人教版初一年级初中数学公式

合集下载

人教版初中数学公式大全

人教版初中数学公式大全

,a click to unlimited possibilities
人教版初中数学公式
目录
01
代数公式
02
几何公式
03
函数公式
04
统计与概率公式
01
代数公式
乘法公式
平方差公式:(a+b)(a-b)=a^2-b^2
完全平方公式:(a+b)^2=a^2+2ab+b^2
平方和公式:(a+b)^2=a^2+b^2+2ab
添加标题
添加标题
添加标题
添加标题
推导过程:通过割补法,将平行四边形转化为矩形
公式:底乘高
应用场景:求解实际问题中平行四边形的面积
注意事项:公式适用于任何底和高的平行四边形,但高必须垂直于底
矩形面积公式
公式:矩形面积 = 长 × 宽
推导过程:利用矩形对角线性质,将矩形划分为两个三角形,再利用三角形面积公式推导得出。
单击此处添加标题
常用方法:提公因式法、公式法、分组分解法等
单击此处 a^(mn)
积的乘方规则:(ab)^n = a^n * b^n
幂的乘法法则:a^m * a^n = a^(m+n)
幂的除法法则:a^m / a^n = a^(m-n)
分式的运算法则
添加标题
添加标题
添加标题
添加标题
分式的除法法则:乘以倒数
分式的乘法法则:分子乘分子,分母乘分母
分式的加减法则:同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减
分式的混合运算法则:先算乘方、开方,再算乘除,最后算加减,如果有括号,先算括号里面的
二次方程的解法

七年级数学公式大全表必背知识点

七年级数学公式大全表必背知识点

七年级数学公式大全表必背知识点一、代数1. 一元一次方程- 标准形式:ax + b = c- 解方程公式:x = (c - b) / a2. 一元一次不等式- 解不等式的方法:将不等式化为一元方程,然后解出值3. 一元二次方程- 标准形式:ax^2 + bx + c = 0- 解方程公式:x = (-b ± √(b^2 - 4ac)) / 2a4. 因式分解- 判断一个多项式是否能够因式分解的方法- 先将多项式分解为一次因式的乘积- 再判断每一个一次因式是否能够继续分解5. 公式:- (a + b)^2 = a^2 + 2ab + b^2- (a - b)^2 = a^2 - 2ab + b^2- a^2 - b^2 = (a - b)(a + b)二、几何1. 等腰三角形- 性质:两边相等,两底角相等- 面积公式:S = (底边长×高)/22. 直角三角形- 勾股定理:a^2 + b^2 = c^2- 三角函数公式:sinθ = 对边/斜边,cosθ = 邻边/斜边,tanθ = 对边/邻边3. 圆- 周长公式:C = πd,C = 2πr- 面积公式:S = πr^24. 平行四边形- 性质:对边相等,对角线互相平分- 面积公式:S = 底×高5. 三角形- 海伦公式:S = √[p(p-a)(p-b)(p-c)],其中p = (a + b + c)/2三、概率1. 事件的概率- 基本概率公式:P(A) = n(A)/n(S)- 互斥事件概率:P(A ∪ B) = P(A) + P(B)2. 条件概率- 条件概率公式:P(B|A) = P(A∩B)/P(A)四、统计1. 平均数- 算术平均数:平均数 = 总和/个数2. 中位数- 将一组数据从小到大排列,中间位置的数字就是中位数3. 众数- 一组数据中出现次数最多的数字- 众数可能有一个,也可能有多个以上便是七年级数学中常见的公式和必备知识点,希望同学们能够根据这些知识进行复习和总结,做到熟练记忆和灵活运用。

初一初所有数学公式

初一初所有数学公式

初一初所有数学公式数学公式1、正弦定理:三角形的两条相邻的边的长度都满足正弦定理,即:a/sin A = b/sin B = c/sin C2、余弦定理:三角形的两条相邻边的长度都满足余弦定理,即:a^2=b^2+c^2-2bc*cosA3、勾股定理:三角形的三条边都满足勾股定理,即:a^2+b^2=c^24、角平分线定理:所围四边形中,对角线的两条边的中点都满足角平分线定理,即:AB+BC=AC5、三角形统计定理:在三角形内任意点,B、C、D满足三角形统计定理,即:a AB+b BC+c CD=360°6、三角形四边形性质定理:在任意图形中,其内任意一个四边形,满足三角形四边形性质定理,即:四边形的对角相等。

7、正方形性质定理:长方形内所有边长都相等,满足正方形性质定理,即:对角长相等,且两个对角的中点就是中心。

8、平面空间三条边的定理:三角形的三条边都满足平面空间三条边的定理,即:a*b=c^29、梯形定理:对于任意三点构成的梯形,其内任意一点满足梯形定理,即:同侧两边的大边等于另一侧的差边之和。

10、勾股边长定理:对于一个等腰三角形,其内任意一点满足勾股边长定理,即:二边之和等于斜边的平方。

11、自然斜率定理:对于一条直线,其内任意一点满足自然斜率定理,即:该直线上所有点都具有相同的斜率。

12、极点定理:对于一个抛物线,其内任意一点满足极点定理,即:抛物线的形状取决与它的极点的值(x及y坐标的大小)。

13、椭圆定理:对于一个椭圆,其内任意一点满足椭圆定理,即:椭圆的长轴rao= 椭圆的短轴2a和对角线2c 的差值之和。

14、正比定理:对于两个线段,其内任意一点满足正比定理,即:两个獭段的长度比例相同。

初中数学公式大全(人教版)

初中数学公式大全(人教版)

初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

部编人教版七年级上册数学公式汇总

部编人教版七年级上册数学公式汇总

部编人教版七年级上册数学公式汇总一、基本公式1. 加法公式:- $a + b = b + a$:加法交换律- $(a + b) + c = a + (b + c)$:加法结合律- $a + 0 = a$:加法零元素- $a + (-a) = 0$:加法逆元素2. 减法公式:- $a - b = a + (-b)$:减法转化为加法3. 乘法公式:- $a \cdot b = b \cdot a$:乘法交换律- $(a \cdot b) \cdot c = a \cdot (b \cdot c)$:乘法结合律- $a \cdot 1 = a$:乘法单位元素- $a \cdot 0 = 0$:乘法零元素4. 除法公式:- $a \div b = \frac{a}{b}$:除法转化为乘法二、整数运算公式1. 整数加减乘除法公式:- $a + b = b + a$:整数加法交换律- $(a + b) + c = a + (b + c)$:整数加法结合律- $a + 0 = a$:整数加法零元素- $a + (-a) = 0$:整数加法逆元素- $a - b = a + (-b)$:整数减法转化为加法- $a \cdot b = b \cdot a$:整数乘法交换律- $(a \cdot b) \cdot c = a \cdot (b \cdot c)$:整数乘法结合律- $a \cdot 1 = a$:整数乘法单位元素- $a \cdot 0 = 0$:整数乘法零元素- $a \div b = \frac{a}{b}$:整数除法转化为乘法2. 整数绝对值:- $|a|$:整数a的绝对值三、平方公式1. 平方公式:- $(a + b)^2 = a^2 + 2ab + b^2$:完全平方公式- $(a - b)^2 = a^2 - 2ab + b^2$:完全平方公式- $(a + b)(a - b) = a^2 - b^2$:平方差公式2. 平方根公式:- $\sqrt{a^2} = |a|$:平方根定义- $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$:平方根乘法公式- $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$:平方根除法公式这些是部编人教版七年级上册数学公式的汇总。

人教版初中数学公式大全

人教版初中数学公式大全

人教版初中数学公式大全人教版初中数学公式大全人教版初中数学公式大全:1、同旁内角互补,两直线平行2、两直线平行,同位角相等3、两直线平行,内错角相等4、两直线平行,同旁内角互补5、定理三角形两边的和大于第三边6、推论三角形两边的差小于第三边7、三角形内角和定理三角形三个内角的和等于1808、推论1直角三角形的两个锐角互余9、推论2三角形的一个外角等于和它不相邻的两个内角的和10、推论3三角形的一个外角大于任何一个和它不相邻的内角11、全等三角形的对应边、对应角相等12、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等13、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等14、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等15、边边边公理(SSS)有三边对应相等的两个三角形全等相等30、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上31、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合32、定理1关于某条直线对称的两个图形是全等形33、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线34、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上35、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称36、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^237、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形38、定理四边形的内角和等于36039、四边形的外角和等于36040、多边形内角和定理n边形的内角的和等于(n-2)18041、推论任意多边的外角和等于36042、平行四边形性质定理1平行四边形的对角相等43、平行四边形性质定理2平行四边形的对边相等44、推论夹在两条平行线间的平行线段相等45、平行四边形性质定理3平行四边形的对角线互相平分46、平行四边形判定定理1两组对角分别相等的四边形是平行四边形47、平行四边形判定定理2两组对边分别相等的四边形是平行四边形48、平行四边形判定定理3对角线互相平分的四边形是平行四边形49、平行四边形判定定理4一组对边平行相等的四边形是平行四边形50、圆是定点的距离等于定长的点的集合51、圆的内部可以看作是圆心的距离小于半径的点的集合52、圆的外部可以看作是圆心的距离大于半径的点的集合53、同圆或等圆的半径相等54、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆55、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线56、到已知角的两边距离相等的点的轨迹,是这个角的平分线57、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线58、定理不在同一直线上的三点确定一个圆。

初一初中数学常用公式与定理

初一初中数学常用公式与定理

初一初中数学常用公式与定理数学作为一门基础学科,在初一和初中阶段,对于学生的发展至关重要。

掌握数学常用公式与定理,不仅可以提高数学分析和解决问题的能力,还有助于培养逻辑思维和数学思维能力。

下面是一些初一和初中数学常用的公式与定理以及它们的应用。

1. 代数运算公式代数运算是数学的基础,掌握一些常用的代数运算公式对于解决复杂的代数问题非常有帮助。

下面是一些常用的代数运算公式:1.1 加法和减法公式加法公式:(a+b)^2 = a^2 + 2ab + b^2减法公式:(a-b)^2 = a^2 - 2ab + b^21.2 乘法公式(a+b)(a-b) = a^2 - b^21.3 平方差公式(a+b)^2 - (a-b)^2 = 4ab2. 几何定理几何是数学的重要分支之一,许多几何定理可以帮助我们理解图形的性质和解决几何问题。

下面是一些初一和初中常用的几何定理以及它们的应用:2.1 皮亚诺定理皮亚诺定理表明,在一个平面上的n个点中,任意两点之间的连线的条数等于C(n, 2),即C(n, 2) = n(n-1)/2。

这个定理可以应用于计算几何图形中的线段数量。

2.2 正弦定理正弦定理表明,在一个三角形ABC中,三个内角A、B、C的正弦值与对边a、b、c之间的关系为:sinA/a = sinB/b = sinC/c。

这个定理可以帮助我们计算三角形的边长或角度。

2.3 余弦定理余弦定理表明,在一个三角形ABC中,三个内角A、B、C的余弦值与对边a、b、c之间的关系为:cosA = (b^2 + c^2 - a^2)/(2bc)。

这个定理可以帮助我们计算三角形的边长或角度。

3. 概率与统计概率与统计是数学中的实用工具,在解决排列组合、概率等问题时起着重要作用。

下面是一些初一和初中常用的概率与统计公式:3.1 排列公式排列公式表示从n个不同元素中选取r个元素进行排列的总数,表示为P(n, r) = n!/(n-r)!。

人教版七年级数学公式及概念

人教版七年级数学公式及概念

人教版七年级数学公式及概念人教版七年级数学公式及概念小学和初中是学习数学的重要时期,因此,在这一时期要重视数学概念和公式。

人教版七年级数学公式及概念有:一、平面几何1. 距离公式:设A(x1, y1)、B(x2, y2)是平面上的两点,两点间的距离的公式为d=√((x1-x2)²+(y1-y2)²) 。

2. 面积公式:设图形是由直线段组成的闭合图形,面积的求解公式为1/2•∑|xi*yi+1-xi+1*yi|。

3. 体积公式:设体积为V,面积为A,高为h,那么体积的求解公式为V=Ah。

4. 角度公式:角度的求解公式为夹角的正弦值=两条线段的长度乘积的商。

二、集合1. 交集公式:设有两个集合A、B,它们的交集公式为A∩B={x|x∈A,x∈B}。

2. 并集公式:设有两个集合A、B,它们的并集公式为A∪B={x|x∈A or x∈B,x∈A and x∈B} 。

3. 集合函数公式:设集合A={a1,a2,…an}, B={b1,b2,…bn},集合函数公式为f(a1,a2,…an)=b1,b2,…bn。

三、基本数学概念1. 加法:两个数相加,结果是它们的和。

2. 减法:一个数减去另一个数,结果是它们的差。

3. 乘法:两个数乘以一起,结果是它们的积。

4. 除法:一个数除以另一个数,结果是它们的商。

5. 乘方:一个数乘以自身的次幂,结果是它们的幂。

6. 根号:平方根是一个数的平方形式,把它放到根号中,结果就是它的平方根。

7. 三角函数:三角函数是一组应用数学函数,用来描述直角三角形的边和角。

四、代数1. 平方差公式:设有n个数,它们的平方差公式为S2=1/n•Σ(xi-a)2,其中,a为这n个数的平均数,即a=1/n•Σxi 。

2.等差数列的前n项和公式:设等差数列的前n项和为权,其公式为Sn=n/2•(a1+an) 。

3. 二次方程的解公式:设二次方程的解为x1、x2,x1+x2= -b/a,x1 * x2=c/a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学常用的概念、公式和定理整数(包括:正整数、0、负整数)和分数(包括:有限小和无限环循小数)都是有理数.如:-3,-,0.231,0.737373…,,.无限不环循小数叫做无理数..如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.1.绝对值:a≥0丨a丨=a;a≤0-丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3.一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4.把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5.被开方数的小数点每移动2位,算术平方根的小数点就向相同方向移动1位;被开方数的小数点每移动3位,立方根的小数点就向相同方向移动1位.如:已知=0.4858,则-=48.58;已知=1.558,则-=0.1588.6.整式的乘除法:①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.②单项式乘以多项式,用单项式乘以多项式的每一个项.③多项式乘以多项式,用一个多项式的每一项分别乘以另一个多项式的每一项.④多项式除以单项式,将多项式的每一项分别除以这个单项式.7.幂的运算性质:①a m×a n=a m+n. ②a m÷a n=a m-n.③(a m)n=a mn. ④(ab)n=a n b n.⑤()n=n. ⑥a-n=n,特别:()-n=()n. ⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=(-)2=,(-3.14)0=1,(--)0=1.8.乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2. ②(a±b)2=a2±2ab+b2. ③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab, (a-b)2=(a+b)2-4ab.9.选择因式分解方法的原则是:先看能否提公因式.在没有公因式的情况下:二项式用平方-差公式或立方和差公式,三项式用十字相乘法(特殊的用完全平方公式),三项以上用分组分解法.注意:因式分解要进行到每一个多项式因式都不能再分解为止.10.分式的运算:乘除法要先把分子、分母都分解因式,并颠倒除式,约分后相乘;加减法应先把分母分解因式,再通分(不能去分母).注意:结果要化为最简分式.11.二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.12.一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=,其中=b2-4ac叫做根的判别式.当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有个相等的实数根;当Δ<0时,方程没有实数根.注意:当Δ≥0时,方程有实数根.③若方程有两个实数根x1和x2,则x1+x2=-,x1x2=,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).④以a和b为根的一元二次方程是x2-(a+b)x+ab=0.13.解分式方程(去分母或换元)和无理方程(两边平方或换元)必须检验.形如:-的方程组,用代入法解;形如:的方程组,先把一个方程分解为两个一次方程,再把这两个方程分别与另一个方程组合成两个方程组,再用代入法分别解这两个方程组.14.不等式两边都乘以或除以同一个负数,不等号要改变方向.15.平面直角坐标系:①各限象内点的坐标如图所示.②横轴(x轴)上的点,纵坐标是0;纵轴(y轴)上的点,横坐标是0.③关于横轴对称的两个点,横坐标相同(纵坐标互为相反数);关于纵轴对称的两个点,纵坐标相同(横坐标互为相反数);关于原点对称的两个点,横坐标、纵坐标都互为相反数.16.一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx又叫做正比例函数(y与x成正比例),图象必过原点.17.反比例函数y=(k ≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(从左向右降);当k<0时,双曲线在二、四象限(从左向右上升).因此,它的增减性与一次函数相反. 18.二次函数y=ax 2+bx+c(a ≠0)的图象叫做抛物线(c 是抛物线与y 轴的交点的纵坐标).①a>0时,开口向上;a<0时,开口向下.②顶点坐标是(-,),对称轴是直线x=-.特别:抛物线y=a(x -h)2+k 的顶点坐标是(h,k),对称轴是直线x=h.注意:求解析式的设法 ①已知三个点的坐标,则设为一般形式y=ax 2+bx+c;②已知顶点坐标(h,k),则设为顶点式y=a(x -h)2+k;③已知抛物线与x 轴的两个交点坐标(x 1,0)和(x 2,0),则设为交点式y=a(x -x 1)(x -x 2).19.抛物线与x 轴的位置关系: 对于抛物线y=ax 2+bx+c ①Δ<0时,它与x 没有交点.②Δ=0时,它与x 轴只有一个交点(与x 轴相切).③Δ>0时,它与x 轴有两个交点(x 1,0)和(x 2,0),其中x 1和x 2是方程ax 2+bx+c=0的两个根.20.统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n 个数x 1,x 2,…,x n ,那么:①平均数=(x 1+x 2+…+x n ).②方差S 2=[(x 1-)2+(x 2-)2+…+(x n-)2.(是整数时用)③S 2=[(x 12+x 22+…+x n 2)-n(-)2].注:各数据的数位较少或平均数是分数时,用此公式.④若将n 个数x 1,x 2,…,x n 各减去一个适当的数a,得到一组新数x 1,,x 2,,…,x n ,,那么原来那组数的方差S 2=这组新数的方差,平均数=a+,.方差越大,这组数据的波动就越大.通常用样-本方差去估计总体方差,用样本平均数去估计总体平均数.方差的算术平方根叫做标准差 (3)频率:①把一组数分成若干个小组,组距=(最大值-最小值)÷组数(求组数时,用收尾法取整数),这时,落在某小组内的数据的个数叫做这组的频数,每一小组的频数与数据总个数的比值叫做这一小组的频率.因此,各组的频率的和等于1.在频率分布直方图中,各小长方形的面积等于相应各组的频率.各小长方形的面积的和等于1.21.锐角三角函数:①设∠A 是Rt Δ的任一锐角,则∠A 的正弦:sinA=,∠A 的余弦:cosA=,∠A 的正切:tanA=,∠A 的余切:cotA=. 并且sinA=cosB,tgA=ctgB,-tgActgA=1,-sin 2A+cos 2A=1.0<sinA<1,-0<cosA<1,tgA>0,ctgA>0.∠A越大,∠A 的正弦和正切值越大,余弦和余切值反而越小. ②余角公式:sin(900-A)=cosA,cos(900-A)=sinA,-tg(900-A)=ctgA,ctg(900-A)=-tgA.③特殊角的三角函数值:-sin300=cos600=,sin450=cos450=-,sin600=cos300=,sin00=cos900=0,sin900=cos00=1,tg300=ctg600=,tg450=ctg450=1-,tg600=ctg300=-,tg00=ctg900=0. ④斜坡的坡度i==.设坡角为α,则i=tg α=.22.三角形:(1)在一个三角形中:等边对等角,等角对等边.(2).证明两个三再形全等的方法有:SAS,AAS,ASA,SSS,HL.(3)在Rt Δ中,斜边上的中线等于斜边的一半.(4)证明一个三角形是直角三角形的方法有:①先证明有一个角等于900.②先证明最长边的平方等于另两边的平方和.③先证明一条边的中线等于这条边的一半.(5)三角形的中位线平行于笫三边,并且等于笫三边的一半. (6)等腰三角形中,顶角的平分线与底边上的中线和高互相重合.23.四边形:(1)n 边形的内角和等于(n -2)1800,外角和等于3600. (2)平行四边形的性质:对边平行且相等;对角相等;邻角互补;对角线互相平分.(3)证明一个四边形是平行四边形的方法有:①先证两组对边平行.②先证两组对边相等. ③先证一组对边平行且相等.④先证两条对角线互相平分.⑤先证两组对角分别相等.(4)矩形的对角线相等且互相平分;菱形的对角线互相垂直平分,并且四条边相等.(5)证明一个四边形是矩形的方法有:①先证明它有三个角是直角.②先证它是平行四边形,再证它有一个角是直角或对角线相等.(6)证明一个四边形是菱形的方法有:①先证明它的四条边相等.②先证它是平行四边形,再证它有一组邻边相等或对角线互相垂直.(7)正方形既是矩形又是菱形,它具有矩形和菱形的所有性质.(8)梯形的中位线平行于两底并且等于两底之和的一半.(9)轴对称图形有:线段,角,等腰三角形,等腰梯形,矩形,菱形,正方形,正多边形,圆.中心对称图形有:线段,平行四边形,矩形,菱形,正方形,边数是偶数的正多边形,圆.24.证明两个三角形相似的方法有:①先证两组对应角相等.②先证两边对应成比例并且夹角相等.③先证三边对应成比例.④先证斜边和一条直角边对应成比例.相似三角形的性质:对应高的比,对应角平分线的比,对应中线的比,周长的比,都等于相似比.面积的比等于相似比的平方.25.平行切割定理:①如图1,DE∥BC=.②如图2,若AB∥CD∥EF则=-,=.26.射影定理:如图3,ΔABC中,若∠ACB=900,CD⊥AB,则:①AC2=AD·AB.②-BC2=BD·BA.③AD2=DA·DB.27.圆的有关性质:(1)垂径定理:如果一条直线具备以下五个性质中的任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径.(2)两条平行弦所夹的弧相等.(3)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它所对应的其余三组量都分别相等.(4)圆心角的度数等于它所对的弧的度数.(5)一条弧所对的圆周角等于它所对的圆心角的一半.(6)圆周角等于它所对的弧的度数的一半.(7)弦切角等于它所夹的弧的度数的一半.(8)同弧或等弧所对的圆周角相等.(9)在同圆或等圆中,相等的圆周角所对的弧相等.(10).900的圆周角所对的弦是直径.(11)圆内接四边形的对角互补,外角等于它的内对角.28.直线和圆的位置关系:(1)若⊙O的半径为r,圆心到直线L的距离为d,则:①d<r直线L和⊙O相交.②d=r直线L和⊙O相切.③d>r-直线L和⊙O相离.(2)切线的判定定理:经过半径外端并且垂直这条半径的直线是圆的切线.反之:切线垂直过切点的半径.(3)切线长定理,弦切角定理,相交弦定理及其推论,切割线定理及其推论.(4)三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角平分线的交点.三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.(5)RtΔ的内切圆的半径R内=-,任意多边形的内切圆的半径R内=.(6)圆外切四边形的一组对边的和等于另一组对边的和.29.圆和圆的位置关系:(1)设两圆半径为R和r,圆心距为d,则:①d>R+r两圆外离.②d=R+r两圆外切.③R-r<d<R+r(R≥r)两圆相交.④d=R-r两圆内切.⑤d<R-r两圆内含.30.圆中常作的辅助线:(1)两圆相交,常作公共弦,连心线.(2)两圆相切,常作公切线,连心线.(3)已知切线,常过切点作半径.(4)已知直径,常作直径所对的圆周角.(5)求解有关弦的问题,作弦心距.(6)弧的中点常和圆心连结.31.各顶点等分圆周正n边形各边相等,各角相等,且每个内角=度,中心角=外角=度.32.面积公式:①S正Δ=×(边长)2.②S平行四边形=底×高.③S菱形=底×高=×(对角线的积)④S圆=πR2.⑤C圆周长=2πR.⑥弧长L=.⑦S扇形==LR.⑧S圆柱侧=底面周长×高.⑨S圆锥侧=×底面周长×母线=πrR,并且2πr=(如上图).。

相关文档
最新文档