基础化学 第五章 胶体

合集下载

高中化学关于胶体的教案

高中化学关于胶体的教案

高中化学关于胶体的教案教学目标:1. 理解胶体的定义和性质2. 掌握胶体的制备和分离方法3. 能够运用胶体的知识解决实际问题教学重点:1. 胶体的定义和性质2. 胶体的制备和分离方法教学难点:1. 胶体的本质特征2. 胶体的制备和分离方法的原理教学准备:1. 实验室用具:烧杯、玻璃棒、漏斗、滤纸、电子天平、量筒等2. 实验材料:氢氧化铁、氯化铁、豆浆、紫外线灯等教学过程:第一章:胶体的定义和性质1.1 引入:通过展示氢氧化铁胶体和氯化铁溶液的图片,让学生观察并猜测它们的区别。

1.2 讲解:介绍胶体的定义和性质,如分散质粒子的直径、丁达尔效应、聚沉等。

1.3 实例:分析豆浆、牛奶等日常生活中的胶体实例。

1.4 练习:让学生回答有关胶体性质的问题,如豆浆是否属于胶体、胶体是否具有丁达尔效应等。

第二章:胶体的制备方法2.1 引入:通过展示氢氧化铁胶体的制备过程,引发学生对胶体制备方法的好奇心。

2.2 讲解:介绍氢氧化铁胶体的制备方法,如饱和氯化铁溶液滴入沸水中。

2.3 实验:学生分组进行氢氧化铁胶体的制备,观察并记录实验现象。

2.4 练习:让学生回答有关氢氧化铁胶体制备的问题,如制备过程中需要注意的事项等。

第三章:胶体的分离方法3.1 引入:通过展示氢氧化铁胶体和氯化铁溶液的分离实验,引发学生对胶体分离方法的好奇心。

3.2 讲解:介绍胶体的分离方法,如渗析法、离心法等。

3.3 实验:学生分组进行氢氧化铁胶体和氯化铁溶液的分离实验,观察并记录实验现象。

3.4 练习:让学生回答有关胶体分离方法的问题,如渗析法和离心法的原理等。

第四章:胶体的应用4.1 引入:通过展示氢氧化铁胶体在净水中的应用,引发学生对胶体应用的思考。

4.2 讲解:介绍氢氧化铁胶体在净水、医药、食品等领域的应用。

4.3 实例:分析氢氧化铁胶体在净水中的作用原理。

4.4 练习:让学生回答有关胶体应用的问题,如氢氧化铁胶体在净水中的作用等。

第五章:胶体的实验操作技巧5.1 引入:通过展示氢氧化铁胶体的制备和分离实验,引发学生对实验技巧的关注。

大学基础化学课件-胶体

大学基础化学课件-胶体




。 。

。。

。 。。
Байду номын сангаас
第二节 一、溶胶的基本性质
溶胶
光学性质
丁达尔效应
动力学性质
布朗运动、扩散和沉降平衡。
电学性质
电泳、电渗
溶胶有乳光现象。 令一束聚焦的光束通过
溶胶,则从侧面可以看到 一个发光的圆锥体,这种 现 象 称 为 Tyndall 效 应 (Tyndall effect) 。
乳光现象产生原因: Tyndall现象
第五章 胶体(Colloid)
思考题: 1、为什么说溶胶是不稳定体系,而实际上又常能相对稳定存在? 2、引起溶胶聚沉的因素有哪些? 3、为什么在长江、珠江等河流的入海处都有三角洲的形成。 4、将0.02mol.L-1的Kcl溶液12mL 和0.05 mol.L-1的AgNO3溶液 100mL混合以制备AgCl溶胶,试写出此溶胶胶团结构。
胶团
AgNO3 + KI
AgI + KNO3
思考:当KI过量的时候,胶团结构是怎样的? 胶粒的带电性又如何??
溶胶的稳定因素
布朗运动 胶粒带电 胶粒表面水合膜的作用
溶胶的聚沉 加热
加 入电解质
电解质的聚沉能力如何比较?
反离子的价数越高聚沉能力越强
加 入带相反电荷的溶胶
高分子溶液
足够多的高分子可以 把胶粒的表面包围住, 增强溶胶的稳定性。
第一节
一、分散系的分类
胶体分散系
一种或几种物质分散在另一种物质中所形成的系统。
分散系
真溶液
(<1nm)
胶体分散系
(1nm~100nm)
粗分散系

高中化学胶体

高中化学胶体

高中化学胶体《高中化学胶体》同学们,今天咱们来聊聊高中化学里一个很有趣的部分——胶体。

不过呢,在深入胶体之前,咱们得先复习一些基础的化学概念,这样能帮助我们更好地理解胶体的奥秘。

首先,咱们来说说化学键。

化学键啊,就像是原子之间的小钩子。

离子键呢,就好比是带正电和带负电的原子,它们就像超强磁铁一样紧紧地吸在一起。

比如说氯化钠,钠原子带正电,氯原子带负电,一个正一个负,就像磁铁的两极,“啪”地一下就吸住了,形成了离子键。

而共价键呢,是原子们共用小钩子连接起来的。

就像两个人一起拉着一个东西,谁也不放手,共同分享这个“小钩子”,这样就形成了共价键,像氢气分子,两个氢原子就是靠共价键结合在一起的。

再来说说化学平衡。

这化学平衡啊,就像是一场拔河比赛。

反应物和生成物就像两队人。

刚开始的时候,可能某一队比较厉害,就像反应刚开始时,反应物这边的力量大,反应朝着生成物的方向进行得比较快。

但是随着比赛的进行呢,另一队也会慢慢使上劲。

最后啊,达到一种状态,两队用的力气一样大了,这就相当于正逆反应速率相等了。

这时候,两边的人数看起来也不会再有什么变化了,这就好比反应物和生成物的浓度不再变化了,这就是化学平衡状态。

还有分子的极性,这个概念就像小磁针一样。

咱们拿水来说,水是极性分子。

水的结构是一个氧原子连着两个氢原子,氧原子那一端就像小磁针的南极,带负电;氢原子那一端呢,就像小磁针的北极,带正电。

但是像二氧化碳,它是直线对称的结构,就像两个一模一样的人在一根绳子的两边,两边的力量是一样的,没有极性,所以二氧化碳是个非极性分子。

那配位化合物又是啥呢?咱们可以把中心离子想象成一个聚会的主角,周围的配体呢,就像是来参加聚会并且提供孤对电子共享的小伙伴。

这些小伙伴围绕着主角,大家凑在一起,就形成了配位化合物。

接下来就是氧化还原反应中的电子转移了。

这个过程就像做交易一样。

比如说锌和硫酸铜反应,锌原子就像是一个慷慨的人,他把自己的电子给了铜离子。

胶体化学核心知识点

胶体化学核心知识点

1.胶体的定义及分类胶体(Colloid)又称胶状分散体(colloidal dispersion)是一种较均匀混合物,在胶体中含有两种不同状态的物质,一种分散相,另一种连续相。

分散质的一部分是由微小的粒子或液滴所组成,分散质粒子直径在1~100nm之间的分散系是胶体;胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,这是一种高度分散的多相不均匀体系。

按照分散剂状态不同分为:气溶胶——以气体作为分散剂的分散体系。

其分散质可以是液态或固态。

(如烟、雾等)液溶胶——以液体作为分散剂的分散体系。

其分散质可以是气态、液态或固态。

(如Fe(OH)3胶体)固溶胶——以固体作为分散剂的分散体系。

其分散质可以是气态、液态或固态。

(如有色玻璃、烟水晶)按分散质的不同可分为:粒子胶体、分子胶体。

如:烟,云,雾是气溶胶,烟水晶,有色玻璃、水晶是固溶胶,蛋白溶液,淀粉溶液是液溶胶;淀粉胶体,蛋白质胶体是分子胶体,土壤是粒子胶体。

2.胶体的不同表征方式胶体分散体系分为单分散体系和多分散体系。

单分散系表征可以用分散度、比表面积法(不规则形状包括单参数法,双参数法和多参数法)多分散体系可以用列表法、作图法,如粒子分布图,粒子累计分布图。

用激光粒度分析仪测定。

胶体的稳定性一般用zeta电位来表征。

zeta电位为正,则胶粒带正电荷,zeta电位为负,则胶粒带负电荷。

zeta电位绝对值越高,稳定性越好,分散度越好,一般绝对值>30mV说明分散程度很好。

胶体的流变性表征—黏度。

可用毛细管黏度计,转筒黏度计测定。

3.有两种利用光学性质测定胶体溶液浓度的仪器;比色计和浊度仪,分别说明它们的检测原理比色计它是一种测量材料彩色特征的仪器。

比色计主要用途是对所测材料的颜色、色调、色值进行测定及分析。

工作原理:仪器自身带有一套从淡色到深色,分为红黄蓝三个颜色系列的标准滤色片。

仪器的工作原理是基于颜色相减混合匹配原理。

罗维朋比色计目镜筒的光学系统将光线折射成90°并将观察视场分成可同时观察的左右两个部分,其中一部分是观察样品色的视场;另一部分是观察参比色(即罗维朋色度单位标准滤色片)的视场。

基础化学第五章胶体

基础化学第五章胶体

不同电解质对几种溶胶的临界聚沉浓度/mmol· L-1
As2S2(负溶胶) LiCl 58 NaCl 51 KCl 49.5 AgI(负溶胶) LiNO3 165 NaNO3 140 KNO3 136 Al2O3(正溶胶) NaCl 43.5 KCl 46 KNO3 60 K2SO4 K2Cr2O7 0.30 0.63
二、胶体分散系 2. 表面能


液体有自动缩小表面积的趋势。小的液滴聚 集变大,可以缩小表面积,降低表面能。表 面积减小过程是自发过程。 这个结论对固体物质同样适用。高度分散的 溶胶比表面大,所以表面能也大,它们有自 动聚积成大颗粒而减少表面积的趋势,称为 聚结不稳定性。
第二节 溶胶
一.

溶胶的基本性质
内旋转:分子链中 许多C-C单键, C 原子以sp3杂化,单 键能在键角不变条 件下绕键轴旋转。 柔性:内旋转导致 碳链构型改变,高 分子长链两端的距 离也随之改变。
第三节 高分子溶液
3.
高分子溶液的形成



溶胀:溶剂进入高分子链, 导致化合物舒展,体积成 倍增长。 高分子化合物先溶胀,后 溶解。 与水分子亲和力很强的高 分子化合物形成水合膜: 稳定性的主要原因。
上:高分子化合物在良溶 剂中 下:高分子化合物在不良 溶剂中
第三节 高分子溶液
二.

聚电解质溶液
蛋白质等高分子化合物在水溶液中往往以离子 形式存在,称为聚电解质(polyelectrolyte) 特征:
1.

链上有荷电基团很多

③ ④
电荷密度很大 对极性溶剂分子的亲合力很强 分为阳离子、阴离子、两性离子三类。
126 2.40 2.60 2.43 0.067 0.069 0.069

高中化学基础胶体教案

高中化学基础胶体教案

高中化学基础胶体教案
一、教学目标:
1. 了解胶体概念与特性;
2. 掌握胶体的分类方法;
3. 了解常见的胶体应用;
4. 培养学生分析问题、解决问题的能力。

二、教学内容:
1. 胶体的概念与特性
2. 胶体的分类
3. 胶体的应用
三、教学过程:
1. 导入:通过举例介绍什么是胶体,如胶水、奶酪等,引发学生兴趣。

2. 授课:介绍胶体的概念与特性,包括颗粒大小介于溶液与悬浮液之间、具有不可逆性等。

3. 分组讨论:让学生分组讨论不同的胶体,并分析其特点与应用。

4. 实验展示:进行一些简单的胶体实验,如利用澄清剂制备胶体溶液、观察胶体与溶液的
区别等。

5. 课堂练习:学生进行胶体相关练习题,巩固所学知识。

6. 总结:梳理本节课的内容,强调胶体在生活中的应用。

四、教学评价:
1. 学生课堂表现:包括讨论、实验观察、练习题答题等;
2. 学生学习情况:是否掌握了胶体的基本概念与分类方法;
3. 教学过程改进:根据学生反馈与表现调整教学方法与内容。

五、作业布置:
1. 完成相关练习题;
2. 总结本节课所学内容,并思考胶体在生活中的应用。

六、教学反思:
1. 教学方法有效性:本节课采用了多种教学方法,但是否能够真正激发学生学习兴趣需要进一步考量;
2. 内容完整性:是否涵盖了胶体的所有重点内容,是否需要进一步扩展或深化;
3. 学生学习情况:是否及时发现学生的学习困难,并进行调整与帮助。

以上内容仅供参考,具体教案根据教师实际情况进行调整。

高中化学基础胶体教案全套

高中化学基础胶体教案全套

高中化学基础胶体教案全套
一、教学目标
1. 了解胶体的定义和特征;
2. 掌握胶体的分类及成分;
3. 了解胶体的性质和应用。

二、教学内容
1. 胶体的定义和特征;
2. 胶体的分类及成分;
3. 胶体的性质和应用。

三、教学重点与难点
1. 胶体的定义和特征;
2. 掌握胶体的分类及成分。

四、教学步骤
1. 导入:通过实验展示一些胶体的现象,引出胶体的概念;
2. 理论讲解:介绍胶体的定义和特征;
3. 分类及成分:讲解胶体的分类及成分;
4. 性质:介绍胶体的性质;
5. 应用:讨论胶体在不同领域的应用;
6. 练习:提供一些练习题,让学生巩固所学知识;
7. 总结:总结本节课的重点内容,并展望下节课内容。

五、教学工具
1. 实验器材:胶体溶液、蒸馏水、试管等;
2. 投影仪:用于播放胶体相关实验视频;
3. 课件:包括胶体的定义、分类、成分、性质及应用等内容。

六、教学评估
1. 课堂讨论:通过课堂讨论学生对胶体的理解和应用能力;
2. 练习题:布置相关练习题,检验学生对胶体知识的掌握情况。

七、教学反思
1. 整理教学反馈,及时调整教学策略;
2. 发现学生存在的问题,及时进行理解和解决。

以上为高中化学基础胶体教案全套范本,供参考。

化学胶体知识点

化学胶体知识点

化学胶体知识点化学胶体是指由两种或两种以上的物质组成的,其中至少有一种是固体的、维持着空间网状结构的分散体系。

在化学胶体中,存在着胶体粒子和连续相之间的相互作用,这种相互作用决定了胶体系统的性质和行为。

化学胶体是一种重要的研究对象,广泛应用于生物医学、材料科学、环境工程等领域。

一、胶体的定义和特点化学胶体是由胶体粒子和连续相组成的分散体系。

胶体粒子的尺寸通常在1到1000纳米之间,介于分子和晶体之间。

胶体粒子可以是固体、液体或气体。

连续相可以是气体、液体或固体。

胶体的特点包括:1. 可见性:胶体粒子的尺寸远大于分子,因此可以通过显微镜观察到。

2. 分散性:胶体粒子在连续相中均匀分散,不易沉积和沉淀。

3. 敏感性:胶体系统对温度、电场、pH值等外界条件的变化非常敏感,会发生相应的变化。

4. 稳定性:胶体粒子之间存在吸引力和排斥力,使得胶体系统能够保持稳定的存在。

二、胶体的分类化学胶体根据胶体粒子的物理状态和连续相的性质可以分为几种不同类型:1. 溶胶:连续相为液体,胶体粒子为液体或固体。

溶胶具有高度的透明性和稳定性,如胶体金溶液、胶体二氧化硅溶液等。

2. 凝胶:连续相为液体,胶体粒子形成了三维网状结构。

凝胶具有固体的形态和流动性,如胶体石墨、胶体二氧化硅凝胶等。

3. 粉体:连续相为气体,胶体粒子为固体。

粉体具有较大的比表面积和较高的吸附性能,如烟雾、粉尘等。

4. 真胶:连续相为液体,胶体粒子为固体。

真胶具有高度的黏性和弹性,如橡胶、明胶等。

5. 气溶胶:连续相为气体,胶体粒子为液体或固体。

气溶胶具有较长的悬浮时间和较大的扩散能力,如大气中的水滴、尘埃等。

三、胶体的性质与应用1. 光学性质:由于胶体粒子的尺寸与可见光波长相当,胶体溶液会呈现出特殊的光学性质,如散射、吸收和折射等。

这些性质使得胶体在光学传感、光学材料等领域有着广泛的应用。

2. 电学性质:由于胶体粒子带有电荷,胶体溶液会呈现出电导性和电泳性等特殊的电学性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即:表面积缩小过程是自发过程。 故:液体呈球形是自发过程。*
dS<0,对固体物质同样适用*。
高度分散的溶胶比表面大,所以表面能也大, 它们有自动聚积成大的颗粒而减小表面积的趋势, 称为聚结不稳定。属于热力学不稳定体系。
高分子化合物溶液的分散相粒子大小在胶体范围 内,属于胶体溶液。其分散相是以单个分子分散在介 质中,为均相分散系。是热力学稳定系统。
1×10-3 2.4×108 3×103 3×103 2.2×10-2
1×10-5 2.4×1014 3×105 3×105 2.2×100
1×10-7 2.4×1020 3×107 3×107 2.2×102
系统表面能和表面积的关系为*:dG表=dS S ---系统表面积, ---比表面自由能, 若dG表<0,则dS<0,
基础化学 第五章 胶体
研究内容:
涉及物理学中的光学、电学、流体力学和流变 学,同时还涉及表面化学、电化学。
从应用来说,遍及生命现象(血液、骨组织、 细胞膜)、材料(陶瓷、水泥、纤维、塑料、多孔 吸附剂、有色玻璃以及微米与纳米材料)、食品 (牛奶、啤酒、面包)、能源(油、气的地质勘探、 钻井、采油、储运,石油炼制、油品回收、乳化和 破乳等)、环境(烟雾、除尘、污水处理)等各领 域。因此,虽然历史上曾称为胶体化学,现在则将 这一学科称为胶体科学。
1.分散度(degree of dispersion)
分散相在分散介质中比表面(specific surface
area) 来表示。
比表面 (S0):是指单位体积物质所具有的表面积。
S0 = S/V S-----总表面积
(5-1) V -----体积
总表面积越大,分散度越大,比表面也越大*。
溶胶的性质
光学性质 ------Tyndall效应

胶 的
动力学性质 ------Brown运动
性 质
电泳(electrophoresis)
电学性质
电渗(electroosmosis)
一、溶胶的基本性质 1. 溶胶的光学性质—Tyndall Effect
2.溶胶的动力学性质—Brown Movement
【内容提要】
❖ 第一节 胶体分散系 ❖ 第二节 溶胶 ❖ 第三节 高分子溶液 ❖ 第四节 表面活性剂和乳状液
第一节 胶体分散系
一、胶体分散系的制备
胶体分散系包括溶胶(sol)、高分子溶液(macromolecular solution)和缔合胶体(associated colloid) 。
胶体分散系的分散相粒子的大小介于1nm~ 100nm之间。
气相
液相
图5-1 液体内部及表层分子 受力情况示意图
水滴分散后表面积和表面能的变化*
半径r/(cm)
分散后水 总表面积 比表面* 总表面自由 的滴数(n) s/(cm2) s0/(cm-1) 能 G总/(J)
1×0.62
1
4.83
4.83 3.2×10-5
1×10-1 2.4×102 3×10 3×10 2.2×10-4
胶体是自然界中存在的一种分散体系*。 胶体是物质的一种分散体系,通常规定胶体颗 粒的大小为1~100nm,因此,胶体体系是物质的一 种特殊状态,而不是特殊的物质。任何一种物质在 一定条件下可以晶体的形式存在,在另一种条件下 却可以胶体的形态存在。 例如:构成机体组织和细胞的基础物质蛋白质、 核酸、糖原等都是胶体物质;体液如血液、细胞液 等具有胶体的性质;许多药物*以胶体形式进行生产 和使用。因此,医学生有必要学习胶体的有关知识。
缔合胶体:是由溶液中的表面活性剂分子(具有 亲水的极性基团和亲油的烃基*的两亲分子)超过某 一特定浓度,分子在溶液内部缔合形成分子集团,即 所谓“胶团”或“胶束”作为分散相粒子形成的分散 系。
表面活性物质的这种缔合作用是自发的和可逆的, 因而与溶胶不同,缔合胶体是热力学稳定体系。
第二节 溶胶
溶胶的胶粒是由数目巨大的原子 (或分子、离子)构成的聚集体。直径 为1~100nm的胶粒分散在分散介质中, 形成热力学不稳定性分散系统。多相性、 高度分散性和聚结不稳定性是溶胶的基 本特性,其光学性质、动力学性质和电 学性质都是由这些基本特性引起的。
由于介质分子的热运动不断地撞击着胶体粒子 所引起的现象称Brown运动。*
3. 溶胶的电学性质 • 电泳
electrophoresis 在外电场作用下, 带电胶粒在介质中 定向移动的现象称 电泳。
3. 溶胶的电学性质 • 电渗
electroosmosis 在外电场作用下,液 体介质通过多孔膜向 其所带电荷相反的电 极方向定向移动的现 象。
气溶胶:烟、粉尘;雾*等。 固溶胶:珍珠、某些宝石、有色玻璃等。 液溶胶*:Fe(OH)3溶胶、碘化银溶胶等。
总之,溶胶是由分散相高度分散到介质中所 形成的多相分散系统*。
高度分散,使得分散相的表面积急剧增大。
例如:边长为1cm立方体的表面积是6cm2,当 它分散为1012个小立方体*,总体积不变,而总表面 积却增大为60 000cm2。
表5-1 一些胶体的例子
表5-1 一些胶体的例子
分散介质 分散相
名称
气体
液体
气溶胶
气体
固体
气溶胶
液体
气体
泡沫胶
液体
液体
乳状液
液体
固体
溶胶
固体
液体
凝胶
固体
固体
固体溶胶
实例
雾 烟* 生奶油 牛奶 油漆 果冻 红宝石玻璃
胶体分散系的制备方法:分散法和凝聚法, 前者是使大粒子变小,后者是使较小的粒子凝聚 成胶体粒子。
当物质形成高度分散系统时,因表面积大大增 加,表面性质就十分突出。*
2.表面自由能(surface free energy)
任何两相的界面分子与其相内部的分子所处状 况不同,它们的能量也不同。
例如:在液、气两相中(图5-1)。 可见,表层分子比内部分子多出一部分能量, 称为表面能(表面自由能)*。
研磨法
分散法
超声波法 胶磨法
电弧法
凝聚法
物理凝聚法 化学凝聚法
二、胶体分散系的表面特性*
界面与表面:对于相互接触的不同聚集状态 的物质,相与相之间的边界皆称界面,相界面上 发生的物理化学现象统称为界面现象*。
固相或液相与其蒸汽或与空气相接触的界面 习惯上称为表面*,一般在要求不严格的情况下界 面与表面可以通用。
相关文档
最新文档