初三九年级数学综合试卷
2023北京朝阳区初三一模数学试题及参考答案

北京市朝阳区九年级综合练习(一)一、选择题(共16分,每题2分)第1-8题均有四个选项,其中符合题意的选项只有一个.1.下图是某几何体的三视图,该几何体是(A )长方体(B )三棱柱(C )圆锥(D )圆柱第1题 第3题 第4题 第7题2.我国已建成世界上规模最大的社会保障体系、医疗卫生体系,基本养老保险覆盖1 040 000 000人左右,将1 040 000 000用科学记数法表示应为(A )1.04×1010 (B )1.04×109 (C )10.4×109 (D ) 0.104×10113.如上图,若数轴上的点A 表示下列四个无理数中的一个,则这个无理数是(A ) (B(C (D )π4. 如上图,直线AB ,CD 相交于点O ,若∠AOC =60°,∠BOE =40°,则∠DOE 的度数为(A )60° (B )40°(C )20° (D )10°5. 经过某路口的汽车,只能直行或右转. 若这两种可能性大小相同,则经过该路口的两辆汽车都直行的概率为(A )(B )(C )(D )141312346.正六边形的外角和为(A )180°(B )360°(C )540°(D )720°7.某中学为了解学生对四类劳动课程的喜欢情况,从本校学生中随机抽取了200名进行问卷调查,根据数据绘制了如上面图所示的统计图. 若该校有2000名学生,估计喜欢木工的人数为(A )64(B )380(C )640 (D )7208. 下面的三个问题中都有两个变量:①矩形的面积一定,一边长y 与它的邻边x ;②某村的耕地面积一定,该村人均耕地面积S 与全村总人口n ;③汽车的行驶速度一定,行驶路程s 与行驶时间t .其中,两个变量之间的函数关系可以用形如的式子表示的是(A )①②(B )①③(C )②③(D )①②③二、填空题(共16分,每题2分)9在实数范围内有意义,则实数x 的取值范围是 .10.分解因式:.11. 若关于x 的一元二次方程260x x m ++=有两个相等的实数根,则实数m 的值为 .12.方程的解为 .13.在平面直角坐标系xOy 中,若反比例函数的图象经过点和点,则.14.如图,在△ABC 中,DE 是AC 的垂直平分线,AC =6. 若△ABD 的周长为13,则△ABC 的周长为.15.如图,在矩形ABCD 中,点E 在AD 边上,连接BE 并延长,交CD 的延长0ky k k x=≠(为常数,)2363a a -+=322x x=+6y x=()2A m ,()2B n -,m n +=第14题图第15题图线于点F . 若AB =2,BC =4,,则BF 的长为 .16. 一个33人的旅游团到一家酒店住宿,酒店的客房只剩下4间一人间和若干间三人间,住宿价格是一人间每晚100元,三人间每晚130元.(说明:男士只能与男士同住,女士只能与女士同住. 三人间客房可以不住满,但每间每晚仍需支付130元.)(1)若该旅游团一晚的住宿房费为1530元,则他们租住了间一人间;(2)若该旅游团租住了3间一人间,且共有19名男士,则租住一晚的住宿房费最少为元.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)17.计算:.18.解不等式组:19.已知,求代数式的值.20. 下面是证明“等腰三角形的两个底角相等”的两种添加辅助线的方法,选择其2AEDE=(02sin 45π-+-o 17242.3x x xx +⎧⎪+⎨⎪⎩>-,≤230x x --=(2)(2)(2)x x x x +---中一种,完成证明.已知:如图,在△ABC 中,AB =AC .求证:∠B =∠C .方法一证明:如图,作△ABC 的中线AD .方法二证明:如图,作△ABC 的角平分线AD .21. 如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 在BD 上,AE ∥CF ,连接AF ,CE .(1)求证:四边形AECF 为平行四边形;(2)若∠EAO +∠CFD =180°,求证:四边形AECF 是矩形.22. 在平面直角坐标系xOy 中,一次函数的图象经过点(0,1),(-2,2),与x轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x ≥时,对于x 的每一个值,函数的值大于一次函数0y kx b k =+≠()2y x m =+的值,直接写出m 的取值范围.23. 如图,AB 是⊙O 的弦,过点O 作OC ⊥AB ,垂足为C ,过点A 作⊙O 的切线,交OC 的延长线于点D ,连接OB .(1)求证:∠B =∠D ;(2)延长BO 交⊙O 于点E ,连接AE ,CE ,若AD=,sinBCE 的长.24.某校为了解读书月期间学生平均每天阅读时间,在该校七、八、九年级学生中各随机抽取了15名学生,获得了他们平均每天阅读时间(单位:min ),并对数据进行了整理、描述,给出部分信息.a . 七、八年级学生平均每天阅读时间统计图:0y kx b k =+≠()七年级学生平均每天阅读时间八年级学生平均每天阅读时间b . 九年级学生平均每天阅读时间:21 22 25 33 36 36 37 37 39 39 41 42 46 48 50c . 七、八、九年级学生平均每天阅读时间的平均数:年级七八九平均数26.435.236.8根据以上信息,回答下列问题:(1)抽取的15名九年级学生平均每天阅读时间的中位数是 ;(2)求三个年级抽取的45名学生平均每天阅读时间的平均数;(3)若七、八、九年级抽取的学生平均每天阅读时间的方差分别为,,,则,,之间的大小关系为.25.一位滑雪者从某山坡滑下并滑完全程,滑行距离s (单位:m )与滑行时间t (单位:s )近似满足“一次函数”、“二次函数”或“反比例函数”关系中的一种. 测得一些数据如下:滑行时间t /s 01234滑行距离s /m261220(1)s 是t 的函数(填“一次”、“二次”或“反比例”);21s 22s 23s 21s 22s 23s(2)求s 关于t 的函数表达式;(3)已知第二位滑雪者也从坡顶滑下并滑完全程,且滑行距离与第一位滑雪者相同,滑行距离s (单位:m )与滑行时间t (单位:s )近似满足函数关系2522s t t =+. 记第一位滑雪者滑完全程所用时间为t 1,第二位滑雪者滑完全程所用时间为t 2,则t 1t 2(填“<”,“=”或“>”).26.在平面直角坐标系xOy 中,抛物线y =ax 2+(2m -6)x +1经过点()124m -,.(1)求a 的值;(2)求抛物线的对称轴(用含m 的式子表示);(3)点()1m y -,,()2m y ,,()32m y +,在抛物线上,若231y y y <≤,求m 的取值范围.27. 如图,∠MON =α,点A 在ON 上,过点A 作OM 的平行线,与∠MON 的平分线交于点B ,点C 在OB 上(不与点O ,B 重合),连接AC ,将线段AC 绕点A 顺时针旋转180°-α,得到线段AD ,连接BD .(1)直接写出线段AO 与AB 之间的数量关系,并证明∠MOB =∠DBA ;(2)连接DC 并延长,分别交AB ,OM 于点E ,F . 若α=60°,用等式表示线段EF 与AC 之间的数量关系,并证明.28. 在平面直角坐标系xOy 中,对于点P ,C ,Q (点P 与点C 不重合),给出如下定义:若∠PCQ =90°,且1CQ CP k,则称点Q 为点P 关于点C 的“k -关联点”.已知点A (3,0),点B (0,),⊙O 的半径为r .(1)①在点D (0,3),E (0,-1.5),F (3,3)中,是点A 关于点O 的“1-关联点”的为;②点B 关于点O 的关联点”的坐标为;(2)点P 为线段AB 上的任意一点,点C 为线段OB 上任意一点(不与点B重合).①若⊙O 上存在点P 关于点O 的关联点”,直接写出r 的最大值及最小值;②当r =⊙O 上不存在点P 关于点C 的“k -关联点”,直接写出k 的取值范围:.北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考2023.4一、选择题(共16分,每题2分)题号12345678答案A B D C A B C A 二、填空题(共16分,每题2分)三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27,28题,每题7分)17. 解:原式12=-++1=+.18. 解:原不等式组为17242.3x xxx+⎧⎪+⎨⎪⎩>-,≤解不等式①,得 2.x>解不等式②,得 4.x≤∴原不等式组的解集为2 4.x<≤19. 解:(2)(2)(2)x x x x+---2242x x x=--+222 4.x x=--∵230x x--=,∴2 3.x x-=题号9101112答案5x≥23(1)a-9x=4题号13141516答案01951;1600①②∴原式22()4 2.x x =--=20. 方法一证明:∵AD 是△ABC 的中线, ∴BD =CD .在△ABD 和△ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,,,∴△ABD ≌△ACD . ∴∠B =∠C .方法二证明:∵AD 是△ABC 的角平分线, ∴∠BAD =∠CAD . 在△ABD 和△ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,,,∴△ABD ≌△ACD . ∴∠B =∠C.21. 证明:(1)∵四边形ABCD 是平行四边形,∴OA =OC . ∵AE ∥CF ,∴∠EAO =∠FCO .∵∠AOE =∠COF ,∴△AEO ≌△CFO . ∴OE =OF .∴四边形AECF 为平行四边形.(2)∵∠EAO +∠CFD =180°,∠CFO +∠CFD =180°,∴∠EAO=∠CFO . ∵∠EAO =∠FCO ,∴∠FCO=∠CFO . ∴OC=OF . ∴AC=EF .∴四边形AECF 是矩形.22. 解:(1)∵一次函数的图象经过点(0,1),(-2,2),∴12 2.b k b =⎧⎨-+=⎩,解得 121.k b ⎧=-⎪⎨⎪=⎩ ∴该一次函数的表达式为11.2y x =-+令0y =,得 2.x =∴()20.A ,(2) 4.m >-23. (1)证明:如图,连接OA .∵AD 为⊙O 的切线,∴∠OAD =90°.∴∠CAD +∠OAB =90°.∵OC ⊥AB ,∴∠ACD =90°.∴∠CAD +∠D =90°.∴∠OAB =∠D .∵OA =OB ,∴∠OAB =∠B .∴∠B =∠D .(2)解:在Rt △ACD 中,AD=,sin D =sin B,可得sin 2AC AD D =⋅=.∴AB =2AC =4.根据勾股定理,得CD =4.∴tan B =tan D =12.∵BE 为⊙O 的直径,0y kx b k =+≠()∴∠EAB =90°.在Rt △ABE 中,tan 2AE AB B =⋅=.在Rt △ACE 中,根据勾股定理,得CE=24.解:(1)37.(2)根据题意可知,三个年级抽取的45名学生平均每天阅读时间的平均数为 1526.41535.21536.832.8.45⨯+⨯+⨯=(3)<<.25.解:(1)二次.(2)设s 关于t 的函数表达式为s =at 2+bt ,根据题意,得242 6.a b a b +=⎧⎨+=⎩,解得11.a b =⎧⎨=⎩,∴s 关于t 的函数表达式为s =t 2+t.(3)>.26.解:(1)∵抛物线y =ax 2+(2m -6)x +1经过点()124m -,,∴2m -4=a +(2m -6)+1.∴a =1(2)由(1)得抛物线的表达式为y =x 2+(2m -6)x +1.∴抛物线的对称轴为3.x m =-(3)①当m >0时,可知点()1m y -,,()2m y ,,()32m y +,从左至右分布.根据23y y <可得232m m m ++-<.∴ 1.m >根据31y y ≤可得232m m m -++-≥.∴ 2.m ≤22s 21s 23s∴1 2.m <≤②当m ≤0时,∵3m m m +≤-<-,∴21y y ≥,不符合题意.综上,m 的取值范围为1 2.m <≤27.解:(1)AO =AB .证明:∵OB 平分∠MON , ∴∠MOB =∠NOB. ∵OM //AB ,∴∠MOB =∠ABO. ∴∠NOB =∠ABO. ∴AO =AB .根据题意,得AC =AD ,∠OAB =∠CAD .∴∠CAO =∠DAB.∴△OAC ≌△BAD. ∴∠COA =∠DBA. ∴∠MOB =∠DBA.(2)EF =.证明:如图,在OM 上截取OH =BE ,连接CH .∵△OAC ≌△BAD ,∴OC=BD.又OH =BE ,∴△OHC ≌△BED.∴CH=DE ,∠OHC=∠BED ,∵OM//AB ,∴∠MFC=∠BED.∴∠MFC=∠OHC.∴CF=CH.∴CF=DE.∴CD=EF.∵α=60°,∴∠CAD=180°-α=120°,作AK ⊥CD 于点K. ∵AC=AD ,∴∠ACK =30°,1.2CK CD =∴.CK AC =∴CD =.∴EF =.28. 解:(1)①D .②(-3,0)或(3,0).(2)① 3,32.②k .。
沪科版九年级数学《圆》——综合检测试卷

沪科版九年级数学《圆》——综合检测试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2003•北京)如图,CA为⊙O的切线,切点为A,点B在⊙O上.如果∠CAB=55°,那么∠AOB等于(等于( )A.55°B.90°C.110°D.120°2.(3分)(2011•达州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么的长为( )线段OE的长为(A.5B.4C.3D.23.(3分)(2003•天津)若圆的一条弦把圆分成度数之比为1:3的两条弧,则这条弦所对的圆周角等于()A.45°B.135°C.90°和270 D.45°和135°4.(3分)(2003•江西)如图所示,AB是所对的弦,AB的垂直平分线CD分别交,AC于C,D,AD的垂直平分线EF分别交AB,AB于E,F,DB的垂直平分线GH分别交,AB于G,H,则下面结论不正确的是( )结论不正确的是(A.B.C.E F=GH D.5.(3分)(2003•山东)用一个半径为6cm的半圆围成一个圆锥的侧面,则此圆锥的底面圆的半径为()A.2cm B.3cm C.4cm D.6cm 6.(3分)(2003•辽宁)已知两圆的半径分别是1和5,圆心距为3,则两圆位置关系为(,则两圆位置关系为( )A.相交B.外切C.内切D.内含7.(3分)若正三角形、正方形、正六边形的周长相等,它们的面积分别为S1,S2,S3,则下列关系成立的是( )立的是(A.S1=S2=S3B.S1>S2>S3C.S1<S2<S3D.S2>S3>S18.(3分)如图,点C 在线段AB 上,以AB 、AC 为直径的半圆相切于点A ,大圆的弦AE 交小圆于点D ,∠EAB=α,如DE=2,那么BC 等于(等于( )A .2cos α B .2sin α C .D .二、填空题(共8小题,每小题3分,满分24分) 9.(3分)分)圆外一点到圆的最大距离是圆外一点到圆的最大距离是18cm ,到圆的最小距离是5cm ,则圆的半径是则圆的半径是 _________ cm .10.(3分)直角三角形的斜边长为4,内切圆的半径等于,则这个三角形的周长为则这个三角形的周长为 _________ .11.(3分)(1999•哈尔滨)在△ABC 中,∠C=90°,AC=4,BC=3,以直线AC 为轴旋转一周所得到的几何体的表面积是几何体的表面积是 _________ . 12.(3分)顶角为120°的等腰三角形腰长为4cm ,则它的外接圆的直径,则它的外接圆的直径 _________ cm . 13.(3分)(2003•天津)若圆的一个弦长为12cm ,其弦心距等于8cm ,则该圆的半径等于则该圆的半径等于 ______ cm . 14.(3分)一条弧所对的圆心角是90°,半径是R ,则这条弧长为,则这条弧长为 _________ . 15.(3分)有一长、宽分别为4cm ,3cm 的矩形ABCD ,以A 为圆心作圆,若B 、C 、D 三点中至少有一点在圆内,且至少有一点在圆外,则⊙O 的半径r 的取值范围是的取值范围是 _________ . 16.(3分)(2007•株洲)已知△ABC 的三边长分别为6cm 、8cm 、10cm ,则这个三角形的外接圆的面积为积为 ________ _ cm 2.(结果用含π的代数式表示)的代数式表示)三、解答题(共9小题,满分72分) 17.(7分)如图,两个同心圆的圆心为O ,大圆的半径OC 、OD 交小圆于A 、B ,试探究AB 与CD 有怎样的位置关系?怎样的位置关系?18.(7分)如图,已知∠C=90°,点O 在AC 上,CD 为⊙O 的直径,⊙O 切AB 于点E ,若BC=5,AC=12,求⊙O 的半径.的半径.19.(7分)如图,△ABC中,∠C是直角,AB=12cm,∠ABC=60°,将△ABC以点B为中心顺时针旋转,使点C旋转到AB的延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是多少?,最后结果保留三个有效数字)(π=3.14159…,最后结果保留三个有效数字)20.(7分)如图,以等腰三角形ABC的腰AB为直径作⊙O,交底边BC于P,PE⊥AC于E,试问:PE是⊙O的切线吗?说明理由.的切线吗?说明理由.21.(7分)如图,把直角三角形△ABC的斜边AB放在直线l上,按顺时针方向转动两次,使它转到△A″B″C″的位置,设BC=1,AC=,则顶点A运动到A′′的位置时:′′的位置时:经过的路线有多长?(1)点A经过的路线有多长?所围成的面积是多少?(2)点A经过的路线与直线l所围成的面积是多少?22.(7分)如图,P是⊙O外一点,P A切⊙O于A,AB是⊙O的直径,PB交⊙O于C,若PA=2cm,∠B=30°,求出图中阴影部分的面积.,求出图中阴影部分的面积.23.(10分)如图是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,求地面上阴影部分的面积.(精确到0.01平米,π取3.14)24.(10分)工人师傅要在如图所示的一边长为40cm的正方形铁皮上裁剪下一块完整的圆形和一块完整的扇形铁皮,使之恰好做成一个圆锥形模型.(画出示意图)(1)请你帮助工人师傅设计三种不同的裁剪方案;(画出示意图)(2)何种设计方案使得正方形铁皮的利用率最高?求出此时圆锥模型底面圆的半径.25.(10分)(2004•万州区)如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E 是BC边上的中点,连接DE.(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,说明理由;(2)如果AD,AB的长是方程x2﹣10x+24=0的两个根,试求直角边BC的长;的长;(3)试在(1)(2)的基础上,提出一个有价值的问题(不必解答).A.55°B.90°C.110°D.120°解答:解:∵∠OAC=90°,∴∠OAB=90°﹣55°=35°,∴∠AOB=180°﹣35°×2=110°.故选C.A.5B.4C.3D.2解答:解:连接OC ∵AB是⊙O的直径,弦CD⊥AB,∴CE=CD,∵CD=8,∴CE=4,∵AB=10,∴由勾股定理得,OE===3.故选C.3.(3分)(2003•天津)若圆的一条弦把圆分成度数之比为1:3的两条弧,则这条弦所对的圆周角等于A.45°B.135°C.90°和270 D.45°和135°两条弧.解答:解:如图,弦AB将⊙O分成了度数比为1:3两条弧.连接OA、OB;则∠AOB=90°;点时,①当所求的圆周角顶点位于D点时,这条弦所对的圆周角∠ADB=∠AOB=45°;点时,②当所求的圆周角顶点位于C点时,这条弦所对的圆周角∠ACB=180°﹣∠ADB=135°.故选D.4.(3分)(2003•江西)如图所示,AB是所对的弦,AB的垂直平分线CD分别交,AC于C,D,AD的垂直平分线EF分别交AB,AB于E,F,DB的垂直平分线GH分别交,AB于G,H,则下面结论不正确的是( )结论不正确的是(A.B.C.E F=GH D.的二等分点,解答:解:A、正确,CD是AB的中垂线,点C也是弧AB的二等分点,B、正确,在同圆中,两直线平行,则直线所夹的弧相等,C、正确,在同圆中,弦心距相等,则弦相等,弦的一半也相等D、错误.点F是AD的中点,但点E不一定是弧AC的二等分点.的二等分点.故选D.5.(3分)(2003•山东)用一个半径为6cm的半圆围成一个圆锥的侧面,则此圆锥的底面圆的半径为()A.2cm B.3cm C.4cm D.6cm 解答:解:=2πR,解得R=3cm.故选B.6.(3分)(2003•辽宁)已知两圆的半径分别是1和5,圆心距为3,则两圆位置关系为(,则两圆位置关系为( )A.相交B.外切C.内切D.内含解答:解:因为圆心距=3,两圆半径差=5﹣1=4>3,根据圆心距与半径之间的数量关系可知,两圆的位置关系是内含.故选D.7.(3分)若正三角形、正方形、正六边形的周长相等,它们的面积分别为S1,S2,S3,则下列关系成立的是( )立的是(A.S1=S2=S3B.S1>S2>S3C.S1<S2<S3D.S2>S3>S1解答:解:设正三角形的边长为a,则正方形的边长为,正六边形的边长为;∵正三角形的边长为a,∴其高为,∴S1=a×=;S2=()2=;∵正六边形的边长为,∴把正六边形分成六个三角形,其高为,∴S3=6×××=.∵S1==,S3==,<<,∴S1<S2<S3.故选C.8.(3分)如图,点C在线段AB上,以AB、AC为直径的半圆相切于点A,大圆的弦AE交小圆于点D,∠EAB=α,如DE=2,那么BC等于(等于( )A.2cosαB.2sinαC.D.解答:解:连接CD、BE,过C点作CF∥AE交BE于点F,为直径,点C在线段AB上,AB、AC为直径,所以有DC⊥AE,BE⊥AE,为正方形,即得CD∥BE,且四边形DCFE为正方形,即FC=DE=2,∠FCB=∠EAB=α,在Rt△BCF中,BC=故选C.二、填空题(共8小题,每小题3分,满分24分)9.(3分)圆外一点到圆的最大距离是18cm,到圆的最小距离是5cm,则圆的半径是,则圆的半径是 6.5cm.解:根据题意,解答:解:根据题意,圆的半径为cm.10.(3分)直角三角形的斜边长为4,内切圆的半径等于,则这个三角形的周长为,则这个三角形的周长为 .解答:解:设直角边分别为a,b.根据题意有,﹣1=,所以a+b=2+2,因此三角形的周长=2+2+4=2+6.故填6+2.几何体的表面积是几何体的表面积是 24π . 解答: 解:根据题意得:圆锥的底面周长=6π,所以圆锥的侧面积==15π,圆锥的底面积=π×32=9π,所以以直线AC 为轴旋转一周所得到的几何体的表面积=15π+9π=24π.12.(3分)顶角为120°的等腰三角形腰长为4cm ,则它的外接圆的直径,则它的外接圆的直径 8 cm . 解答: 解:如图;△ABC 中,∠ACB=120°,AC=BC=4cm ;易知∠OCA=∠ACB=60°; 又∵OA=OC ,∴△OAC 是等边三角形;是等边三角形; ∴OA=OC=AC=4cm ;故等腰三角形的外接圆直径是8cm .13.(3分)(2003•天津)若圆的一个弦长为12cm ,其弦心距等于8cm ,则该圆的半径等于,则该圆的半径等于 10 cm . 解答: 解:根据垂径定理可知,弦的一半为6,然后根据勾股定理可知半径为10cm . ,则这条弧长为 .解答: 解:l===.一点在圆内,且至少有一点在圆外,则⊙O 的半径r 的取值范围是的取值范围是 3<r <5 . 解答: 解:∵矩形ABCD 的长、宽分别为4cm ,3cm ,∴矩形的对角线为5cm ,∵B 、C 、D 三点中至少有一点在圆内,且至少有一点在圆外, ∴⊙O 的半径r 的取值范围是3<r <5.△积为积为 25π cm .(结果用含π的代数式表示)的代数式表示) 解答: 解:根据勾股定理的逆定理可知三角形是直角三角形,那么直角三角形的外心是斜边的中点,所以半径=5, 面积=25π.三、解答题(共9小题,满分72分)解答: 解:∵OA=OB ,OC=OD ,∴.又∵∠AOB=∠COD,∴△OAB∽△OCD.∴∠OAB=∠OCD.∴AB∥CD.故AB与CD平行.平行.18.(7分)如图,已知∠C=90°,点O在AC上,CD为⊙O的直径,⊙O切AB于点E,若BC=5,AC=12,的半径.求⊙O的半径.解答:解:连接OE,因为AB为切线,故OE⊥AB,在Rt△ABC中,BC=5,AC=12,故AB=13,由BE=BC=5,所以AE=8;易证△AEO∽△ACB,所以,得.19.(7分)如图,△ABC中,∠C是直角,AB=12cm,∠ABC=60°,将△ABC以点B为中心顺时针旋转,使点C旋转到AB的延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是多少?(π=3.14159…,最后结果保留三个有效数字),最后结果保留三个有效数字)解答:解:∵△ABC中,∠C是直角,AB=12cm,∠ABC=60°∴AC=6cm,BC=6cm ∵将△ABC以点B为中心顺时针旋转,使点C旋转到AB的延长线上的点D处∴△ABC≌△EBD 由题给图象可知:由题给图象可知:S阴影=S扇形ABE+S△BDE﹣S△ABC﹣S扇形BCD==答:AC边扫过的图形(阴影部分)的面积约是113cm2.20.(7分)如图,以等腰三角形ABC的腰AB为直径作⊙O,交底边BC于P,PE⊥AC于E,试问:PE是⊙O的切线吗?说明理由.的切线吗?说明理由.解答:解:连接OP,则OP=OB;∴∠OPB=∠B=∠C,∴OP∥AC,∴PE⊥AC,∴PE⊥OP,∴PE是⊙O的切线.的切线.21.(7分)如图,把直角三角形△ABC的斜边AB放在直线l上,按顺时针方向转动两次,使它转到△A″B″C″的位置,设BC=1,AC=,则顶点A运动到A′′的位置时:′′的位置时:经过的路线有多长?(1)点A经过的路线有多长?所围成的面积是多少?(2)点A经过的路线与直线l所围成的面积是多少?解答:解:(1)Rt△ABC中,BC=1,AC=,则可得AB=2,∠CAB=30°,″所经过的路线为:则点A到A″所经过的路线为:l弧AA′+l弧A′A″=+=+.围成的面积为:(2)点A经过的路线与直线l围成的面积为:+×1×+=+.22.(7分)如图,P是⊙O外一点,P A切⊙O于A,AB是⊙O的直径,PB交⊙O于C,若PA=2cm,,求出图中阴影部分的面积.∠B=30°,求出图中阴影部分的面积.解答:解:连接CO,过O作OD⊥PB于点D,∵∠B=30°,PA=2cm,∴PB=4,AB=cm,∴OB=OC=OA=cm,(3分)分)∵∠B=30°,∴∠BOC=120°,∠AOC=60°,∴OD=cm,BD=cm,BC=3cm,(3分)分)∴S△BOC=3××=cm2,S扇形AOC==cm2,(4分)分)∴S阴影部分=×2×2﹣﹣=﹣(cm2).(2分)分)23.(10分)如图是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,求地面上阴影部分的面积.(精确到0.01平米,π取3.14)解答:解:构造几何模型如图:解:构造几何模型如图:依题意知DE=1.2米,FG=1米,AG=3米,米,由△DAE∽△BAC得,即,得BC=1.8,∴.24.(10分)工人师傅要在如图所示的一边长为40cm的正方形铁皮上裁剪下一块完整的圆形和一块完整的扇形铁皮,使之恰好做成一个圆锥形模型.(1)请你帮助工人师傅设计三种不同的裁剪方案;(画出示意图)(画出示意图)(2)何种设计方案使得正方形铁皮的利用率最高?求出此时圆锥模型底面圆的半径.解答:解:(1)设计方案示意图如下.)设计方案示意图如下.(2)∵①图扇形面积为:=400π,②图面积为:π×(20)2+π×102=300π,③图扇形面积为:=,)所示.∴使得正方形铁皮的利用率最高的裁剪方案如图(1)所示.,依题意有:设圆的半径为r,扇形的半径为R,依题意有:扇形弧长等于圆锥底面周长,扇形弧长等于圆锥底面周长,∴×2R×π=2πr,则R=4r.∵正方形的边长为40cm,∴BD=40cm.∵⊙O与扇形的切点为E,圆心O在BD上,上,∴R+r+r=40,解得r=cm.25.(10分)(2004•万州区)如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E相切.解答:解:(1)DE与半圆O相切.证明:连接OD,BD,∵AB是半圆O的直径,的直径,∴∠BDA=∠BDC=90°.边上的中点,∵在Rt△BDC中,E是BC边上的中点,∴DE=BE=BC,得∠EBD=∠BDE.∵OB=OD,∴∠OBD=∠ODB.又∵∠ABC=∠OBD+∠EBD=90°,∴∠ODB+∠EDB=90°,故DE与半圆O相切.相切.(2)∵BD⊥AC,∴Rt△ABD∽Rt△ACB.∴.即AB2=AD•AC.∴AC=.的两个根, ∵AD,AB的长是方程x2﹣10x+24=0的两个根,∴解方程得x1=4,x2=6.∵AD<AB,∴AD=4,AB=6.∴AC===9.又∵在Rt△ABC中,AB=6,AC=9,∴BC==3.的面积;(3)问题1:求四边形ABED的面积;:求两个弓形的面积;问题2:求两个弓形的面积;问题3:求的值.的值.。
沪科版九年级数学下期末综合检测复习试卷(有答案)-优质

期末专题复习:沪科版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A. 24°B . 28° C.33° D.48°2.同时抛掷两枚均匀的硬币,落地后两枚硬币都是正面朝上的概率是()A. 1B. 12C. 13D. 143.与如图所示的三视图对应的几何体是()A. B.C.D.4.下列图形中既是中心对称图形又是轴对称图形的是()A. B.C.D.5.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A. 143π﹣6 B. 259π C. 338π﹣3 D. √33 +π6.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A. 4cmB. 3c mC. 2cmD. 1cm7.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A. 86B. 64C. 54D. 488.如图,AB是⊙O的直径,点C、D都在⊙O上,若∠C=20°,则∠ABD的度数等于()A. 80°B . 70° C.50° D. 40°9.如图所示,在平面直角坐标系中,点A,B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A'的坐标为( )A. (2,2)B. (2,4) C. (4,2) D. (1,2)10.点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=2,CD=3,则AE的长为()A. 2B. 2.5C. 3D. 3.5二、填空题(共10题;共30分)11.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是________.12.一个不透明的袋中装有2枚白色棋子和n 枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n 很可能是________枚.13.如图,在⊙O 中,AA∧=AA ∧,∠C=75°,则∠A=________ °.14.(2015•曲靖)一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有________ 颗.15.如图(右上),在△ABC 中,∠ABC =24°,以AB 为直径的⊙O 交BC 于点D ,交CA 的延长线于点E ,若点E 在BD 的垂直平分线上,则∠C 的度数为________.16. 3.12日植树节,老师想从甲、乙、丙、丁4名同学中挑选2名同学代表班级去参加学校组织的植树活动,恰好选中甲和乙去参加的概率是________.17.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A=25°,则∠D 等于________ .18.如图,是一个中心对称图形,A 为对称中心,若∠C=90°,∠B=30°,AC=1,则BB ′的长为________ .19.在一个不透明的袋子中,有3个白球和1个红球,它们只有颜色上的区别,从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为________ .20.如图,在菱形ABCD 中,tanA= √3,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE=DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H ,给出如下几个结论:(1)△AED ≌△DFB ;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG= √3CG2;其中正确结论的序号为________.4三、解答题(共9题;共60分)21.如图是由6个正方体组成的几何体,请分别画出从正面、左面、上面看到的这个几何体的形状图。
人教版九年级上数学册《第22章二次函数》综合检测试卷含答案

人教版九年级上册数学综合检测含答案第22章 二次函数(时间:120分钟 总分120分)一、选择题(本大题共6个小题,每小题3分,共18分。
在每小题给出的四个选项中,只有一个正确选项。
)1.下列各式中,y 是x 的二次函数的个数为( A )①y =2x 2+2x +5;②y =-5+8x -x 2;③y =(3x +2)(4x -3)-12x 2;④y =ax 2+bx +c ;⑤y =mx 2+x ;⑥y =bx 2+1(b 为常数,b ≠0).A .3B .4C .5D .62.若函数y =226a a ax --是二次函数且图象开口向上,则a =( B ) A .-2 B .4 C .4或-2 D .4或33.将抛物线y =3x 2平移得到抛物线y =3(x -4)2-1 的步骤是( D ) A .向左平移4个单位,再向上平移1个单位 B .向左平移4个单位,再向下平移1个单位 C .向右平移4个单位,再向上平移1个单位 D .向右平移4个单位,再向下平移1个单位4.抛物线y =12x 2-4x +3的顶点坐标和对称轴分别是( D )A .(1,2),x =1B .(1-,2),x =-1C .(-4,-5),x =-4D .(4,-5),x =45.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图 ,则下列结论:第5题图①a ,b 同号;②当x =1和x =3时,函数值相等;③4a +b =0;④当y =-2时,x 的值只能为0,其中正确的个数是( B )A .1个B .2个C .3个D .4个6.我们在跳绳时,绳甩到最高处的形状可近似地看成是抛物线.如图 所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m ,距地面均为1 m ,学生丙、丁分别站在距甲拿绳的手水平距离1 m,2.5 m 处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m ,则学生丁的身高为( B )第6题图A .1.5 mB .1.625 mC .1.66 mD .1.67 m二、填空题(本大题共6小题,每小题3分,共18分)7.已知函数y =(m -2)x 2+mx -3(m 为常数). (1)当m ____≠2______时,该函数为二次函数; (2)当m _____=2_____时,该函数为一次函数.8.已知抛物线y =ax 2+bx +c 经过点(-1,10)和(2,7),且3a +2b =0,则该抛物线的解析式为___y =2x 2-3x +5_____.9.已知二次函数y =kx 2-7x -7的图象与x 轴有两个交点,则k 的取值范围为k <-74且k ≠0 .10.出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =___4___元,一天出售该种手工艺品的总利润y 最大.11.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是 1或0 . 12.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数2y ax bx c =++的图象过点(1,0)……求证这个二次函数的图象关于直线x=2对称.根据现有信息,得出有关这个二次函数的下列结论:①过点(3,0);②顶点是(2,-2);③在x 轴上截得的线段的长是2; ④与y 轴的交点是(0,3).其中正确的有__①③④_____(填序号).三、解答题 (本大题共5小题,每小题6分,共30分)13.已知抛物线y =ax 2经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,-4)是否在此抛物线上; (3)求出抛物线上纵坐标为-6的点的坐标. 解:(1)把(-2,-8)代入y =ax 2,得-8=a (-2)2.解得a =-2,故函数解析式为y =-2x 2.(2)∵-4≠-2(-1)2,∴点B (-1,-4)不在抛物线上. (3)由-6=-2x 2,得x 2=3,x =±3.∴纵坐标为-6的点有两个,它们分别是(3,-6)与(-3,-6).14.如图 ,A (-1,0),B (2,-3)两点都在一次函数y 1=-x +m 与二次函数y 2=ax 2+bx -3的图象上.(1)求m 的值和二次函数的解析式;(2)请直接写出当y 1>y 2时,自变量x 的取值范围.第14题图解:(1)由于点A (-1,0)在一次函数y 1=-x +m 的图象上,得-(-1)+m =0,即m =-1;已知点A (-1,0),点B (2,-3)在二次函数y 2=ax 2+bx -3的图象上,则有⎩⎪⎨⎪⎧ a -b -3=0,4a +2b -3=-3.解得⎩⎪⎨⎪⎧a =1,b =-2.∴二次函数的解析式为y 2=x 2-2x -3.(2)由两个函数的图象知:当y 1>y 2时,-1<x <2.15.已知抛物线y =x 2-2x -8.(1)试说明抛物线与x 轴一定有两个交点,并求出交点坐标;(2)若该抛物线与x 轴两个交点分别为A ,B (A 在B 的左边),且它的顶点为P ,求S △ABP的值.解:(1)∵Δ=(-2)2-4×1×(-8)=4+32=36>0, ∴抛物线与x 轴一定有两个交点.当y =0,即x 2-2x -8=0时,解得x 1=-2,x 2=4. 故交点坐标为(-2,0),(4,0). (2)由(1),可知:|AB |=6.y =x 2-2x -8=x 2-2x +1-1-8=(x -1)2-9.∴点P 坐标为(1,-9).过点P 作PC ⊥x 轴于点C ,则|PC |=9.∴S △ABP =12|AB |·|PC |=12×6×9=27.16.如图,杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线y =-35x 2+3x +1的一部分.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.解:(1)y =-35x 2+3x +1=-35⎝ ⎛⎭⎪⎫x -522+194.故函数的最大值是194,∴演员弹跳离地面的最大高度是194米.(2)当x =4时,y =-35×42+3×4+1=3.4=BC .∴这次表演成功.17.如图,抛物线y =ax 2-5x +4a 与x 轴相交于点A ,B ,且过点C (5,4). (1)求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.第17题图解:(1)a =1,P ⎝⎛⎭⎫52,-94. (2)答案不唯一,满足题意即可.如向上平移104个单位长度后,再向左平移3个单位长度等.四、(本大题共3小题,每小题8分,共24分)18.如图,二次函数y=ax 2-4x+c 的图象过原点,与x 轴交于点A(-4,0).(1)求此二次函数的解析式.(2)在抛物线上存在点P,满足S △AOP =8,请直接写出点P 的坐标.解:(1)依题意,得⎩⎨⎧=+=016160a c解得⎩⎨⎧=-=01c a∴二次函数的解析式为y=-x 2-4x. (2)令P(m,n), 则S △AOP =12 AO ·|n|=12×4|n|=8,解得n=±4, 又∵点P(m,n)在抛物线 y=-x 2-4x 上,∴-m 2-4m=±4,分别解得m 1=-2,m 2=-2+2 2 和m 3=-2-2 2 ,∴P 1(-2,4),P 2(-2+2 2 ,-4),P 3(-2-2 2 ,-4).19.已知二次函数y =ax 2+bx +c 的图象C 经过(-5,0),⎝⎛⎭⎫0,52,(1,6)三点,直线l 的解析式为y =2x -3.(1)求抛物线C 的解析式;(2)判断抛物线C 与直线l 有无交点;(3)若与直线l 平行的直线y =2x +m 与抛物线C 只有一个公共点P ,求点P 的坐标.解:(1)把(-5,0),⎝⎛⎭⎫0,52,(1,6)分别代入抛物线,解得a =12,b =3,c =52,∴y =12x 2+3x +52.(2)令12x 2+3x +52=2x -3,整理后,得12x 2+x +112=0,∵Δ<0,∴抛物线与直线无交点.(3)令12x 2+3x +52=2x +m ,整理后,得12x 2+x +52-m =0.由Δ=12-4×12×⎝⎛⎭⎫52-m =0,解得m =2,求得点P 的坐标为(-1,0).20.在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐助给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y (单位:个)与销售单价x (单位:元/个)之间的对应关系如图 所示:(1)试判断y 与x 之间的函数关系,并求出函数关系式;(2)若许愿瓶的价为6元/个,按照上述市场调查的销售规律,求销售利润w (单位:元)与销售单价x (单位:元/个)之间的函数关系式;(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.图解:(1)y 是x 的一次函数,设y =kx +b , ∵图象过点(10,300),(12,240), ∴⎩⎪⎨⎪⎧ 10k +b =300,12k +b =240.解得⎩⎪⎨⎪⎧k =-30,b =600. ∴y =-30x +600.当x =14时,y =180;当x =16时,y =120.即点(14,180),(16,120)均在函数y =-30x +600图象上. ∴y 与x 之间的函数关系为y =-30x +60.(2)w =(x -6)(-30x +600)=-30x 2+780x -3600.即w 与x 之间的函数关系式为w =-30x 2+780x -3600. (3)由题意,得6(-30x +600)≤900,解得x ≥15.x =-30x 2+780x -3600图象对称轴为x =-7802×(-30)=13.∵a =-30<0.∴抛物线开口向下.当x ≥15时,w 随x 增大而减小. ∴当x =15时,w 最大=1350,即以15元/个的价格销售这批许愿瓶可获得最大利润1350元.五、(本大题共2小题,每小题9分,共18分)21. 如图,四边形ABCD 是菱形,点D 的坐标是(0,3),以点C 为顶点的抛物线y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1)求A ,B ,C 三点的坐标;(2)求过A ,B ,C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过D 点,求平移后抛物线的解析式,并指出平移了多少个单位?解:(1)A ,B ,C 的坐标分别为(1,0),(3,0),(2,3) (2)y =-3(x -2)2+3(3)设抛物线的解析式为y =-3(x -2)2+k ,代入D (0,3),可得k =53,平移后的抛物线的解析式为y =-3(x -2)2+53,∴平移了53-3=43个单位22.某公司700万元购买甲、乙两种产品的生产技术和设备后,进行这两种产品的生产加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价定在35元到70元之间较为合理,设甲种产品的销售单价为x(元),年销售量为y(万件).当35≤x ≤50时,y 与x 之间的函数关系式为y=20-0.2x;当50≤x ≤70时,y 与x 之间的函数关系如图所示.乙种产品的销售单价在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元. (1)当50≤x ≤70时,求出甲种产品的年销售量y(万件)与x(元)之间的函数解析式.(2)若该公司第一年的年销售利润(年销售利润=年销售收入-生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x ≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和-成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.解:(1)设当50≤x ≤70时,y 与x 的函数关系式为y=kx+b.把(50,10),(70,8)代入得⎩⎨⎧=+=+8701050b k b k 解得⎩⎨⎧=-=151.0b k ∴当50≤x ≤70时,y 与x 的函数解析式为y=-0.1x+15.[来源:Z*xx*] (2)①依题意知:25≤90- x ≤45,即45≤x ≤65.当45≤x ≤50时,W=(x-30)(20-0.2x)+10(90-x-20)=-0.2x 2+16x+100=-0.2(x-40)2+420.由函数的性质知,当x=45时,W 最大值为415. 当50≤x ≤65时,W=(x-30)(-0.1x+15)+10(90-x-20)=-0.1x 2+8x+250=-0.1(x-40)2+410.由函数的性质知,当x=50时,W 最大值为400.综上所述,当x=45时,即甲、乙两种产品的销售单价均定在45元时,可使第一年的年销售利润最大,最大年销售利润是415万元. (3)30≤m ≤40.(由题意,令W=-0.1x 2+8x+250+415-700≥85,整理,得x 2-80x+120≤0, 解得20≤x ≤60.∵50≤x ≤65,根据函数的性质分析,50≤x ≤60. 即50≤90-m ≤60.故30≤m ≤40.)六、(本大题共1小题,共12分)23.如图,抛物线y =ax 2+3ax +c (a >0)与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点B 的坐标为(1,0),OC =3OB .(1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值;(3)若点E 在x 轴上,点P 在抛物线上.是否存在以A ,C ,E ,P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.第23题图解:(1)∵OC =3OB ,B (1,0),∴C (0,-3).把点B ,C 的坐标代入y =ax 2+3ax +c ,得⎩⎪⎨⎪⎧a +3a +c =0,c =-3.解得⎩⎪⎨⎪⎧a =34,c =-3.∴y =34x 2+94x -3.(2)如图D86.过点D 作DM ∥y 轴分别交线段AC 和x 轴于点M ,N . S 四边形ABCD =S △ABC +S △ACD =152+12×DM ×(AN +ON ) =152+2DM , ∵A (-4,0),C (0,-3),设直线AC 的解析式为y =kx +b ,代入,求得y =-34x -3.令D ⎝⎛⎭⎫x ,34x 2+94x -3,M ⎝⎛⎭⎫x ,-34x -3, DM =-34x -3-⎝⎛⎭⎫34x 2+94x -3 =-34(x +2)2+3,当x =-2时,DM 有最大值3.此时四边形ABCD 面积有最大值为272.图D86 图D87(3)如图D87,讨论:①过点C 作CP 1∥x 轴交抛物线于点P 1,过点P 1作P 1E 1∥AC 交x 轴于点E 1,此时四边形ACP 1E 1为平行四边形.∵C (0,-3),令34x 2+94x -3=-3,∴x =0或x =-3.∴P 1(-3,-3). ②平移直线AC 交x 轴于点E ,交x 轴上方的抛物线于点P ,当AC =PE 时,四边形ACEP 为平行四边形,∵C (0,-3),∴可令P (x,3),由34x 2+94x -3=3,得x 2+3x -8=0.解得x =-3+412或x =-3-412.此时存在点P 2⎝ ⎛⎭⎪⎫-3+412,3和P 3⎝ ⎛⎭⎪⎫-3-412,3.综上所述,存在3个点符合题意,坐标分别是P 1(-3,-3),P 2⎝ ⎛⎭⎪⎫-3+412,3,P 3⎝ ⎛⎭⎪⎫-3-412,3.。
2024年北京初三九年级上学期数学期末考《圆的综合》

2024年1月九上期末——圆的综合1.【东城】24.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠ACB 的平分线CD 交⊙O 于点D.过点D 作DE ∥AB ,交CB 的延长线于点E .(1)求证:直线DE 是⊙O 的切线;(2)若∠BAC =30°,BC =CD 的长.2.【西城】24.如图,AB 是O 的直径,AB BC =,AC 交O 于点D ,点F 在OD 的延长线上且12FAD ABC ∠=∠.(1)求证:AF 是O 的切线;(2)若8AF =,4DF =,求AC 的长.3.【海淀】25.如图,AB 为半圆O 的直径,点C ,D 在半圆O 上,直线CM 与半圆O 相切于点C ,//CM AD .(1)若MCD ∠α=,求COA ∠的大小(用含α的式子表示);(2)过点O 作OE CD ⊥交CM 于点E ,交CD 于点F ,若//CD AB ,6AB =,求CE 的长.4.【朝阳】24.如图,AC ,BD 是圆内接四边形ABCD 的对角线,AC ⊥BD 于点E ,BD 平分∠ADC .(1)求∠BAD 的度数;(2)点P 在DB 的延长线上,P A 是该圆的切线.①求证:PC 是该圆的切线;②若PA =AC =3,直接写出PD 的长.5.【石景山】24.如图,在ABC △中,AB AC =,以AB 为直径的O 交BC 于点D ,交AC 于点E ,点F 在AC 的延长线上,12CBF BAC ∠=∠.(1)求证:BF 是O 的切线;(2)若5AB =,1tan 2CBF ∠=,求CE 的长.6.【丰台】24.如图,△ABC 中,AB =AC ,以AB 为直径作⊙O 交BC 于点D ,作DE ⊥AC 交AC 于点E ,延长ED 与AB 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若△ABC 为等边三角形,AE=3,求⊙O 半径的长.7.【昌平】24.如图,AB 是⊙O 的直径,点C 在⊙O 上,点D 为 AC 的中点,过点D 作⊙O 的切线,交BC 延长线于点P ,连接OD 交AC 于点E .(1)求证:四边形DECP 是矩形;(2)作射线AD 交BC 的延长线于点F ,若tan ∠CAB =43,BC =6,求DF 的长.8.【通州】25.如图,点C 在以AB 为直径的O 上,CD 平分ACB ∠交O 于点D ,交AB 于点E ,过点D 作DF AB ∥交CO 的延长线于点F .(1)求证:直线DF 是O 的切线;(2)若30A ∠=︒,43AC =,求DF 的长.24题图9.【房山】24.如图,AB是⊙O的直径,AC,BC是弦,点D在AB的延长线上,且DCB DAC∠=∠,⊙O的切线AE与DC的延长线交于点E.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,30∠=︒,求AE的长.D10.【大兴】24.如图,AB是⊙O的直径,点C在⊙O上,连接AC,BC,过点O作OD⊥BC于点D,过点C作直线CE交OD的延长线于点E,使得∠E=∠B.(1)求证:CE是⊙O的切线.(2)若DE=6,CE=35,求OD的长.11.【门头沟】25.如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O切线与AC的延长线交于点E,ED∥BC,连接AD交BC于点F.(1)求证:∠BAD=∠DAE;(2)若AB=6,AD=5,求DF的长.12.【燕山】24.如图,在△ABC中,∠ACB=90°,点D在AB上,以AD为直径作⊙O与BC相切于点E,连接DE并延长交AC的延长线于点F.(1)求证:AF=AD;(2)若CE=4,CF=2,求⊙O的半径.13.【顺义】25.如图,AB为⊙O的弦,点C为AB的中点,CO的延长线交⊙O于点D,连接AD,BD,过点D作⊙O的切线交AO的延长线于点E.(1)求证:DE∥AB;(2)若⊙O的半径为3,tan∠ADC=,求DE的长.14.【密云】24.如图,⊙O是△ABC的外接圆,∠ABC=45°,连接OC交AB于点E,过点A作OC的平行线交BC延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为4,AD=6,求线段CD的长.15.【平谷】24.如图,AB 为⊙O 的直径,弦CD ⊥AB 于H ,连接AC 、AD ,过点A 作⊙O 的切线与∠ADC 的平分线相交于点E ,DE 交AB 于点G ,交AC 于点F ,交⊙O 于点M ,连接AM .(1)求证:AC=AD ;(2)若22tan =∠AMD ,CD=4,求AF 长.。
(人教版)初中数学九年级上册 第二十三章综合测试试卷01及答案

第二十三章综合测试一、选择题(每小题4分,共28分)1.如图所示,在等腰直角三角形ABC 中,90B Ð=°,48C Ð=°,如果将ABC △绕顶点A 逆时针方向旋转60°后得到AB C ¢¢△,那么BAC ¢Ð等于( )A .60°B .102°C .120°D .132°2.如图所示,ABC △和BCD △都为等腰直角三角形,若ABC △经旋转后能与BCD △重合,下列说法正确的是( )A .旋转中心为点C ,旋转角为45°B .旋转中心为点B ,旋转角为45°C .旋转中心为点C ,旋转角为90°D .旋转中心为点B ,旋转角为90°3.正方形ABCD 在平面直角坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针旋转90°后,B 点的对应点的坐标为( )A .()2,2-B .()4,1C .()3,1D .()4,04.如图所示,把ABC △绕点C 顺时针旋转30°得到A B C ¢¢△,其中A B ¢¢与AC 交于点D ,若90A DC ¢Ð=°,则A Ð为( )A .90°B .60°C .30°D .无法确定5.已知点()11,1P a -和()22,1P b -关于原点对称,则b a 的值为( )A .0B .1C .1-D .1±6.将如图所示的图案绕正六边形的中心旋转n °时与原图案完全重合,那么n 的最小值是()A .60B .90C .120D .1807.下列说法正确的是( )A .中心对称的两个图形一定是全等形B .中心对称图形是旋转90°后能与自身重合的图形C .两个形状、大小完全相同的图形一定中心对称D .中心对称图形一定是轴对称图形二、填空题(每空5分,共20分)8.若ABC △绕点A 旋转能与ADE △重合,其中AB 与AD 重合,AC 与AE 重合.若120EAD Ð=°,则CAB Ð=________;若35CAE Ð=°,则BAD Ð=________.9.在平面直角坐标系中,已知点0P 的坐标为()1,0,将点0P 绕原点O 逆时针旋转60°得点1P ,延长1OP 到点2P ,使212OP OP =,再将点2P 绕原点O 逆时针旋转60°得点3P ,则点3P 的坐标是________.10.如图所示,用两块完全相同的矩形拼成“L ”形,则ACF Ð的大小是________,ACF △的形状是________.11.已知点()221,25P a a a --+在y 轴上,则点P 关于原点O 对称的点的坐标为________.三、解答题(共52分)12.(12分)如图所示,画出四边形ABCD 绕点A 逆时针旋转90°后的图形.13.(12分)如图所示,ABC △绕点A 旋转得到ADE △,恰好使点C 旋转后落在直线BC 上的点E 处,已知105ACB Ð=°,10CAD Ð=°,求DFE Ð和B Ð的度数.14.(14分)用四块如左图所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在右图①②③中各画出一种拼法(要求三种拼法各不相同),且其中至少有一种既是轴对称图形又是中心对称图形.15.(14分)在如图所示的网格中按要求画出图形,并回答问题:(1)先画出ABC △向下平移5格后的111A B C △,再画出ABC △以点O 为旋转中心顺时针旋转90°后的222A B C △;(2)在与同学交流时,你打算如何描述(1)中所画的222A B C △的位置?第二十三章综合测试答案解析一、1.【答案】B【解析】因为90B Ð=°,48C Ð=°,所以42BAC Ð=°.又CAC ¢Ð是旋转角,所以60CAC ¢Ð=°.所以4260102BAC BAC CAC ¢¢Ð=Ð+Ð=°+°=°.2.【答案】D【解析】因为点B 始终没有改变位置,所以点B 为旋转中心,旋转角为90ABC Ð=°.3.【答案】D【解析】作出旋转后的图形,结合旋转的性质可得点B 的对应点的坐标为()4,0.4.【答案】B【解析】由题意知,旋转角为30ACA ¢Ð=°,所以903060A ¢Ð=°-°=°.由旋转性质得60A A ¢Ð=Ð=°.5.【答案】B【解析】由题意得120a -+=,110b -+=,解得1a =-,0b =.所以()011b a =-=.6.【答案】C【解析】观察图形的组成特点可以发现图形外围的图案至少旋转120°后可以与原来的图案重合,内部的图案在旋转120°后也和原来的图案重合,故选C .7.【答案】A二、8.【答案】120° 35°【解析】由能互相重合的边得到对应边,从而确定对应角是解题关键.题中AB 与AD 重合,AC 与AE 重合,EAD Ð与CAB Ð是对应角,CAE Ð与BAD Ð是旋转角.9.【答案】(-【解析】画图确定点3P 的位置,过该点作x 轴、y 轴的垂线段,得到直角三角形,可求出点3P 的坐标.解答此题结合图形比较简便.10.【答案】90° 等腰直角三角形【解析】矩形FGCE 可以看作是由矩形ABCD 绕点C 顺时针旋转90°得到的,则90ACF Ð=°,AC FC =,所以ACF △是等腰直角三角形.11.【答案】()0,8-或()0,4-【解析】因为点()221,25P a a a --+在y 轴上,所以210a -=,所以1a =或1a =-.当1a =时,2254a a -+=,当1a =-时,2258a a -+=,所以点P 的坐标为()0,8-或()0,4-,所以点P 关于原点O 对称的点的坐标为()0,8-或()0,4-.三、12.【答案】如图所示.13.【答案】因为105ACB Ð=°,所以18010575ACF Ð=°-°=°.又因为10CAD Ð=°,所以180751095AFC Ð=°-°-°=°.所以95DFE AFC Ð=Ð=°.又ABC ADE △≌△,所以AC AE =,105AED ACB Ð=Ð=°,B D Ð=Ð,所以75AEC ACE Ð=Ð=°.所以1057530DEF AED AEC Ð=Ð-Ð=°-°=°.所以180180953055D DFE DEF Ð=°-Ð-Ð=°-°-°=°.所以55B D Ð=Ð=°.14.【答案】答案不唯一,如图所示,三种拼法仅供参考.15.【答案】(1)如图所示.(2)建立如图所示的平面直角坐标系,222A B C △各顶点的坐标分别为()25,2A ,()21,4B ,()23,1C .。
人教版九年级数学上册综合检测试卷(全册)【有答案】

人教版九年级数学上册综合检测试卷(全册)考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.一元二次方程的解是()A. B.C.无解D.或2.一台机器原价万元,如果每年的折旧率是,两年后这台机器的价格为万元,则与的函数关系式为()A. B.C. D.3.下列命题中正确的是()A.过圆心的线段叫做圆的直径B.面积相等的两个圆是等圆C.大于半圆的弧叫劣弧D.平分弦的直径垂直于这条弦4.如图,在方格纸中的经过变换得到,正确的变换是()A.把向右平移格B.把向右平移格,再向上平移格C.把绕着点顺时针方向旋转,再右平移格D.把绕着点逆时针方向旋转,再右平移格5.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数相差的概率是()A. B. C. D.6.关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B.C.且D.且7.已知关于的方程的两个根分别是和,则和的值分别是()A.,B.,C.,D.,8.在半径为的圆中,长为的弦所对的圆心角的度数是()A. B. C. D.9.同时掷两个质地均匀的骰子,两个骰子向上一面的点数相同的概率是()A. B. C. D.10.一条排污水管的横截面如图所示,已知排污水管的横截面圆半径,横截面的圆心到污水面的距离,则污水面宽等于()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如图,在平面直角坐标系中,是直角三角形,两条直角边的长分别是,.先将绕原点逆时针旋转得到,然后继续将绕原点逆时针旋转得到,则点的坐标是________,点的坐标是________.12.如果函数的图象是抛物线,那么这个抛物线的顶点坐标是________.13.为了庆祝中华人民共和国成立周年,同学们通过互送贺卡来表示喜悦的心情.已知某班的一个数学学习小组一共送出卡片张,则此小组有学生________人.14.如图,在中,,,,现将绕点逆时针旋转得到,则阴影部分的面积为________.15.已知的周长为,若,则点在________;若,则点在________;若,则点在________.16.已知的半径是,圆心到直线的距离是,则直线与的位置关系是________.17.一个扇形的圆心角为,这个扇形的弧长是,则这个扇形的面积是________.18.如图,中,点关于点的对称点是点________.19.某玩具店进了一箱黑白两种颜色的塑料球个(除颜色外都相同),为了估计两种颜色的球各有多少个,将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子里,多次重复上述过程后,发现摸到黑球的频率在附近波动,据此可以估算黑球的个数约为________个.20.如图,给出了二次函数的图象,对于这个函数有以下结论:① ;② ;③ ;④ ;⑤ ;⑥ ,其中正确的有________(填序号)三、解答题(共 8 小题,共 60 分)21.(16分)解方程:.22.(6分) 如图,在平面直角坐标系中,的顶点、、.作出关于原点对称的;作出绕点顺时针方向旋转后得到的;求出在的变换中点所经过路径的长.23.(6分) 已知二次函数(为常数).若该二次函数的图象与两坐标轴有三个不同的交点,求的取值范围;已知该二次函数的图象与轴交于点和点,与轴交于点,顶点为,若存在点使得与面积相等,求的值.24.(6分)如图,在中,,,以为直径的圆交于,交于,求图中阴影部分的面积.25.(6分)某商场经营某种品牌的玩具,购进时的单价是元,根据市场调查发现:在一段时间内,当销售单价是元时,销售量是件,而销售单价每涨元,就会少售出件玩具.若商场要获得元销售利润,该玩具销售单价应定为多少元?售出玩具多少件?26.(6分) 已知关于的方程.求证:无论取任何实数时,方程总有实数根;当抛物线(为正整数)图象与轴两个交点的横坐标均为整数,求此抛物线的解析式;已知抛物线恒过定点,求出定点坐标.27.(6分) 如图,在足够大的空地上有一段长为米的旧墙,某人利用旧墙和木栏围成一个矩形菜园,其中,已知矩形菜园的一边靠墙,另三边一共用了米木栏.(1)若,所围成的矩形菜园的面积为平方米,求所利用旧墙的长;(2)求矩形菜园面积的最大值.28.(8分) 研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.盒中红球、黄球各占总球数的百分比分别是多少?盒中有红球多少个?答案1.D2.A3.B4.D5.B6.C7.A8.C9.B10.A11.12.13.14.15.内上外16.相切17.18.19.①④⑤⑥21.解:)方程整理得:,这里,,,∵ ,∴,∴,;分解因式得:,可得或,解得:,.移项得,��开平方得,,移项得,,.∵,∴,∴,∴.22.解:如图所示:如图所示:弧的长.23.解:由题意可得,该二次函数与轴有两个不同的交点,也就是当时,方程有两个不相等的实数根,即,所以,.又因为该二次函数与两个坐标轴有三个不同的交点,所以.综上,若该二次函数的图象与两坐标轴有三个不同的交点,的取值范围为且.因为点在该二次函数图象上,可得,.所以该二次函数的关系式为,可得.由,可得,.若点使得与面积相等,可得点、到的距离相等,此时,.设过点、的直线的函数关系式为,即解得设过点、的直线的函数关系式为,即,解得.即,当时,,即.24.解:连接、、,∵ ,,∴ ,(三线合一)∵ (同弧所对的圆周角相等),∴ ,∴,即阴影部分面积之和即为,∵ (直角三角形斜边上的中线等于斜边的一半),∴∴ ,∴相似比,,,∴阴影部分面积为:.25.解:设该玩具销售单价应定为元,则售出玩具件,根据题意得:,整理得:,解得:,.当时,;当时,.26.证明:①当时,方程为,所以,方程有实数根,②当时,∵ ,即,∴无论取任何实数时,方程总有实数根;解:令,则,解关于的一元二次方程,得,,∵二次函数的图象与轴两个交点的横坐标均为整数,且为正整数,∴ .∴该抛物线解析式为;依题意得恒成立,即恒成立,则,解得或.所以该抛物线恒过定点、.27.设,则,根据题意得,解得,,当时,,不合题意舍去;当时,,答:的长为;设,∴,当时,则时,的最大值为;当时,则当时,随的增大而增大,当时,的最大值为,综上所述,当时,的最大值为;当时,的最大值为.28.红球占,黄球占;由题意可知,次摸球实验活动中,出现有记号的球次,∴总球数为,∴红球数为,答:盒中红球有个.。
九年级中考数学复习综合试卷(七)

九年级中考数学复习综合试卷(七)一. 选择题1.-6的相反数可以表示成( )A .-(+6)B .+(-6)C .-(-6)D .-(-16)2.下列实数中的无理数是( )A .-13 B .π C .0.57 D .2273.视力表中的字母“E ”有各种不同的摆放方向,下列不是轴对称图形的是( )4.一个几何体的三视图如右图所示,则这个几何体是( )5.方程2x =3x -2的解为( ) A .x =2 B .x =-4 C .x =-2 D .无解6.在下列生活实例中:①在植树时,只要定出两个树坑的位置,就能使同一行树坑在一条直线上;②在正常情况下,射击时要保证瞄准的一只眼和两个准星在一条直线上,才能射中目标;③从甲地到乙地,原来是绕山而过,如今穿山修了一条笔直的隧道,节约了路程;④从A 地到B 地架设电线,总是尽可能沿着线段AB 架设.其中能用“两点之间,线段最短”的数学依据来解释的现象有( )A .①③ B .②③ C .③④ D .②④7.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明还需要知道这11名同学成绩的( )A .平均数B .中位数C .众数D .方差 8.如图,在△ABC 中,进行如下操作:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧分别相交于点M ,N ;②作直线MN ,交线段AC 于点D ;③连接BD.则下列结论正确的是( )A .BD 平分∠ABCB .BD ⊥AC C .△ABD ≌△CBD D .AD =CD第8题图 第9题图 第11题图9.如图,AB 是⊙O 的直径,半径OC ⊥AB ,点D 是ACB ︵上的动点(不与A 、B 、C 重合),DE ⊥OC ,DF ⊥AB ,垂足分别是E 、F ,则EF 长度( )A .变大B .变小C .不变D .无法确定10.将正整数按如图所示的位置顺序排列,根据图中的排列规律,2020应在( )A .A 位B .B 位C .C 位D .D 位11.如图,在矩形ABCD 中,AD =6,AB =10,一个三角形的直角顶点E 是边AB 上的一动点,一直角边过点D ,另一直角边与BC 交于点F ,若AE =x ,BF =y ,则y 关于x 的函数关系的图象大致为( )二、填空题12.一种细菌的半径用科学记数法表示为3.68×10-5米,则这个数据可以写成____________. 13.如图所示,四边形ABCD 中残缺∠C ,经测量得∠A =110°,∠D =75°,∠1=45°,则这个四边形残缺前的∠C 的度数为________.第13题图 第14题图 第15题图 14.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4 m ,宽为2 m .为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宣传画上世界杯图案的面积为________m 2.15.如图,A 、B 、C 三点在同一条直线上,∠A =∠C =90°,AB =CD ,请你添加一个适当的条件:________,使得△EAB ≌△BCD. 三、解答题16.(6分)计算:(2018-π)0+(12)-2-|-3|+(-1)3.17.(6分)计算:(5m +2)(5m -2)-(3m +1)(2m -1).18.(7分)随着天气的逐渐炎热(如图1),遮阳伞在我们的日常生活中随处可见.如图2所示,遮阳伞立柱OA 垂直于地面,当将遮阳伞撑开至OD 位置时,测得∠ODB =45°,当将遮阳伞撑开至OE 位置时,测得∠OEC =30°,且此时遮阳伞边沿上升的竖直高度BC 为20 cm .若遮阳伞撑开至OE 位置时,伞下阴凉面积最大,求此时伞下半径EC 的长.(结果保留根号)19.(7分)如图,一次函数y=kx+b的图象经过点A(0,3)和点B(2,0),以线段AB为边在第一象限内作等腰直角△ABC,使∠BAC=90°.(1)求一次函数的解析式;(2)求出点C的坐标.20.(8分)暑假期间,为激发同学们的学习热情,王华所在的学校组织全校三好学生分别到A,B,C,D四所全国重点学校参观(每个学生只能去一处),王华很高兴她也能够前往,学校按定额购买了前往四地的车票.如图是未制作完成的车票种类和数量的条形统计图和扇形统计图.请根据以上信息回答:(1)本次参加参观的学生有100人,将条形统计图补充完整;(2)若学校采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么王华抽到去B地的概率是多少?(3)已知A,B,C三地车票的价格如下表,去D地花费的车票总款数占全部车票总款数的413,试求D地每张车票的价格.21.(8分)如图,在Rt△ABC中,∠BAC=90°,CD平分∠ACB,交AB于点D,以点D为圆心,DA为半径的圆与AB相交于点E,与CD交于点F.(1)求证:BC是⊙D的切线;(2)若EF∥BC,且BC=6,求图中阴影部分的面积.22.(10分)春漫三月,春茶飘香,重庆市永川区某茶叶基地碧绿连绵、碧浪汹涌,株株茶树冒出了新绿,此茶叶基地生产永川秀芽A,B两个品种,今年A品种每千克售价80元,B品种每千克售价100元,该地茶农今年收获A ,B 两个品种共500吨,其中A 品种的产量不超过B 品种产量的9倍.(1)该茶农今年收获B 品种至少多少吨?(2)该茶农去年将A ,B 两个品种的茶叶全部运往市场销售,而今年将收获的A ,B 两个品种的茶叶全部放在网店销售,去年A ,B 的总产量与今年相同,且两年都全部售完.今年B 品种的销量为(1)中B 品种的最低产量,去年B 品种的市场销量比今年少2m%,售价比今年高m 2%,去年A 品种的售价与今年相同.去年两个品种的茶叶向市场的运输成本一共为2050000元,总利润比今年少m2%,求m 的值.23.(11分)如图1,△ABC 为等边三角形,AB =6,直角三角板DEF 中∠F =90°,∠FDE =60°,点D 在边BC 上运动,边DF 始终经过点A ,DE 交AC 于点G. (1)求证:△ABD ∽△DCG ;(2)设BD =x ,若CG =43,求x 的值;(3)如图2,当D 运动到BC 中点时,点P 为AD 上一动点,连接CP ,将线段CP 绕点C 逆时针旋转60°得到CP ′,连接BP ′,DP ′.①求∠CBP ′的度数; ②求DP ′的最小值.24.(12分)已知抛物线y =x 2+bx +c 经过点A(4,-5).(1)如图,过点A 分别向x 轴、y 轴作垂线,垂足分别为B 、C ,得到矩形ABOC ,且抛物线经过点C .①求抛物线的解析式.②将抛物线沿直线x =m(2>m>0)翻折,分别交线段OB 、AC 于D ,E 两点.若直线DE 刚好平分矩形ABOC 的面积,求m 的值.(2)将抛物线旋转180°,使点A 的对应点为A 1(m -2,n -4),其中m ≤2.若旋转后的抛物线仍然经过点A ,求旋转后的抛物线顶点所能达到最低点时的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学综合试卷
一. 选择题(本题共10小题,每小题3分,共30分,请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)
1、-3的倒数是 ( ) A. 31 B. -3 C. -31 D. 3
2、 去年我省经济稳定增长,人民生活逐步提高。
2009年浙江省国民生产总值达21486 亿元 ,人均42214元。
21486 亿元 用科学记数法(保留3个有效数字)表示应为 ( )
A. 2.14×104亿元
B. 2.15×105亿元
C. 2.15×104亿元
D. 21.5×103亿元
3、下列运算正确的是 ( )
A. a 2·a 3= a 6
B. (a 3)3= a 9
C.(2 a 2)2 =2 a 4
D. a 8÷a 2= a 4
4、 图中几何体的主视图是 ( )
A. B. C. D.
5、分式方程1x-2 —1 = 12-x
的解是 ( ) A .0 B .2 C .4 D .无解
6.在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD ,点A 的坐标是(0,2).现将这张胶片平移,使点A 落在点A ′(5,﹣1)处,则此平移可以是( )
A . 先向右平移5个单位,再向下平移1个单位
B . 先向右平移5个单位,再向下平移3个单位
C . 先向右平移4个单位,再向下平移1个单位
D . 先向右平移4个单位,再向下平移3个单位
7、以下四个图案中,既是轴对称图形又是中心对称图形的有 ( )
A.4个 B.3个 C.2个 D.1个
8、将半径为30cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( )
A .10cm
B .20cm
C .30cm
D .60cm
9、在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中(如图),然后匀速向上提起,直至铁块完全露出水面一定高度,则能反映弹簧秤的读数y (单位: )与铁块被提起的高度x (单
正面
位:cm )之间的函数关系的图象大致是 ( )
10、如图,直角三角形纸片ABC 中,AB =3,AC =4,D 为斜边BC 中点,第1次将纸片折叠,使点A 与点D 重合,折痕与AD 交与点P 1;设P 1D 的中点为D 1,第2次将纸片折叠,使点A 与点D 1重合,折痕与AD 交于点P 2;设P 2D 1的中点为D 2,第3次将纸片折叠,使点A 与点D 2重合,折痕与AD 交于点P 3;…;设P n ﹣1D n ﹣2的中点为D n ﹣1,第n 次将纸片折叠,使点A 与点D n ﹣1重合,折痕与AD 交于点P n (n >2),则AP 6的长为( )
A .5
12532⨯ B .69352⨯ C .614532⨯ D .711352⨯
二、填空题 (本大题共6小题,每小题4分,共24分)
11、因式分解:2x 2-8= .
12、在一次校园朗诵比赛中,八位评委给小丽打分的成绩如下:8.6,9.7,8.5,8.8,
8.9,9.6,8.6,7.2,则这组数据的中位数是 。
13、不等式2x-5>0的最小整数解是 。
14、如图,在直角坐标系xoy 中,点A 是反比例函数x
k y =图象上一点,过A 作AB ⊥y 轴于点B ,OB=2,tan ∠AOB=2
3,则反比例函数的解析式为 。
15、将一张长9cm 宽3cm 的矩形纸片沿对角线折叠,则重叠部分的面积为 。
y
x B A O (第14题) (第15题) (第16题)
16、如图,矩形ABCD 中,AB =12cm ,BC =18cm ,直线PQ 从AB 出发,以1cm/s 的速度向CD 匀速平移,与AD ,BC 分别交于P ,Q 两点;点M 从点C 出发,以3cm/s 的速度沿C →D →A →B →C 方向逆时
A
B
C D F E M
Q P D C
B A O y x O y x O y x O y
x
A. B. C. D. (第9题)
针运动,点M与直线PQ同时出发,当点M与点Q相遇时,点M与直线PQ都停止运动. 设△PQM的面积为S(cm2),那么当t =▲ s时,S=60cm2.
三、解答题(17、18、19题每题6分,20、21题每题8分,22、23每题10分,24题12分)
17、(本题6分)
计算:
(1)丨﹣5|+﹣32 (2)(x+1)2﹣x(x+2)
18、(本题6分)
ABCD中,E、F分别是BC、AD的中点。
(1)求证:△ABE≌△CDF
(2)连AC,当四边形AECF是菱形时,△ABC应满足条件(只需填一个条件即可)
19、(本题6分)
小明手中有4张背面相同的扑克牌:红桃A、红桃2、黑桃A、黑桃2。
先将4张牌背面朝上洗匀,再让小刚抽牌。
(1)小刚从中任意抽取一张扑克牌,抽到红桃的概率为。
(2)小刚从中任意抽取两张扑克牌。
游戏规则规定:小刚抽到的两张牌是一红、一黑,则小刚胜,否则小明胜,问该游戏对双方是否公平。
(利用树状图或列表说明)
20、(本题8分)
如图,在网格中建立直角坐标系,Rt△ABC的顶
点A、B、C都是网格的格点(即为小正方形顶点)
(1)在网格中分别画出将△ABC向右平移2格的
△A′B′C′,和再将△A′B′C′绕原点O按顺时针
方向旋转90º后的△A′′B′′C′′。
(2)设小正方形边长为1,求A在两次变换中所经过的路径总长。
21、(本题8分)
O
A
B
F
x
y
B C
A
保护地球,人人有则。
为妥善应对气候变化, 中国作为负责任的发展中国家,主张通过切实有效的国际合作,共同应对气候变化。
中学生作为全社会的一员,要加快形成低碳绿色的生活方式和消费模式,为应对气候变化做出自己的努力。
在今年世界气候大会上,中国国家总理温家宝郑重向全世界公布了中国的碳减排目标,到2020年,我国单位国内生产总值二氧化碳排放比2005年下降40%-45%。
风能是一种清洁能源,近几年我国风电装机容量迅速增长。
下图是2003年---2009年中国风力发电装机容量统计图(单位:万千瓦),观察统计图解答下列问题。
2003年---2009年中国风力发电装机容量统计图(单位:万千瓦)
500
1000
1500
2000
2500
3000
2003200420052006200720082009
(1) 2007年,我国风力发电装机容量已达 ;
(2)从2003年到2009年,我国风力发电装机容量平均每年增长 万千瓦;
(3)设2007年到2010年我国风力发电装机容量年平均增长率相同,求2010年我国风力发电装机容量。
(结果精确到1万千瓦,参考数据:32.24.5≈)
22、(本题10)
某工厂计划为某山区学校生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m .
(1)有多少种生产方案?
(2)现要把生产的全部桌椅运往该学校,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)
(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.
23.小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索。
【思考题】如图,一架2.5米长的梯子AB 斜靠在竖直的墙AC 上,这时B 到墙C 的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B 将向外移动多少米?
(1)请你将小明对“思考题”的解答补充完整:
解:设点B 将向外移动x 米,即BB 1=x ,
则B 1C =x +0.7,A 1C =AC ﹣AA 1=222.50.70.42--=
而A 1B 1=2.5,在Rt △A 1B 1C 中,由2221111B C A C A B +=得方
程 ,
解方程得x 1= ,x 2= ,
∴点B 将向外移动 米。
(2)解完“思考题”后,小聪提出了如下两个问题:
【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
【问题二】在“思考题”中,梯子的顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离,有可能相等吗?为什么?
请你解答小聪提出的这两个问题。
24.在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.
(1)如图1,当m=时,
①求线段OP的长和tan∠POM的值;
②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;
(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.
①用含m的代数式表示点Q的坐标;
②求证:四边形ODME是矩形.。