N 在平移后的抛物线上,且满足1NBB ∆的面积是1NDD ∆面积的2倍,求点N 的坐标.2018年凉山州初中毕业、高中阶段招生统一考试数学参考答案 A 卷(共100分)一、选择题1-5: ACDBD 6-10: BBDCA二、填空题11.(3)(3)a a a +- 22(3)x - 12. 1:小林 14. 494三、解答题15.计算:原式(3.14) 3.141π=--+÷2(1)2-⨯+-13.14 3.14121π=-+--11π=-π=.16.解:2111(1)(1)1x x x x x x x x -+-+⎛⎫+÷=÷ ⎪⎝⎭1(1)(1)x xx x x +=⨯-+11x =-.取2x =时,原式1121==-. 17.棱数b 15 18 面数c672a cb +-=.18.(1)画出原点O ,x 轴、y 轴.(2,1)B .(2)画出图形'''A B C ∆.(3)148162S =⨯⨯=. 四、解答题19.解:设至少涨到每股x 元时才能卖出. 根据题意得1000(50001000)0.5%x x -+⨯50001000≥+, 解这个不等式得1205199x ≥,即 6.06x ≥. 答:至少涨到每股6.06元时才能卖出.20.解:(1)取出一个黑球的概率44347P ==+. (2)∵取出一个白球的概率37xP x y +=++, ∴3174x x y +=++,∴1247x x y +=++,∴y 与x 的函数关系式为:35y x =+.五、解答题21.(1)理由如下:如图,过C 作CH AB ⊥于H ,设CH x =, 由已知有45EAC ∠=︒,60FBC ∠=︒, 则45CAH ∠=︒,30CBA ∠=︒, 在Rt ACH ∆中,AH CH x ==, 在Rt HBC ∆中,tan CH HBC HB∠=, ∴3tan 303CHHB x ===︒,∵AH HB AB +=, ∴3600x x +=解得22013x =≈+(米)200>(米).∴MN 不会穿过森林保护区.(2)解:设原计划完成这项工程需要y 天,则实际完成工程需要(5)y -天.根据题意得:11(125%)5y y=+⨯-,解得:25y =,经检验知:25y =是原方程的根, 答:原计划完成这项工程需要25天. 22.(1)解:由题意得4812OA =-+=, ∴A 点坐标为(12,0)-. ∵在Rt AOC ∆中,60OAC ∠=︒,tan 12tan 60OC OA OAC =∠=⨯︒=∴C点的坐标为(0,-.设直线l 的解析式为y kx b =+,由l 过A 、C 两点,得012bk b⎧-=⎪⎨=-+⎪⎩,解得b k ⎧=-⎪⎨=⎪⎩∴直线l的解析式为:y =-(2)如图,设2O 平移t 秒后到3O 处与1O 第一次外切于点P ,3O 与x 轴相切于1D 点,连接13O O ,31O D .则13138513O OO P PO =+=+=,∵31O D x ⊥轴,∴315O D =,在131Rt O O D ∆中,1112O D ===.∵1141317O D O O OD =+=+=,∴111117125D D O D O D =-=-=,∴551t ==(秒), ∴2O 平移的时间为5秒.B 卷(共20分)六、填空题23. -1 24. 4π七、解答题25.解:543101011120212=⨯+⨯+⨯210021212+⨯+⨯+⨯3208021=+++++43=.26.解: (1)已知抛物线2y xbx c=++经过(1,0)A ,(0,2)B ,∴01200b c c =++⎧⎨=++⎩,解得32b c =-⎧⎨=⎩, ∴所求抛物线的解析式为232y xx =-+.(2)∵(1,0)A ,(0,2)B ,∴1OA =,2OB =, 可得旋转后C 点的坐标为(3,1). 当3x =时,由232y x x =-+得2y =,可知抛物线232y xx =-+过点(3,2).∴将原抛物线沿y 轴向下平移1个单位后过点C .∴平移后的抛物线解析式为:231y x x =-+.(3)∵点N 在231y xx =-+上,可设N 点坐标为2000(,31)x x x -+, 将231y xx =-+配方得23524y x ⎛⎫=--⎪⎝⎭,∴其对称轴为32x =. ①当0302x <<时,如图①, ∵112NBB NDD SS ∆∆=,∴00113121222x x ⎛⎫⨯⨯=⨯⨯⨯- ⎪⎝⎭,∵01x=,此时20311xx -+=-,∴N 点的坐标为(1,1)-.②当032x>时,如图②,同理可得0011312222x x ⎛⎫⨯⨯=⨯⨯- ⎪⎝⎭,∴03x=,此时20311xx -+=,∴N点的坐标为(3,1).综上,点N的坐标为(1,1) 或(3,1).。

相关文档
最新文档