2019新人教版《数学广角──数与形》同步试题 【推荐】
2019-2020学年人教版小学六年级数学第一学期第8单元 数学广角-数与形 单元测试题及答案

人教版小学数学六年级上册第8单元数学广角-数与形单元测试题一、单选题(共10题;共20分)1.按规律填数:2,3,5,9,( ),33,……。
A. 13B. 15C. 17D. 302.,,,,…,这一列数中的第10个数应该是( )。
A. B. C. D.3.甲、乙、丙住同一个单元,甲家在一楼,乙家在三楼,丙住五楼。
昨天下午,甲先到乙家,等乙扫完地后,他们去找丙;刚上五楼就遇到抱着篮球的丙,于是三人立即一起下楼去玩。
下面( )比较准确地描述了甲的活动。
A. B. C.D.4.明明用石子摆出了图中的图案,根据规律判断第6个图案中石子总数为( )。
A. 12B. 16C. 20D. 245.周日早晨,张昊到离家800米的体育馆练习羽毛球,走路用了10分钟,然后用20分钟时间练习羽毛球,练完球后跑步回家,用了5分钟。
下图中,正确描述张昊离家时间和离家距离关系的是( )A. B.C. D.6.根据图中的信息,第六个图案所对应的式子是( )A. 7+1B. 62+1C. 72+1D. 82+17.十二生肖依次是:鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪。
小刚今年9岁,属狗,他姐姐今年13岁,应该属( )。
A. 马B. 兔C. 虎D. 羊8.按1,中的规律接下来应填( )A. B. C. D.9.观察图中每一个大三角形中白色的三角形的排列规律,则第5个大三角形中白色的三角形有()A. 82个B. 154C. 83个D. 121个10.下面每个图形都是由中的两个(可以相同)构成的。
观察各图形与它下面的数之间的关系.猜猜最右面图形下面的“?”表示( )。
A. 23B. 31C. 13D. 32二、填空题(共10题;共19分)11.观察下面的图形,想一想:后面的第15个方框里有________个点,第________个方框里有201个点。
12.认真观察右图中的阴影部分正中间的数与其他四个数的关系。
(1)中间数是,左边的数是________,右边的数是________,上面的数是________,下面的数是________。
六年级数学《数学广角──数与形》同步试题及答案解析

六年级数学《数学广角──数与形》同步试题及答案解析一、填空1.观察下面的点阵图规律,第(9)个点阵图中有()个点。
考查目的:数与形结合的规律;通过特例分析归纳出一般结论的方法。
答案:30。
解析:第(1)个图有1+2+3=6个点,第(2)个图有2+3+4=9个点,第(3)个图有3+4+5=12个点……第个图就有个点。
对于找规律的题目,首先应找出哪部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后,再利用规律求解。
2.先画出第五个图形并填空。
再想一想:后面的第10个方框里有()个点,第51个方框里有()个点。
考查目的:数与形结合的规律;利用规律解决问题。
答案:,1+4×4;37,201。
解析:分析图形,可得出第个图中共有个点,则第10个图共有1+4×(10-1)=37个点,第51个图共有1+4×(51-1)=201个点。
3.按下面用小棒摆正六边形。
摆4个正六边形需要()根小棒;摆10个正六边形需要()根小棒;摆个正六边形需要()根小棒。
考查目的:根据已知图形的排列特点及数量关系,推理得出一般的结论进行解答。
答案:21;51;。
解析:摆1个六边形需要6根小棒,可以写作5×1+1;摆2个六边形需要11根小棒,可以写作5×2+1;摆3个六边形需要16根小棒,可以写作5×3+1……由此可以推理得出一般规律,即摆个六边形需要根小棒。
4.学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图所示),请你结合这个规律,填写下表:考查目的:分析图形的变化规律并列出代数式。
答案:10;。
解析:一张方桌坐4人,每多一张方桌就多2个人,那么有4张方桌时就多坐了6人,总人数为4+6=10。
如果是张方桌,则所坐人数是。
5.数形结合是一种重要的数学思想,认真观察图形,然后完成下列问题。
;;;;。
考查目的:利用数形结合的思想探索规律。
人教版(六上)第八单元 数学广角——数与形 同步奥数(附答案)

第八单元 数学广角——数与形 同步奥数知识点:1.1+3+5+7+9+……+(2n-1)=n 22.2+4+6+8+10+……+2n=n ×(n+1)3.1+2+3+4+5+…(n-1)+n+(n-1)+…+5+4+3+2+1=n 24.平方差公式:a 2-b 2=(a+b)(a-b) 例题1.1=( )2 1+3=( )2 1+3+5=( )2(1)观察一下,上面的图形和对应的算式有什么关系?把算式补充完整。
(2)你能利用规律直接写一写吗?如果有困难,可以画图来帮助。
1+3+5+7=( )21+3+5+7+9+11+13=( )2=92练习1.先观察下面的图形和算式之间的关系,再填空。
OO O O OO O OO OO O O O O O O O O O O O O O O O O O O O (1) (2) (3) (4) 图(1):1=12 图(2):1+3=4=22 图(3):1+3+5=9=32图(4):1+3+5+7=( )=( )2 ……我会用:1+3+5+7+9+11+9+7+5+3+1=( )2+( )2=( ) 例题2.2=( )×( ) 2+4=( )×( ) ) (1)观察一下,上面的图形和对应的算式有什么关系?把算式补充完整。
(2)你能根据规律直接写一写吗?如果有困难,可以画图。
2+4+6+8=()×()2+4+6+8+10+12+14=()×()=10×11练习2.计算:2+4+6+8+10+……+98+100=()例题3.1+2+1=2 1+2+3+2+1=32 1+2+3+4+3+2+1=42 1+2+3+4+5+4+3+2+1=( )2练习3.计算:1+2+3+4+5+…+99+100+99+98+97+…+3+2+1=()例题4.下面每个图中最外圈各有多少个小正方形?22-02=() 42-22=() 62-42=() 82-62=()照这样接着画下去,第6个图形最外圈有()个小正方形;第n个图形最外圈有()个小正方形。
2019新人教版《数学广角──数与形》同步试题 【精编】

《数学广角──数与形》同步试题一、填空1.观察下面的点阵图规律,第(9)个点阵图中有()个点。
考查目的:数与形结合的规律;通过特例分析归纳出一般结论的方法。
答案:30。
解析:第(1)个图有1+2+3=6个点,第(2)个图有2+3+4=9个点,第(3)个图有3+4+5=12个点……第个图就有个点。
对于找规律的题目,首先应找出哪部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后,再利用规律求解。
2.先画出第五个图形并填空。
再想一想:后面的第10个方框里有()个点,第51个方框里有()个点。
考查目的:数与形结合的规律;利用规律解决问题。
答案:,1+4×4;37,201。
解析:分析图形,可得出第个图中共有个点,则第10个图共有1+4×(10-1)=37个点,第51个图共有1+4×(51-1)=201个点。
3.按下面用小棒摆正六边形。
摆4个正六边形需要()根小棒;摆10个正六边形需要()根小棒;摆个正六边形需要()根小棒。
考查目的:根据已知图形的排列特点及数量关系,推理得出一般的结论进行解答。
答案:21;51;。
解析:摆1个六边形需要6根小棒,可以写作5×1+1;摆2个六边形需要11根小棒,可以写作5×2+1;摆3个六边形需要16根小棒,可以写作5×3+1……由此可以推理得出一般规律,即摆个六边形需要根小棒。
4.学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图所示),请你结合这个规律,填写下表:考查目的:分析图形的变化规律并列出代数式。
答案:10;。
解析:一张方桌坐4人,每多一张方桌就多2个人,那么有4张方桌时就多坐了6人,总人数为4+6=10。
如果是张方桌,则所坐人数是。
5.数形结合是一种重要的数学思想,认真观察图形,然后完成下列问题。
;;;;。
考查目的:利用数形结合的思想探索规律。
答案:16,4;5;。
【精】 第8章 数学广角-数与形-人教版小学六年级数学上册单元测试题(解析版)

人教版小学六年级数学上册第8章数学广角-数与形单元测试题一.选择题(共8小题)1.5÷7的商用循环小数表示,这个小数的小数点后面第150位数字是()A.1 B.2 C.5 D.72.如图,按这样的规律第7个图形有()个点.A.21 B.25 C.28 D.293.一组有规律的数:1.1,1.2,1.3,1.4,1.5,□,1.7……框里的数是()A.0.5 B.1.5 C.0.6 D.1.64.同学们你们知道吗,在阿拉伯数字传入中国之前,我们的祖先也发明了记录数字的符号(如图),他们用横纵相间的方式来表示一个数.如:表示的是28.那:表示的是()A.211 B.226 C.271 D.2765.某种细胞开始有2个,一小时后分裂成4个并死去1个,二小时分裂成6个并死去1个,三小时后分裂成10个并死去1个,按此规律,五小时后细胞存活的个数是()A.31 B.33 C.35 D.376.9,18,27,(),45.A.66 B.36 C.557.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆…依此规律,第10个图形中小圆的个数为()A.136 B.114 C.112 D.1068.11÷9=1.222…,21÷9=2.333…,31÷9=3.444…,则算式61÷9的商是()A.4.555…B.5.666…C.6.777…D.7.888…二.填空题(共8小题)9.甲、乙两人在楼梯上玩石头剪子布的游戏,每次必须分出胜负.约定:每次胜者上5个台阶,负者下3个台阶.甲、乙二人同时在第50个台阶上开始玩,玩了25次后,甲的位置比乙高40个台阶.那么,甲胜了次.10.找规律.(1)2,12,22,,,.(2)95,75,55,,.11.观察算式37×3=111,37×6=222,那么37×9=,37×21=.12.找出下列算式的规律,并根据规律把算式填写完整.1×8+1=912×8+2=98123×8+3=9871234×8+4=9876……×8+9=13.玩一个搭积木游戏,每一阶段增多的积木的个数相同,所搭起来的积木的形状如图所示.要搭第n个阶段的积木的形状,一共需要积木个.现有积木数量171个,小红用上全部积木可以搭成第阶段的立体图形.14.观察如图,每个图形中间是白色小正方形,周围是灰色小正方形.照这样画下去,第10个图形中有个白色小正方形,个灰色小正方形.15.现有一堆建筑需要清运,它第一次运走总量的.第二次运走余下的,第三次运走余下的,第四次运走余下的,第五次运走余下的,依次规律继续运下去,当运走49次后,余下废料是总量的.16.在,,,,,,……第10个数为.三.判断题(共5小题)17.根据几个乘法算式找出的得数的规律,适用于所有具有同一特征算式的结果..(判断对错)18.如图,第五个点阵中点的个数是17个.(判断对错)19.将化成小数以后,小数点后第2008位上的数字是7..(判断对错)20.下面一组有规律排列的数:60、75、90、105、120,则1415不是这组数中的数..(判断对错)21.若一列数为:2,4,6,8,10,……96,98,100,则这列数的和是2550.(判断对错)四.应用题(共5小题)22.如图,小朋友们玩多米诺骨牌的游戏,假设每一张牌倒下去所用的时间是0.2秒,并且每一张骨牌倒下后会碰倒它后边的两张骨牌,那么照这样下去,1秒钟内所倒下的骨牌数是多少?23.小华把一些珠子放在桌子上的15个盒子中,已知盒子中的珠子数按盒子从左往右的顺序成一个等差数列,任一盒子中不止两颗珠子,并且从左数第8个盒子中有24颗珠子.请问:这15个盒子中一共有多少颗珠子?24.先计算前三题,再根据发现的规律直接写出其他算式的结果.1+3═=221+3+5═=321+3+5+7═=…1+3+5+7+…+15═=1+3+5+7+…+2017==25.用6根同样长的小棒可以摆成一个正六边形(如图①),再接着摆下去(如图②、③、④),图⑧一共需要多少根小棒?26.如图,第二个图形是由第一个图形连接三边中点而得到的,第三个图形是由第二个图形中间的一个三角形连接三边中点而得到的,以此类推……分别写出第二个图形、第三个图形和第四个图形中的三角形个数.如果第n个图形中的三角形个数为8057,n是多少?五.操作题(共2小题)27.根据下面几幅图的规律,接着怎么画?28.先找规律,再认真画规律.参考答案与试题解析一.选择题(共8小题)1.【分析】把5÷7=0.,这个小数的循环节是714285,有6位数,150÷6=25(个,所以小数部分的第150位数字是25的最后一个数字是5,据此解答.【解答】解:5÷7=0.,循环节是714285六个数字;150÷6=25(个),所以第150位数字是第25个循环节的最后一个数字,是5.故选:C.【点评】解题的关键是找出循环节及循环节的数字,用150除以循环节的位数得出是第几个循环节,没有余数就是循环节的最后一个数字,有余数的,余数是几就是循环节的第几个数字.2.【分析】认真观察图示,第1个图形点数是1,第2个图形点数是5,第3个图形点数是9,发现:相邻两个图形的点数相差是4,据此求出即可.【解答】解:第1个图形点数是1,第2个图形点数是5,第3个图形点数是9,则:第4个图形点数是:9+4=13,第5个图形点数是:13+4=17,第6个图形点数是:17+4=21,第7个图形点数是:21+4=25.故选:B.【点评】认真观察图画,得出点数的规律是解题关键.3.【分析】根据已知的6个数可得排列规律:从第1项开始每次递增0.1;据此解答.【解答】解:1.5+0.1=1.6故选:D.【点评】数列中的规律:关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.4.【分析】根据纵式与横式表示数的规律,百位上两竖表示2;十位上一竖下面两横,表示7;个位一横下面一竖表示6.所以表示276.【解答】解:表示276.故选:D.【点评】本题主要考查数与形结合的规律,关键根据所给图形发现规律,并运用规律做题.5.【分析】由题意可知,1个活细胞一小时后分裂成2个.1小时后3个活的、2小时后5个活的、3小时后9个活的……3、5、9……可看作项数为1、2、3……首项为3差分别为1、4、8……的数列.5﹣3=2=21、9﹣5=4=22、17﹣9=8=23……由此可以推出:第n项为2n+1.【解答】解:由分析所总结的规律:25+1=32+1=33(个)答:五小时后细胞存活的个数是33个.故选:B.【点评】解答此题的关键是根据小时数(可看作项数),与分成成的活细胞(可看作项)之间的关系找出规律,然后根据规律可求出任何小时(整数)后活细胞的个数.6.【分析】18﹣9=9,27﹣18=9,推测规律为:后一个数等于前一个数加9,以此计算,得出结果后,验证得数和其后面的数是否符合规律.【解答】解:由分析可知:第四项为27+9=3645﹣36=9所以,找到的规律是正确的.故选:B.【点评】本题主要考查了数列中的规律,需要学生具有较好的数感和推理能力.7.【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;则知第n个图形中小圆的个数为n(n+1)+4;由此把n=10代入计算即可.【解答】解:10×11+4=110+4=114(个)答:第10个图形中小圆的个数为114个.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,得出通项公式,从而解决问题.8.【分析】观察已知的三个算式,可以发现,商的整数部分等于被除数的十位数字,小数循环部分的循环节是被除数十位上数字加1,以此作答.【解答】解:由分析可知:61÷9的商,整数部分为6,小数循环节为6+1=7,所以,61÷9=6.7777……故选:C.【点评】本题主要考查了“式”的规律,需要学生具有较好的数感.二.填空题(共8小题)9.【分析】根据题意,每次二人相差3+5=8(个)台阶,甲比乙高40个台阶,说明甲比乙多赢40÷8=5(次),其余次数二人输赢一样多.据此解答即可.【解答】解:[25+40÷(5+3)]÷2=[25+40÷8]÷2=[25+5]÷2=30÷2=15(次)答:甲胜了15次.故答案为:15.【点评】本题主要考查算术中的规律,关键根据题意找出二人每次胜负的台阶差.10.【分析】(1)根据每次增加10求解;(2)根据每次减少20求解.【解答】解:(1)2,12,22,32,42,52.(2)95,75,55,35,15.故答案为:32,42,52;35,15.【点评】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.11.【分析】根据积的变化规律:一个因数不变,另一个因数扩大或缩小多少倍(0除外),积也会随着扩大或缩小相同的倍数,据此解答即可得到答案.【解答】解:因为37×3=111所以37×9=333,37×21=37×3×7=777,故答案为:333,777.【点评】此题主要考查的是积的变化规律的灵活应用,关键是根据已知算式找到规律.12.【分析】从以上几题可以看出,用自然数从一位数开始,按从小到大自然数的顺序组成不同位数的数乘以8再加前面数的个位数,发现几位与8相乘结果还是几位,只是数从高位从大到小按自然数顺序排列,根据此规律就可填出得数.【解答】解:1×8+1=912×8+2=98123×8+3=9871234×8+4=9876……123456789×8+9=987654321故答案为:123456789,987654321.【点评】解答本题的关键是根据已知数据找出规律,然后利用规律解题.13.【分析】根据所给图示发现:这组积木的排列规律:第1个阶段积木个数:3×1=3(个);第2个阶段积木个数:3×2=6(个);第3个阶段积木个数:3×3=9(个)……第n个阶段积木个数为:3×n =3n(个).据此解答.【解答】解:第1个阶段积木个数:3×1=3(个)第2个阶段积木个数:3×2=6(个)第3个阶段积木个数:3×3=9(个)……第n个阶段积木个数为:3×n=3n(个)3n=171n=57答:要搭第n个阶段的积木的形状,一共需要积木3n个.现有积木数量171个,小红用上全部积木可以搭成第57阶段的立体图形.故答案为:3n;57.【点评】本题考查了图形的变化类问题,主要培养学生的观察能力和总结能力.14.【分析】根据所给图示可知:这组图形的排列规律:第一个图形白色小正方形的个数为1个,灰色小正方形的个数为6+2=8(个);第二个图形白色小正方形的个数为:2个,灰色小正方形的个数为:6+2+2=10(个);……第n个图形的白色小正方形的个数为n个,灰色小正方形的个数为(6+2n)个.据此解答.【解答】解:第一个图形白色小正方形的个数为1个,灰色小正方形的个数为6+2=8(个)第二个图形白色小正方形的个数为:2个,灰色小正方形的个数为:6+2+2=10(个)……第n个图形的白色小正方形的个数为n个,灰色小正方形的个数为(6+2n)个所以第10个图形白色小正方形的个数为:10个灰色小正方形的个数为:6+2×10=26(个)答:第10个图形中有10个白色小正方形,26个灰色小正方形.故答案为:10;26.【点评】本题考查了图形的变化类问题,主要培养学生的观察能力和总结能力.15.【分析】由题意,可得规律:它第一次运走总量的;第二次运走余下的,即总量的(1﹣)×=;第三次运走余下的,即总量的:()×=;……第n次运走总量的:;第49次运走总量的:,则最后剩下:1﹣()=1﹣=据此解答.【解答】解:它第一次运走总量的;第二次运走余下的,即总量的(1﹣)×=;第三次运走余下的,即总量的:()×=;……第n次运走总量的:;……第49次运走总量的:,则最后剩下:1﹣()=1﹣=答:当运走49次后,余下废料是总量的.故答案为:【点评】本题主要考查算术中的规律,关键运用分数的意义做题.16.【分析】观察各式的分母,3=1×3,9=3×3,12=4×3,18=6×3,推测分母为3的连续倍数,根据此规律,将化为,化为,再观察各式的分子,1、3、5、7、9、11,为连续奇数,以此推断第十个数.【解答】解:由分析可知,第十个的数分母为10×3=30,分子为2×10﹣1=19,所以,第10个数为.故答案为:.【点评】本题主要考查了数列中的规律,先观察出分母的规律,然后改写部分项,再找出分子的规律,是本题解题的关键.三.判断题(共5小题)17.【分析】根据几个乘法算式找出的得数的规律,适用于所有具有同一特征算式的结果.如1×9=9、12×9=108、123×9=1107…如果第一个因数是1、12、123、1234…第二个因数都是9,其积所有数位的数字之和等于9,个位分别是9、8、7、6…十位都是0,其余数位上都是1.【解答】解:如1×9=912×9=108123×9=1107…根据几个乘法算式找出的得数的规律,适用于所有具有同一特征算式的结果,这种说法正确.故答案为:√.【点评】只要几个乘法算式变化有一定的规律,其积也有一定规律.根据找出的规律可以写出符合这一规律所有算式的积.18.【分析】根据图示,发现这组图形的规律:第一个点阵中点的个数:1个;第二个点阵中点的个数:1+4=5(个);第三个点阵中点的个数:1+4+4=9(个);……第n个点阵中点的个数:1+4(n﹣1)=(4n ﹣3)(个).据此判断即可.【解答】解:第一个点阵中点的个数:1个第二个点阵中点的个数:1+4=5(个)第三个点阵中点的个数:1+4+4=9(个)……第n个点阵中点的个数:1+4(n﹣1)=(4n﹣3)(个)……第五个点阵中点的个数:4×5﹣3=20﹣3=17(个)答:第五个点阵中点的个数是17个.所以原说法正确.故答案为:√.【点评】本题主要考查数与形结合的规律,关键根据图示发现这组图形的规律,并运用规律做题.19.【分析】把分数化成小数,就会发现小数点后的数字是有规律的:=0.142857142857…,一直重复142857,所以小数点后的数字周期为6,2008÷6=334…4,每个周期第四个数为8,所以小数点后第2008位上的数字是8.【解答】解:=1÷7=0.142857142857…,一直重复142857,所以小数点后的数字周期为6.2008÷6=334…4,故小数点后第2008位上的数字是8.故答案为:×.【点评】考查了小数与分数的互化,算术中的规律,本题的关键是得到转化为小数,找出数字循环周期为6.20.【分析】这组数每次递增15,所以用1415减去60,看能否被15整除即,如果能整除就是,否则不是;据此解答.【解答】解:75﹣60=15,90﹣75=15,…,所以这组数每次递增15,(1415﹣60)÷15≈90.33,所以,1415不是这组数中的数.故答案为:√.【点评】此题考查了数列的规律,关键是求出每次递增的数.21.【分析】求2,4,6,8,10,……96,98,100的和即为求:2+4+6+8+10+…+100=?n=50,根据等差数列的求和公式完成计算.【解答】解:2+4+6+8+10+…+100===2550所以原题计算正确.故答案为:√.【点评】根据等差数列求和公式进行计算,找出等差数列的公差,首项,尾项和项数是计算的关键.四.应用题(共5小题)22.【分析】1÷0.2=5,即1秒里面有5个0.2秒.第一张倒下后过0.2秒(1个0.2秒)会倒下2张、再过0.2秒(2个0.2秒)后会倒下4张、再过0.2秒(3个0.2秒)后会倒下8张、再过0.2秒(4个0.2秒)会倒下16张、再过0.2秒(5个0.2秒)会倒下32张.1、2、4、8、16、32.是公比为2的等比递增数列.最后把这些张数相加.【解答】解:1÷0.2=5,即1秒里面有5个0.2秒倒下第1张后第1个0.2秒后会倒下2张第2个0.2秒后会倒下4张第3个0.2秒后会倒下8张第4个0.2秒后会倒下16张第5个0.2秒后会倒下32张1+2+4+8+16+32=1+2+(4+16)+(8+32)=1+2+20+40=63(张)答:1秒钟内所倒下的骨牌数是63张.【点评】这个数列项数是有限的,可以求出每次倒下的张数,然后再把倒下的总张数相加.如果项数较多要找规律解答.用小学知识只能这样解答.23.【分析】15个盒子中的珠子从左到右是一个项数为15的等差数列,其中第8个盒子中的珠子数为中间项,根据等差数列的意义,与中间项相邻的左、右两项之和等于中间项,与中间项相隔1项的左、右两项之和也等于中间项……因此,这15项之和就是等于中间项乘中间项数.【解答】解:24×15=360(颗)答:这15个盒子中一共有360颗珠子.【点评】解答此题的关键是明白:与中间项相邻的左、右两项之和等于中间项,与中间项相隔1项的左、右两项之和也等于中间项……24.【分析】1+3═4=221+3+5═9=321+3+5+7═16=42…规律:[(首数+尾数)÷2]2=和;据此解答即可.【解答】解:1+3═4=221+3+5═9=321+3+5+7═16=42…1+3+5+7+…+15═64=821+3+5+7+…+2017=1016064=10082故答案为:4,22,9,32,16,42,64,82,1016064,10082.【点评】解答此题的关键是观察所给出的算式,找出算式之间数与数的关系,得出规律,再根据规律解决问题.25.【分析】摆1个六边形需要6根小棒,可以写作:5×1+1;摆2个需要11根小棒,可以写作:5×2+1;摆3个需要16根小棒,可以写成:5×3+1;…由此可以推理得出一般规律解答问题.【解答】解:根据题干分析可得:摆1个六边形需要6根小棒,可以写作:5×1+1;摆2个需要11根小棒,可以写作:5×2+1;摆3个需要小棒:5×3+1=16;摆n个需要小棒:5×n+1=5n+1;当n=8时,5n+1=5×8+1=41;答:图⑧一共需要41根小棒.【点评】根据题干中已知的图形的排列特点及其数量关系,推理得出一般的结论进行解答,是此类问题的关键.26.【分析】根据图示,发现其规律为:第一个图形中三角形个数:1个;第二个图形中三角形个数:1×4+1=5(个);第三个图形中三角形个数:2×4+1=9(个);第四个图形中三角形个数:3×4+1=13(个);第n个图形中三角形个数:(n﹣1)×4+1=(4n﹣3)(个),计算n的值即可.【解答】解:第一个图形中三角形个数:1个;第二个图形中三角形个数:1×4+1=5(个);第三个图形中三角形个数:2×4+1=9(个);第四个图形中三角形个数:3×4+1=13(个);第n个图形中三角形个数:(n﹣1)×4+1=(4n﹣3)(个)4n﹣3=8057,n=2015.答:n是第2015个图形.【点评】本题主要考查数与形结合的规律,关键根据所给图示发现图示排列的规律,并运用规律做题.五.操作题(共2小题)27.【分析】根据图形,第一个图:2个,第二个图:4个;第三个图:6个……所以,这组图形的规律是:图形的个数是连续的偶数个.据此作图即可.【解答】解:如图:【点评】本题考查了图形的变化类问题,主要培养学生的观察能力和总结能力.28.【分析】(1)3﹣1=2,6﹣3=3,10﹣6=4,相邻两个数的差依次是2,3,4,……,依次增加1;(2)观察图中的星星的个数,分别是1、2、3、4……依次增加1;(3)观察图中图形的个数,分别是10,8,6,4,……,依次减少2;由此求解.【解答】解:1.2.3.【点评】关键是根据已知的数得出前后图形、数之间的变化关系的规律,然后再利用这个变化规律再回到问题中去解决问题.。
人教版六年级数学上册第八单元《数学广角——数与形》同步练习发 (3)

人教版小学数学第十一册第八单元《数学广角——数与形》练习题1. 1=5 2=15 3=215 4=2145那么5=?2.一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。
问他赚了多少?3.假设有一个池塘,里面有无穷多的水。
现有2个空水壶,容积分别为5升和6升。
问题是如何只用这2个水壶从池塘里取得3升的水。
4.周雯的妈妈是豫林水泥厂的化验员。
一天,周雯来到化验室做作业。
做完后想出去玩。
"等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。
你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?" 爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。
请你想想看,"小机灵"是怎样做的?5. 11 12 11 2 1 11 1 12 2 1下一行是什么?答案:1.5=12.(9-8)+(11-10)=2(元)3.先将5升的瓶子装满水,倒入6升的瓶子;再将5升的瓶子装满水,倒入1升水给6升的瓶子;将6升瓶子里的所有水倒回池子;将5升瓶子里剩的4升水倒入6升的瓶子里;再将5升的瓶子装满水,倒入2升水给6升的瓶子,这样5升瓶子就有3升的水。
4.将第二个满瓶水倒入第五个瓶子,再放回原地。
5.312211人教版六年级数学上册第7、8单元测试卷考试时间:80分钟满分:100分卷面(3分)。
我能做到书写端正,卷面整洁。
知识技能(67分)一、我会填。
(第7题2分,其余每空1分,共26分)1.常用的统计图有()统计图、()统计图和()统计图。
2.如果统计全校各年级人数,可选用()统计图;如果统计六年级同学喜欢各种球类人数的百分比,可选用()统计图;如果统计某病人体温升降变化情况,可选用()统计图。
3.找规律填数。
(1)52=1+3+5+()+()(2)1+0.9+0.09+0.009+…=()4.新丰小学六(1)班举行期末数学模拟测验,优秀的有20人,良好的有20人,及格的有8人,不及格的有2人。
六年级数学上册 数学广角——数与形综合题 (试题) 人教版(含答案)

六年级同步经典题精练之数学广角——数与形综合题一.选择题(共8小题)1.找规律:,,,,,(),……括号里的数是。
A.B.C.2.先找出规律,再按规律选择答案。
85.47×1.3=111.11185.47×2.6=222.22285.47×3.9=333.33385.47×7.8=()A.444.444B.666.666C.888.888D.999.9993.小丁同学用三角形摆出了如图的图案,根据图形与数的规律接着摆下去,第(6)个图案中所用三角形总数为()个。
A.15B.21C..84.用火柴棒按如图的方式搭正方形,搭30个这样的正方形需要()根火柴棒。
A.120B.90C.915.周文用小棒以下面的方式摆六边形。
摆n个六边形要用小棒()根。
A.6n B.5n+1C.4n+36.根据史书的记载和考古材料发现:在算筹计数法中,以纵、横两种排列方式来表示单位数目。
其中横式表示数的方法如图所示。
那么,在算筹中用横式丧示“8”的图案是()A.B.C.D.7.按照下面3幅图的规律,如果每个圆的直径都是10厘米,那么第10个图形长()厘米。
A.50B.55C.95D.1008.四个同学观察上图后,分别说出了自己的发现。
()的想法正确。
A.只有丽丽B.只有丽丽和文文C.只有丽丽、平平、文文D.丽丽、平平、文文、欣欣二.填空题(共5小题)9.3÷16.5的商的小数部分第101位上的数字是。
10.观察规律,,,,,……这列数从左到右第100个数是。
11.根据111111÷37037=3,222222÷37037=6,333333÷37037=9,写出:444444÷37037=,555555÷37037=。
12.如图,用小棒摆图形,照这样摆下去,摆第7个图形需要根小棒,摆第n个图形需要根小棒。
13.瑞士中学教师巴尔末成功地从光谱数据、、、……中得到巴尔末公式,从而打开了光谱奥妙的大门。
人教版数学六年级上册 第8单元(数学广角-数与形)练习题(附答案)

人教版六年级上册数学第八单元《数学广角—数与形》练习题(附答案)一、单选题1.珠海市规定:每年每户用气(天然气)员不超过300立方米,每立方米3.45元;当用气量超过300立方米时,超过的部分每立方米为4.15元。
下图中能正确表示每年用气费用与用气量关系的示意图是()A.B.C.2.遇到不会解决的问题时,老师通常建议我们画幅图,因为画图能使数量关系更直观、清楚。
下面图()表示“哥哥给弟弟9张画片后,两人的画片一样多”。
A.B.C.3.某市规定:每月用水量15吨以内时每吨收费0.8元,超过15吨时超过部分每吨收费1.6元。
下面能表示每月的水费与用水量关系的是()。
A.B.C.D.4.淘气去超市买东西,在路上遇到同学交谈了一会,然后去超市买了一些学习用品后回家,下面()图比较准确地反映了淘气的活动。
A.B.C.D.5.六(1)班同学乘车去长城,从学校到长城的行程情况如下图所示,根据下图可知下列说法正确的是()。
A.经过4时到达长城B.他们10:00休息,休息了30分C.汽车前2时的平均速度是45千米/时D.汽车后1时的速度是140千米/时6.你知道龟免赛跑的故事吗?乌龟与兔子赛跑,开始兔子跑得快,于是兔子便骄傲起来,在途中睡着了,最终乌龟比兔子先到了终点。
选一选,下面()图表示了这个故事。
A.B.C.7.小强去离家1千米的书店买书,他骑自行车5分钟到书店,在书店停留10分钟,再继续骑5分钟回家,下图能大致描述他离家的距离s(千米)与所用时间t(分)之间的关系的是()。
A.B.C.D.8.一只兔子和一条小狗从同一地点出发,同时开始向东运动,兔子的运动距离与时间关系如图中实线部分ABCD所示,小狗的运动距离与时间关系图象如图中虚线部分AD所示。
则关于该图象下列说法正确的是()。
A.小狗的速度始终比兔子快B.整个过程中小狗和兔子的平均速度相同C.图中BC段表明兔子在做匀速直线运动D.在前4秒内,小狗比兔子跑得快9.学校举行冬季运动会,小明和小华都参加了800米比赛,小明起跑速度比较快,后半程放慢了速度;小华起跑速度比较慢,但后半程赶超了小明,比小明先到终点,下图()能表示两人比赛的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学广角──数与形》同步试题一、填空1.观察下面的点阵图规律,第(9)个点阵图中有()个点。
考查目的:数与形结合的规律;通过特例分析归纳出一般结论的方法。
答案:30。
解析:第(1)个图有1+2+3=6个点,第(2)个图有2+3+4=9个点,第(3)个图有3+4+5=12个点……第个图就有个点。
对于找规律的题目,首先应找出哪部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后,再利用规律求解。
2.先画出第五个图形并填空。
再想一想:后面的第10个方框里有()个点,第51个方框里有()个点。
考查目的:数与形结合的规律;利用规律解决问题。
答案:,1+4×4;37,201。
解析:分析图形,可得出第个图中共有个点,则第10个图共有1+4×(10-1)=37个点,第51个图共有1+4×(51-1)=201个点。
3.按下面用小棒摆正六边形。
摆4个正六边形需要()根小棒;摆10个正六边形需要()根小棒;摆个正六边形需要()根小棒。
考查目的:根据已知图形的排列特点及数量关系,推理得出一般的结论进行解答。
答案:21;51;。
解析:摆1个六边形需要6根小棒,可以写作5×1+1;摆2个六边形需要11根小棒,可以写作5×2+1;摆3个六边形需要16根小棒,可以写作5×3+1……由此可以推理得出一般规律,即摆个六边形需要根小棒。
4.学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图所示),请你结合这个规律,填写下表:考查目的:分析图形的变化规律并列出代数式。
答案:10;。
解析:一张方桌坐4人,每多一张方桌就多2个人,那么有4张方桌时就多坐了6人,总人数为4+6=10。
如果是张方桌,则所坐人数是。
5.数形结合是一种重要的数学思想,认真观察图形,然后完成下列问题。
;;;;。
考查目的:利用数形结合的思想探索规律。
答案:16,4;5;。
解析:通过启发引导,使学生明确可以把一个点看作边长是1的正方形,并由此类比正方形的面积公式计算出结果。
对于的解答,引导学生从已知的结果归纳出“从1开始连续奇数的和等于奇数个数的平方”这一结论即可。
二、选择1.观察下图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色的三角形有()。
A.82个B.154个C.83个 D.121个考查目的:数与形的变化规律。
答案:D解析:分别数出第一个、第二个、第三个图中白色三角形的个数,总结出白色三角形的增长规律,以此推算出第5个大三角形中白色三角形的个数为1+3+9+27+81=121。
2.有一个从袋子中摸球的游戏,小红根据游戏规则,做出了如下图所示的树形图,则此次摸球的游戏规则是()。
A.随机摸出一个球后放回,再随机摸出一个球B.随机摸出一个球后不放回,再随机摸出一个球C.随机摸出一个球后放回,再随机摸出三个球D.随机摸出一个球后不放回,再随机摸出三个球考查目的:用画树状图的方法解决与“可能性”有关的问题。
答案:A解析:观察树形图可知,袋中共有红、黄、蓝三个小球,此次摸球的游戏规则为:第一次随机摸出一个球后放回,第二次再随机摸出一个球。
3.搭建如图(1)的单顶帐篷需要17根钢管,若这样的帐篷按图(2)、图(3)的方式串起来搭建,则可节省结合处的钢管,那么串搭20顶这样的帐篷需要()根钢管。
A.340B.225C.226D.227考查目的:图形中的计数规律。
答案:C解析:通过分析图形,搭建单顶帐篷需要17根钢管。
从串搭第2顶帐篷开始,每多串一顶帐篷需多用11根钢管,由此得出串搭顶帐篷需要根钢管。
则串搭20顶这样的帐篷需要11×20+6=226根钢管。
4.一只兔子和一条小狗从同一地点出发,同时开始向东运动,兔子的运动距离与时间关系图象如图中实线部分ABCD所示,小狗的运动距离与时间关系图象如图中虚线部分AD所示。
则关于该图象下列说法正确的是()。
A.小狗的速度始终比兔子快B.整个过程中小狗和兔子的平均速度相同C.图中BC段表明兔子在做匀速直线运动D.在前4秒内,小狗比兔子跑得快考查目的:关于行程问题的图象综合题。
答案:B解析:由图象可以看出:在前4秒,兔子在相同时间内通过的路程比小狗的路程多,所以兔子的运动速度大于小狗的运动速度(由此判断选项D错误);在第4秒,小狗和兔子在相同时间内通过相同的路程,所以它们的平均速度相同;在4到8秒的时间段,小狗在相同时间内通过的路程比兔子的路程多,所以小狗的运动速度大于兔子的运动速度。
整个过程中,小狗和兔子运动路程相同,运动时间相同,所以它们的平均速度相同,选项A是错误的,B正确。
另,图中的BC段表示兔子处于静止状态。
5.如图,观察下列正三角形的三个顶点所标的数字规律,那么2008这个数在第个三角形的顶点处。
()A.669;上B.669;左下C.670;右下 D.670;上考查目的:数字和图形相结合的变化规律。
答案:D解析:每个三角形有三个角,对应的三个数的顺序是上、左下、右下。
根据2008÷3=669……1,所以2008这个数在第670个三角形的上顶点处。
三、解答1.把4个完全相同的乒乓球标上数字2、3、4、5,然后放到一个不透明的口袋中,第一次任意摸出一个球(不放回),第二次再任意摸出一个球。
(1)请补充完整下面的连线图:(2)根据上图计算,两次摸出的球所标数字之和是7的可能性是多少?考查目的:连线和列表的方法;利用可能性的知识解决问题。
答案:(1)如下图所示:(2)共有12种情况,和为7的有4种情况,可能性为。
解析:利用连线和列表的方法列举出所有的情况,是一种常用的解决问题的方法。
教师应引导学生去经历和体会整个过程,注重对方法的理解和掌握。
2.找规律填空,要求写出思考的过程。
考查目的:探索数与形结合的规律。
答案:(1)2×4=8,8×2=16,8×8=64。
(2)8+2=10,12+3=15,16+4=20。
如下图所示:解析:第一个图形中,从上到下外围数字都是2,内部数字都是它的左上角与右上角两个数字的积;第二个图形中,从右上向左下看,每组数据都是一个等差数列:第一列公差是1,第二列公差是2,第三列公差是3,第四列公差是4……由此即可解答。
3.双休日期间,明明和爸爸开车去动物园,在去的路上,明明画出了汽车的速度随时间的变化情况。
如图所示:(1)汽车行驶了多长时间?它的最大速度是多少?(2)汽车在哪个范围内保持匀速行驶?速度是多少?(3)出发后8分钟到10分钟这段时间可能出现什么情况?(4)用自己的语言描述这辆车的行驶情况。
考查目的:联系生活实际,利用数形结合的知识解决问题。
答案:(1)汽车行驶了16分钟,最大速度为30千米/小时。
(2)汽车在2到6分钟、12到16分钟这两个时间段内保持匀速行驶,速度为30千米/小时。
(3)可能发生的情况:汽车加油。
(4)先加速行驶,速度达到30千米/小时,开始匀速行驶,然后减速行驶,直到停下加油。
加油后又开始加速,到30千米/小时的速度后匀速行驶,快到目的地时开始减速,最后到达目的地。
解析:通过读图,需要让学生明确:速度不为0就说明汽车在行驶;图象中点的纵坐标的最大值就是最大速度;匀速行驶时,汽车的速度不变;某段时间速度为0,说明汽车没有在行驶,说出一种可能的情况即可;最后一个问题需要结合实际进行描述。
4.分别由红、白、黑、黄、绿、蓝、紫七种颜色排成一排,颜色下面是自然数,按下列方式依次排列:那么,自然数2010对应在哪种颜色下面?在第几行?考查目的:利用数表中的规律解决问题。
答案:2010是图形中出现的第2011个数,而2011÷(7+6)=154……9,说明2010在154×2+2=310行,具体位置为从右向左第2个,对应颜色是绿色。
答:2010在绿色下面,在第310行。
解析:奇数行都有7个数,偶数行都有6个数,循环的周期是13。
而且奇数行是从左到右增加的顺序,偶数行是从右到左增加的顺序。
2010是图形中出现的第2011个数,用2011除以13得出循环的周期和余数,进一步分析所在的行数,最后确定位置和对应的颜色。
5.用花、白两种正方形的瓷砖拼成大的正方形图形,要求中间用白瓷砖,四周一圈用花瓷砖(如图所示)。
(1)填写下列表格。
想一想,这些数量之间有什么关系?(2)如果所拼的图形中,用了20块花瓷砖,那么,白瓷砖用了多少块?(3)如果所拼的图形中,用了块白瓷砖,那么花瓷砖用了多少块?考查目的:先找到数与形结合的规律,再根据规律求解。
答案:(1)如下表格所示:(2)(20÷4-1)×(20÷4-1)=16(块)。
答:白瓷砖用了16块。
(3),(块)。
答:花瓷砖用了块。
解析:大正方形每边的块数每增加1块,所用的花瓷砖块数就增加4。
白瓷砖的总块数是白色瓷砖区域每个边上的块数的平方,而花瓷砖的总数量是白瓷砖一边的块数加1的4倍。