大学物理作业解答:5-3量子-第三章 原子 分子 固体
东南大学固体物理基础课后习题解答

《电子工程物理基础》课后习题参考答案第一章 微观粒子的状态1-1一维运动的粒子处在下面状态(0,0)()0(0)xAxe x x x λλψ-⎧≥>=⎨<⎩①将此项函数归一化;②求粒子坐标的概率分布函数;③在何处找到粒子的概率最大? 解:(1)由归一化条件,可知22201xAx edx λ∞-=⎰,解得归一化常数322A λ=。
所以归一化波函数为:322(0,0)()0(0)xxex x x λλλψ-⎧⎪≥>=⎨⎪<⎩(2)粒子坐标的概率分布函数为:32224(0,0)()()0(0)xx e x w x x x λλλψ-⎧≥>==⎨<⎩(3)令()0dw x dx =得10x x λ==或,根据题意,在x=0处,()w x =0,所以在1x λ=处找到粒子的概率最大。
1-2若在一维无限深势阱中运动的粒子的量子数为n 。
①距势阱的左壁1/4宽度内发现粒子概率是多少? ②n 取何值时,在此范围内找到粒子的概率最大?③当n→∞时,这个概率的极限是多少?这个结果说明了什么问题?解:(1)假设一维无限深势阱的势函数为U (x ),0x a ≤≤,那么在距势阱的左壁1/4宽度内发现粒子概率为:22440211()()(sin )sin422a a n n P x x dx x dx a a n ππψπ===-⎰⎰。
(2)当n=3时,在此范围内找到粒子的概率最大,且max 11()+46P x π=。
(3)当n→∞时,1()4P x =。
此时,概率分布均匀,接近于宏观情况。
1-3一个势能为221()2V x m x ω=的线性谐振子处在下面状态2212()()x m x Aeαωψα-=求:①归一化常数A ;②在何处发现振子的概率最大;③势能平均值2212U m x ω=。
解:(1)由归一化条件,可知2221x A e dx α+∞--∞=⎰,得到归一化常数4A απ=。
固体物理答案第三章1

Ae i ωt naq
Be i ωt naq
2n i ωt a b q 2
将 x 2n , x 2n 1 的值代回方程得到色散关系
β1 β 2 ω 2mM
2
m M
3.3 一维复式格子,原子质量都为m,晶格常数为a,任一个原
子与最近邻原子的间距为b,若原子与最近邻原子和次近邻原子 的恢复力常数为 β 和 β ,试列出原子的运动方程并求出色散 关系。
1
2
3
n-1
n a
n+1 n+2
N-1 N
解: 此题为一维双原子链。设第 n 1, n, n 1, n 2 个原子的 位移分别为 un1 , un , un1 , un 2 。第 n 1 与第 n 1 个原子属 于同一原子,第 n 与第 n 2 个原子属于同一原子,于是
m M
2
16mMβ1 β2 2 aq sin 2 2 β1 β 2
(2)(a)当上式取‘+’号时为光学波 β1 β 2 8mMβ1 β2 2 2 1 cosaq ωo m M m M 2 2mM β1 β 2
2 1 2 2 1 iqa 2 2 1 1 2
由于A和B不可能同时为零,因此其系数行列式必定为零,即
β β mω β β e 0 β β mω β β e
2 iqa 1 2 2 1 iqa 2 2 1 1 2
解上式可得
12 2 β1 β2 2m 4m2 16m β1 β2 sin2 qa 2 ω 2 2 2m β1 β2 2 12 β1 β2 1 1 4β1 β2 sin2 qa 2 m 2 β1 β2
《固体物理学》房晓勇主编教材-思考题解答参考03第三章_晶体振动和晶体的热学性质

第三章晶体振动和晶体的热学性质3.1相距为某一常数(不是晶格常数)倍数的两个原子,其最大振幅是否相同?解答:(王矜奉3.1.1,中南大学3.1.1)以同种原子构成的一维双原子分子链为例, 相距为不是晶格常数倍数的两个同种原子, 设一个原子的振幅A, 另一个原子振幅B, 由《固体物理学》第79页公式,可得两原子振幅之比(1)其中m原子的质量. 由《固体物理学》式(3-16)和式(3-17)两式可得声学波和光学波的频率分别为, (2). (3)将(2)(3)两式分别代入(1)式, 得声学波和光学波的振幅之比分别为, (4). (5)由于=,则由(4)(5)两式可得,1B A=. 即对于同种原子构成的一维双原子分子链, 相距为不是晶格常数倍数的两个原子, 不论是声学波还是光学波, 其最大振幅是相同的.3.2 试说明格波和弹性波有何不同?解答:晶格中各个原子间的振动相互关系3.3 为什么要引入玻恩-卡门条件?解答:(王矜奉3.1.2,中南大学3.1.2)(1)方便于求解原子运动方程.由《固体物理学》式(3-4)可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2)与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N 个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(《固体物理学》§3.1与§3.6). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.3.4 试说明在布里渊区的边界上()/q π=a ,一维单原子晶格的振动解n x 不代表行波而代表驻波。
大学固体物理试题及答案

·考试时间120 分钟试题Array班级学号姓名一、简答题(共65分)1.名词解释:基元,空间点阵,复式格子,密堆积,负电性。
(10分)2.氯化钠与金刚石是复式格子还是单式格子,各自的基元中包含多少原子?分别是什么原子?(6分)3.在固体物理中为什么要引入“倒空间”的概念?(5分)4.在晶体的物相分析中,为什么使用X光衍射而不使用红外光?(5分)5.共价键的定义和特点是什么?(4分)6.声子有哪些性质?(7分)7.钛酸锶是一种常见的半导体材料,当产生晶格振动时,会形成多少支格波,其中声学支和光学支格波各多少支?(5分)8.晶格振动的Einsten模型在高温和低温下都与实验定律符合吗?为什么?(5分)9.试画出自由电子和近自由电子的D~En关系图,并解释二者产生区别的原因。
(8分)10.费米能级E f的物理意义是什么?在绝缘体中费米能级处在导带、禁带、价带的哪个中?两块晶体的费米能级本来不同,E f1≠E f2,当两块晶体紧密接触后,费米能级如何变化?(10分)二、计算题(共35分)1.铜靶发射λ=0.154nm的X射线入射铝单晶(面心立方结构),如铝(111)面一级布拉格反射角θ=19.2º,试据此计算铝(111)面族的面间距d与铝的晶格常数a。
(10分)2.图示为二维正三角形晶格,相邻原子间距为a。
只计入最近邻相互作用,使用紧束缚近似计算其s能带E(k)、带中电子的速度v(k)以及能带极值附近的有效质量m*。
(15分)提示:使用尤拉公式化简3.用Debye模型计算一维单式晶格的热容。
(10分)参考答案一、简答题(共65分)1. (10分)答:基元:组成晶体的最小结构单元。
空间点阵:为了概括晶体结构的周期性,不考虑基元的具体细节,用几何点把基元抽象成为一点,则晶体抽象成为空间点阵。
复式格子:晶体由几种原子组成,但各种原子在晶体中的排列方式都是相同的(均为B格子的排列),可以说每一种原子都形成一套布拉菲子格子,整个晶体可以看成是若干排列完全相同的子格子套构而成。
(完整版)大学物理章节习题9原子结构固体能带理论

©物理系_2015_09《大学物理AII 》作业 No.9 原子结构 固体能带理论班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题:(用“T ”表示正确和“F ”表示错误)[ F ] 1.根据量子力学理论,氢原子中的电子是作确定的轨道运动,轨道是量子化的。
解:教材227.电子在核外不是按一定的轨道运动的,量子力学不能断言电子一定 出现在核外某个确定的位置,而只能给出电子在核外各处出现的概率。
[ F ] 2.本征半导体是电子与空穴两种载流子同时参与导电,N 型半导体只有电子导 电,P 型半导体只有空穴导电。
解:N 型半导体中依然是两种载流子参与导电,不过其中电子是主要载流子;P 型半导体也是两种载流子参与导电,其中的主要载流子是空穴。
[ T ] 3.固体中能带的形成是由于固体中的电子仍然满足泡利不相容原理。
解:只要是费米子都要遵从泡利不相容原理,电子是费米子。
[ T ] 4.由于P 型和N 型半导体材料接触时载流子扩散形成的PN 结具有单向导电性。
解:教材244.[ F ] 5.施特恩-盖拉赫实验证实了原子定态能级的存在。
解:施特恩-盖拉赫实验验证了电子自旋的存在,弗兰克—赫兹实验证实了原子定态能级的存在.二、选择题:1.下列各组量子数中,哪一组可以描述原子中电子的状态? [ D ] (A) n = 2,l = 2,m l = 0,21=s m (B) n = 3,l = 1,m l =-2,21-=s m(C) n = 1,l = 2,m l = 1,21=s m (D) n = 3,l = 2,m l = 0,21-=s m解:根据原子中电子四个量子数取值规则和泡利不相容原理知D 对。
故选 D2.与绝缘体相比较,半导体能带结构的特点是 [ D ] (A) 导带也是空带 (B) 满带与导带重合(C) 满带中总是有空穴,导带中总是有电 子 (D) 禁带宽度较窄解:教材241-242.3. 在原子的L 壳层中,电子可能具有的四个量子数(n ,l ,m l ,m s )是(1) (2,0,1,21)(2) (2,1,0,21-)(3) (2,1,1,21)(4) (2,1,-1,21-) 以上四种取值中,哪些是正确的? [ ] (A) 只有(1)、(2)是正确的 (B) 只有(2)、(3)是正确的 (C) 只有(2)、(3)、(4)是正确的 (D) 全部是正确的解:原子的L 壳层对应主量子数2=n ,角量子数可为2,1,0=l ,磁量子数可为2,1,0±±=l m ,自旋量子数可为21,21-=s m ,根据原子中电子四个量子数取值规则和泡利不相容原理知只有(2)、(3)、(4)正确。
原子核物理第三章课后习题答案

3-3. 60Co 是重要的医用放射性同位素,半衰期为5.26年,试问1g 60Co的放射性强度?100mCi 的钴源中有多少质量60Co解:放射性强度公式为:000.693,==t t A dN mA N e N N N e N N dt T Mλλλλλ--=-===其中,,,T 为半衰期,0A 231330.6930.69316.022*******.2636524360059.93384.1977810/1.13510t dN mA N e N N dt T M Ciλλλ-∴=-===⨯=⨯⨯⨯⨯⨯≈⨯≈⨯次秒 其中103.710/i C =⨯次核衰变秒,1039100 3.71010/i mC -=⨯⨯⨯⨯10010=3.7次核衰变秒,利用公式00.693t A dN mA N e N N dt T M λλλ-=-===,可知2390.6930.693 6.022*********.2636524360059.9338A m m A N T M ==⨯⨯=⨯⨯⨯⨯ 3.7解可得,-58.8141088.14m g g μ=⨯=3-5用氘轰击55Mn 可生成β-放射性核素56Mn ,56Mn 的产生率为8510/s ⨯,已知56Mn 的半衰期2.579h,试计算轰击10小时后,所生成的56Mn 的放射性强度。
解:利用放射性强度公式/(1)(12),P t t T A N P e P λλ--==-=-其中为核素的产生率。
可知生成的56Mn 的放射性强度为:/810/2.57988(12)510(12) 4.6610 4.6610t T A P Bq --=-=⨯⨯-≈⨯⨯次核衰变/秒=。
3-6已知镭的半衰期为1620a ,从沥青油矿和其他矿物中的放射性核素数目226()N Ra 与238()N U 的比值为73.5110-⨯,试求238U 的半衰期。
解:226Ra 和238U 为铀系放射性元素,2267238()=3.5110()N Ra N U -⨯∴子核半衰期远小于母核的半衰期,子核衰变快得多。
固体物理第三章习题PPT学习教案

2
2 vA
声学波的模式密度 2 L L
2 vA vA
q
2a
2a
第15页/共39页
16
声学波的热振动能
其中
EA
D 0
D()d e kBT 1
L vA
kBT
2
D 0
T
exxdx1.
x kBT , D
D , kB
D和D分别为德拜频率和德拜温度.德拜频率
可由下式
求得
L D D()d D L d LD
由于A和B不可能同时为零,因此其系数行列式必 定为零,即
1 2 m2 2 1eiqa
0
2 1eiqa
1 2 m 2
第8页/共39页
9
解上式可得 :
2
1 2
2m2
2m
4m2
16m2 1 2
1 2 2
sin 2
qa 2
1
2
1
2 m
1
1
0 0
kB
2L ( a
kBT )2
(e
e kBT d
kBT 1) 02
2
第27页/共39页
28
13. 对于一维简单格子,按德拜模型,求出晶格 热容,并讨论高低温极限。
第28页/共39页
29
[求解]
按照德拜模型,格波色散关系为=vq。由色散曲 线对称性可以看出,d区间对应两个同样大小的 波矢区间dq。2/a区间对应L/a个振动模式,单位 波矢空间对应有L/2个振动模式,d范围则包含
LkB2T
,
C
D T 0
x2exdx ex 1 2
是一常数.晶格的热容
CV CVO CVA.
大学物理第三章 分子动理论

乙
分子力的形成说明图
Epr
用分子力解释几个物理现象如物 质的三态等。
o
斥力 分子力
r0
r
引力
势能曲线
r
点评 相变与相变理论
物质的相态 固,液,气,等离子体
相变理论 相变温度 相变点 相变能 相变系数
第二节 理想气体的压强
气体对容器壁作用表现为气体的压强,此压强可以用气体动理 论加以微观解释。
本章研究内容:
1 宏观量 P,T与微观量间的统计关系.
2 微观量与微观量间的统计关系. 运用统计方法
名句赏析 小楼一夜听春雨, 深巷明朝卖杏花。
内容提要
宏观量压强和温度的微观解释 物质的内能 理想气体的速率分布规律 几个微观量的统计平均值
第一节 分子热运动的基本概念
一 分子运动论 1 宏观物体是由大量不停息地运动着的分子或原子组成的,称 为分子热运动。如在气体内部一分子一秒遭一百万次碰撞。1827年 被英国植物学家布朗证实:布朗运动,微粒受到周围分子的碰撞的 不平衡引起的。
第二编 热 学
返回
热学是研究热现象的规律。热现象是物质中大量分子热运 动的集体表现。本篇将介绍统计物理的基本概念和气体动理论的 基本内容以及热力学的基本规律。
气体动理论或称分子物理学的系统研究源于十八世纪以后, 伯努利,罗蒙罗索夫,道耳顿等开辟了奠基性的工作。十九世纪 六十年代,麦克斯韦,克劳修斯,玻耳兹曼等人在前人的基础上, 应用统计的方法,探索物质大量分子集体性质的一般统计规律, 从而阐明了热现象的本质。二十世纪初发展的量子理论,对上述 经典统计理论做了重要的修改和补充。
十八世纪初欧洲工业革命,尤其是蒸气机的应用,促进了热 力学的发展,建立了系统的计温学和量热学。经焦耳,迈尔,卡 诺等人系统的总结,建立了热力学第一定律。克劳修斯和开尔文 又独立的发现了热二律。形成了今天的热力学理论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1s2 2s2 2p6 3s2 3p6;
1s2 2s2 2p6 3s2 3p6 3d10 4s1;
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p5
1
3-3 试计算电子处在3d状态的轨道磁矩l 及lz的大小和自旋磁
矩 z和sz的大小.
解: e l 2m L
3.16nm
E
hv
Rhc Z
12
1 12
1 22
3 4
13.6Z
12eV
解得:Z=7, 氮(N)元素.
2
3-5 氢原子的2P态,在无外磁场时具有双层能级(精细结构)2p3/2, 2p1/2.问在外(弱)磁场中,这些态对应的能级分裂为几条,以能
级图示之.
解: 2P3/2在外(弱)磁场中,这态对应的能级分裂为4条:
第三章 原子 分子 固体
3-1 证明在原子内n,l相同的状态(子壳层)最多可容纳2*(2l+1)个 电子;n相同的状态(壳层)最多容纳2n2个电子.
解:
n1 2l 1 1 2n 1 n n2
l0
2
考虑到每),氩(Ar,Z=18),铜(Cu,Z=64),溴(Br,Z=35),原子 基态的电子组态.
Mj
p2 3/2
3/2 1/2
-1/2 -3/2
2P1/2在外(弱)磁场中,这态对应的能级分裂为2条:
p2 1/ 2
Mj
1/2
-1/2
3
ll 1 e
2me
0.92741023 J T1
2.45
0.5788
104
e
V
T1
JT-1 Am2
e
l2 2me ml ,
ml 2,1,0,1,2.
3-4 某元素X射线中Ka线波长为3.16nm,问该元素壳层和K壳层 的能量差是多少?该元素是什么元素.
解: E hc 1.24nm KeV 0.39KeV