2 传感器特性(精选)

合集下载

传感器的特性

传感器的特性

传感器的特性
1. 阶跃响应特性
给传感器输入一个单位阶跃函数信号:
传感器的特性
其输出特性称为阶跃响应特性,如图1-11所示。由图可衡 量阶跃响应的几项常见指标。
图1-11 传感器的阶跃响应特性
传感器的特性
(1)上升时间tr。传感器输出值由稳态值的10%上升到90%所需 的时间。
(2)响应时间ts。输出值达到允许误差范围±Δ%所经历的时间。 (3)超调量α。输出值第一次超过稳态值的峰高,即α=ymax-yc, 常用α/yc×100%表示。 上升时间tr、响应时间ts表征系统的响应速度性能,超调量α则表征 传感器的稳定性能。通过这两个方面可以比较完整地描述传感器的动态 特性。
表征传感器静态特性的主要参数有线性度、灵敏度、重复性、迟滞 和分辨力等。下面具体介绍几种传感器的静态特性指标。
传感器的特性
1. 线性度
线性度是传感器输出 量与输入量之间的实际关 系曲线偏离直线的程度, 又称非线性误差。
通常情况下,传感器的实 际静态特性输出是一条曲线而 非直线。在实际工作中,为使 仪表具有均匀刻度的读数,常 用一条拟合直线近似地代表实 际的特性曲线,线性度(非线 性误差)就是这个近似程度的 一个性能指标。
5. 分辨力
传感器的特性
传感器的分辨力是 在规定测量范围内所能 检测的输入量的最小变 化量,有时也用该值相 对满量程输入值的百分 数表示。
6. 稳定性
传感器的特性
稳定性有短期稳定性和长期稳定性之分。传感器 常用长期稳定性,它是指在室温条件下,经过相当长 的时间间隔,如一天、一月或一年,传感器的输出与 起始标定时的输出之间的差异。
如图1-9所示,正行程的最 大重复性偏差为ΔRmax1,反行程 的最大重复性偏差为ΔRmax2。

传感器的技术特点

传感器的技术特点

传感器的技术特点
1.灵敏度高:传感器可以非常敏锐地检测到周围环境的微小变化,例如温度、湿度、压力、光线等。

2. 响应速度快:传感器可以迅速地对环境变化做出反应,并将
其转化成电信号输出。

3. 精度高:传感器可以精确地测量环境参数,其测量误差通常
在0.1%以内。

4. 可靠性高:传感器通常采用高质量的材料和工艺制造,具有
较高的可靠性和稳定性。

5. 多功能性:传感器可以测量多种环境参数,例如温度、湿度、压力、光线、声音等,具有广泛的应用领域。

6. 简单易用:传感器通常具有简单的接口和操作方式,易于使
用和维护。

7. 小巧轻便:传感器通常非常小巧轻便,可以轻松安装在各种
设备和系统中。

综上所述,传感器具有灵敏度高、响应速度快、精度高、可靠性高、多功能性、简单易用和小巧轻便等技术特点,是现代工程和科技领域不可或缺的重要设备。

- 1 -。

第2章 传感器的基本特性特性

第2章 传感器的基本特性特性
第2章 传感器的基本特性
主要内容
2.1 传感器的静态特性 2.2 传感器的动态特性
概 述:
测量控制系统中传感器位于最前端,是决定系统性能的重要 部件,如灵敏度、分辨率、检出限、稳定性等,其中每项 指标都直接影响测量结果的好坏。 在工程设计中要获得最好的性/价比,需要根据具体要求 合理选择使用传感器,所以对传感器的各种特性、性能 应该有所了解。
产生不重复的原因与迟滞产生的原因基本相似,也存在不稳定问题。
(4) 灵敏度

灵敏度 反映单位输入变量能引起的输出变化量
定义:稳定条件下输出微小增量与输入微小增量的比值。 • 线性传感器灵敏度是直线的斜率,为常数
S = Δy / Δx
• 非线性传感器灵敏度为一变量
S = dy / dx
灵敏度单位,如:mV/mm (位移);mV/℃(温度);
将实函数变换到复变函数,从时域变换到频域。
• 传感器的传递函数由输出和输入的拉氏变换表示为
y ( s ) bm s m b m 1 s m 1 b0 H (s) x ( s ) a n s n a n 1 s n 1 a 0
• 传感器的输出拉氏变换
• 根据快变与慢变信号,分别讨论传感器的静态特性、动态特性。
2.1 传感器静态特性
☻ 传感器的各种特性是根据“输入—输出”关系来描述的。 当输入量(X)为静态或变化缓慢的信号时,输入输出关
系称静态特性。
静态特性可以用函数式表示为:(与时间无关)
Y f X
输入(X)

传感器系统 输出(Y)
动态测温
• 设环境温度为T0 ,水槽中水的温度 为T,而且 T>T0 ;

第2章传感器特性

第2章传感器特性
传感器原理及应用
第2章 传感器基本特性
迟滞误差由满量程输出的百分数表示:
2.1 传感器静态特性
为正、反 行程输出值之间的最大差值
产生迟滞误差的原因:主要是由于敏感元件材料的物理 性质缺陷造成的。如弹性元件的滞后,铁磁体、铁电体 在加磁场、电场作用下也有这种现象。 迟滞误差的存在使输入输出不能一一对应。
传感器原பைடு நூலகம்及应用
第2章 传感器基本特性
2.1 传感器静态特性
—— 最大非线性绝对误差 —— 满量程输出 —— 线性度
线性度 是表征实际特性与拟合直线不吻合的参数
由于实际传感器总有(高次项)非线性存在,输入输出关系总是非线性关系,使近似后的拟合直线与实际曲线存在偏差。这个最大偏差称为传感器的非线性误差。 通常用相对误差表示线性度
正弦信号
单位阶跃信号
传感器原理及应用
第2章 传感器基本特性
(1) 传递函数
2.2 传感器动态特性
输入激励 x(t)
输出响应 y(t)
传感器系统
为了分析动态特性,首先要写出传感器的数学模型求出传递函数。 已知外界有一激励施加于系统时,系统对外界有一响应;
传感器是个信号转换元件,假设是测力传感器,系统存在阻尼,弹性和惯性元件; 当输入量随时间变化时,在力作用下,输出不仅与位移x有关,还与速度dx/dt、加速度d2x/dt2有关。
第2章 传感器基本特性
2.2 传感器动态特性
多数传感器输入信号是随时间变化的,只是变化的快慢不同而已。缓慢变化的信号容易跟踪,变化较快的信号跟踪性能会下降。 一个动态性能好的传感器输入与输出应具有相同的时间函数,但除理想状态外,输出信号一定不会与输入信号有相同时间函数。 这种输入输出之间的差异就是动态误差。

传感器的基本特性与指标

传感器的基本特性与指标

传感器的基本特性与指标传感器是将一种被测量的非电信号转换成电信号的设备。

通过测量环境的物理量或化学量,传感器能够获得相关数据,并将其转换为信号,方便进行处理或者显示。

以下是传感器的基本特性和指标。

1. 灵敏度(Sensitivity):传感器的灵敏度指的是传感器输出信号相对于输入信号的变化率。

较高的灵敏度表明传感器对于被测量物理量的微小变化更加敏感。

2. 响应时间(Response Time):传感器的响应时间是指传感器从接受到输入信号到输出信号达到稳定值所需的时间。

较快的响应时间意味着传感器能够及时检测到被测量物理量的变化。

3. 动态范围(Dynamic Range):传感器的动态范围指的是传感器能够测量的最大和最小输入信号之间的范围。

较大的动态范围表示传感器能够测量较大范围内的信号。

4. 线性度(Linearity):传感器的线性度是指传感器的输出信号与输入信号之间的关系是否为线性关系。

较好的线性度意味着传感器的输出信号与被测量物理量存在较好的线性关系。

5. 稳定性(Stability):传感器的稳定性指传感器在相同条件下,长时间内输出信号的一致性。

较好的稳定性意味着传感器的输出信号相对较稳定,能够准确反映被测量物理量的变化。

6. 分辨率(Resolution):传感器的分辨率是指传感器能够检测和测量的最小变化量。

较高的分辨率表示传感器能够检测到较小的变化。

7. 器件偏置(Offset):传感器的器件偏置指在无输入信号时传感器的输出信号值。

较小的器件偏置意味着传感器的输出信号在无输入信号时接近于零,具有较低的偏差。

8. 温度影响(Temperature Influence):传感器在不同温度下的输出信号的变化情况。

较小的温度影响意味着传感器能够在不同温度条件下保持较稳定的输出信号。

9. 线性范围(Linear Range):传感器所能够线性测量的输入信号范围。

在线性范围内,传感器的输出信号与输入信号的关系为线性关系。

2.传感器的特性

2.传感器的特性

输出值YFS之比称为迟滞误差,用γH表示,即
H max H 100% YFS
(2-4)
y YF S
Hm ax
o
x
图2-5 迟滞特性
产生这种现象的主要原因是由于传感器敏感元件材料的 物理性质和机械另部件的缺陷所造成的,例如弹性敏感元件
弹性滞后、运动部件摩擦、传动机构的间隙、紧固件松动等。
y(t) 2
= 0
0.1 0.3 0.5 1 2
1
0.7
0
nt
图2-9 二阶传感器单位阶跃响应
许多医用传感器都是二阶传感器,如测血压及其他生理压力
的弹性压力传感器、加速度型心音传感器、微震颤传感器等
振动型传感器,它们都含有质量m 和弹簧k及阻尼器c,其物 理模型均可表示为弹簧—质量—阻尼—系统,其动态特性都 可用二阶微分方程来描述:
二阶系统的微分方程通常改写为
d 2 y (t ) dy(t ) 2 2 2 y ( t ) n n n kx(t ) 2 dt dt
式中:k——传感器的静态灵敏度或放大系数,k=b0/a0;
a1/(2 a0a2 ) ξ——传感器的阻尼系数,
ωn——传感器的固有频率, n a0a2
的系数均为零,则微分方程为
dy (t ) a1 a0 y (t ) b0 x (t ) dt
上式通常改写成为
dy (t ) y (t ) kx (t ) dt
一阶系统的微分方程式
式中:τ——传感器的时间常数,τ=a1/a0; k——传感器的静态灵敏度或放大系数,k=b0/a0。
Hahn R et al. Br. J. Anaesth. 2012;bja.aer499

传感器原理与应用课件 第2章 传感器的特性及标定

传感器原理与应用课件 第2章  传感器的特性及标定
温度测量:用于测量环境温 度、设备温度等
温度补偿:用于补偿温度对 测量结果的影响
温度校准:用于校准其他传 感器的测量结果
温度监测:用于监测食品、 药品等物品的温度变化
流量传感器应用
工业生产:用于测量液体、气体的流量,如石油、天然气、水等 环保监测:用于监测污水、废气排放,确保环保达标 医疗设备:用于监测血液、尿液等液体的流量,辅助诊断和治疗 汽车电子:用于监测燃油、冷却液等液体的流量,确保车辆正常运行
Part Four
传感器应用实例
压力传感器应用
汽车领域:用于监测轮胎压力、发动机油压等 医疗领域:用于监测血压、呼吸压力等 工业领域:用于监测液压系统、气压系统等 航空航天领域:用于监测飞行器气压、发动机压力等
温度传感器应用
温度报警:用于监测高温、 低温等异常情况
温度控制:用于控制加热、 制冷等设备
标定误差处理:选 择合适的标定方法、 优化标定参数、消 除环境干扰等
标定实例
温度传感器:通过测量温度变化,确定传感器的灵敏度和精度 压力传感器:通过测量压力变化,确定传感器的灵敏度和精度 加速度传感器:通过测量加速度变化,确定传感器的灵敏度和精度 湿度传感器:通过测量湿度变化,确定传感器的灵敏度和精度
位移传感器应用
工业自动化:用于控制机械设备的 位置和速度
汽车电子:用于检测汽车的行驶速 度和位置
添加标题
添加标题
添加标题
添加标题
医疗设备:用于测量患者的生理参 数,如血压、体温等
航空航天:用于测量飞行器的位置 和姿态
THANKS
汇报人:
重复性与灵敏度
重复性:传感器在相同条件下多次测量同一物理量的能力 灵敏度:传感器对被测量变化的响应能力 影响因素:温度、湿度、压力等环境因素 提高方法:选择合适的传感器材料和结构,优化信号处理算法

传感器的特性有哪些

传感器的特性有哪些

1、静态特性指传感器本身具有的特征特点。

研究的几个主要指标有:线性度、精度、重复性、温漂等,通俗讲就是:非线性误差大小、线性误差大小如何、多次应用好坏、受温度变化误差大小等等。

2、动态特性指传感器在应用中输入变化时,它的输出的特性。

用它对某些标准输入信号的响应来表示,即自控理论中的传递函数。

实际工作中,便于工程项目中的采集、控制。

3、稳定性稳定性表示传感器在一个较长的时间内保持其性能参数的能力。

理想的情况是不论什么时候,传感器的特性参数都不随时间变化。

但实际上,随着时间的推移,大多数传感器的特性会发生改变。

这是因为敏感器件或构成传感器的部件,其特性会随时间发生变化,从而影响传感器的稳定性。

4、线性度通常情况下,传感器的实际静态特性输出是条曲线而非直线。

在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。

拟合直线的选取有多种方法。

如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。

5、重复性重复性是指传感器在输入量按同一方向作全量程连续多次变动时所得特性曲线不一致的程度。

各条特性曲线越靠近,说明重复性越好,随机误差就越小。

6、灵敏度灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。

它是输出一输入特性曲线的斜率。

如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。

否则,它将随输入量的变化而变化。

灵敏度的量纲是输出、输入量的量纲之比。

例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm.当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。

7、分辨力分辨力是指传感器可能感受到的被测量的最小变化的能力。

也就是说,如果输入量从某一非零值缓慢地变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档