第四章 人寿保险的精算现值
保险精算 第4章2 人寿保险的精算现值

签单时保险金给付现值随机变量为
Z
bv TT
0,
vn
,
T n T n
离散型
1
A x:n
表示 n年期生存保险的精算现值。
E nx
1
Ax:n E(Z )
方差为
Var(Z )
n年定期两全保险
定义
被保险人投保后如果在n年期内发生保险责任范围 内
的死亡,保险人即刻给付保险金;如果被保险人生
存至n年期满,保险人在第n年末支付保险金的保险。
1
2
30:10 |
30:10 |
0.0431
各种死亡即付趸缴纯保费的公式归纳
n
n
A 1 vt f (t)dt vt p dt
x: n| 0
T
0
tx
xt
Ax
vt p dt
0
tx
xt
m| Ax
m
vt
fT
t
dt
A A A m|
v f (t)dt 1
m1n t
1
x: n|
vK1, K 0,1, , n 1
Z
b K
v K
vn ,
K n, n 1,
表示n年期两全保险的精算现值。
方差为
A1 E x: n | n x
Var(Z )2A ( A )2
x
x
两全保险的趸缴纯保费
定义
被保险人投保后如果在n年期内发生保险责任范围内
的死亡,则在死亡年末给付保险金;如果被保险人
生存满n年,则在第n年末支付保险金的保险。
等价于n年生存保险加上n年定期寿险的组合。
基本函数关系
b 1, k 0,1, k
保险精算第二版习题及答案

4.某人从 50 岁时起 ,每年年初在银行存入 5000 元 ,共存 10 年 ,自 60 岁起 ,每年年初从银行提出一笔款作为生 活费用 ,拟提取 10 年。年利率为 10%, 计算其每年生活费用。
5000a&&10
10
1
x 1i
a&&10
x 12968.7123
5.年金 A 的给付情况就是 :1~ 10 年 ,每年年末给付 1000 元;11~ 20 年 ,每年年末给付 2000 元 ;21~30 年 ,每年 年末给付 1000 元。年金 B 在 1~ 10 年,每年给付额为 K 元 ;11~20 年给付额为 0;21~ 30 年 ,每年年末给付 K 元,
的利率为 i3 6% ,求该笔投资的原始金额。
A(3) 1000 A(0)(1 i1)(1 i2 )(1 i3) A(0) 794.1
5.确定 10000 元在第 3 年年末的积累值 :
(1) 名义利率为每季度计息一次的年名义利率
6%。
(2) 名义贴现率为每 4 年计息一次的年名义贴现率 6%。
1
10000 a(3) 10000 a(3)
D 、 58
4
P(50 X 60) s 50
s 50 s(60) 10 q50
s(50)
P( X 70) s(70)
20 p50
s 70 s(50)
s(60)
保险精算第二版习题及答案
2、 已知 Pr[ 5< T(60) ≤ 6] =0、 1895,Pr[ T(60) > 5] =0、 92094,求 q60 。
1.1*1.086956522*1.061363551*1.050625
1.333265858
(荐)保险事务专业保险精算习题及答案(财经类)保险事务)

2014年保险事务专业保险精算习题及答案第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
6.设m >1,按从大到小的次序排列 ()222x x v b q e p +与δ。
7.如果0.01t t δ=,求10 000元在第12年年末的积累值。
8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。
9.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6t tδ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。
10. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。
11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。
A. 7.19B. 4.04C. 3.31D. 5.2112.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。
保险精算习题及答案

第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。
寿险精算现值

主要内容:
寿险精算现值
生存年金精算现值
净保费
寿险精算现值
终身寿险 定期寿险 两全寿险 精算现值是保险赔付在投保时的期望现值。
死亡年年末赔付的寿险
1、终身寿险
用Ax表示终身寿险的精算现值.
Ax
vk 1d xk
或者
n
Ax
Ax
A1 x:n
证明:n Ax vn n px Axn
给出实际意义的解释。
5、延期m年的n年定期寿险
延期m年的定期n年寿险:用m n Ax表示,某人x岁开始投保, 延期m年后n年内死亡年末给付1单位元的延期寿险的现值。 现值随机变量为:
0 Z vK 1
K 0,1,..., m 1 K m, m 1,..., m n 1
bk
1v
k
1 k
qx
.
k 0
本节介绍当保险金随保险时期按等差数列变动时的现值表达式。
(1)递增型人寿保险的趸缴净保费
(2)递减型人寿保险的趸缴净保费
(1)标准递增终身寿险
某x岁的人投保,保单规定,若被保险人在第一年死亡,保险金为1单
位元;若被保险人在第二年内死亡,保险金为2单位元
用 IA 表示这种保险的现值,则 x
x岁的lx人共趸缴净保费为A1x:n lx,由平衡原理,有:
A1 x:n
lx
vd x
v2dx1
vnd xn1
所以:
A1 vdx v2dx1
x:n
lx
vndxn1
v 0 qx v2 1 qx vn q n1 x
第4章 人寿保险的精算现值

第4章 人寿保险的精算现值人寿保险的精算现值也称为趸交纯保费。
4.2 死亡年末给付的人寿保险死亡年末给付的人寿保险是指保险金的支付是在死亡发生的(保险期)年末进行的人寿保险。
4.2.1 定期寿险的趸交纯保费设)(x 投保n 年期定期寿险,保险金额为1元,保险金在死亡年度末给付。
设K = ][T ,即取整余命随机变量,给付函数用b K 1+表示,则有 b K 1+ = 1,当K = 0,1,2,…,n-10, 其它相应的贴现因子用v K 1+表示,保险金给付额折换成购买保险合同签单时的现值用随机变量Z 表示。
Z 的可能取值为z K 1+(K = 0,1,2,…,n-1)z K 1+ = v b K K 11++⋅ = vK 1+定期寿险的趸交纯保费用统一的精算符号1x n A 表示,那么1x nA= )(Z E =∑-=++⋅⋅11n k kx xk qp vk)(Z Var = )]([22)(ZE Z E -=2211()x nx nAA-其中 21x nA= )(2Z E = ∑-=++⋅⋅1)1(2n k kx xk qp vk4.2.2 生存保险n 年期生存保险是当被保险人生存至n 年期满时,保险人在第n 年年末支付保险金的保险。
设)(x 投保n 年期生存寿险,保险金额为1元,保险金在第n 年年末给付。
精算中用1x nA表示该生存保险的趸交纯保费。
可以推出1x nA=pvnxn⋅相应的方差为)(Z Var = )]([22)(Z E Z E - = 2112()x nx n A A-= q pvn nxxn⋅⋅24.2.3 终身寿险的趸交纯保费Ax=1lim x nn A→∞=∑∞=++⋅⋅1k kx xk qp vk相应的方差为)(Z Var = )]([22)(ZE Z E -= )(22A Ax x-4.2.4 两全保险的趸交纯保费设)(x 投保n 年期两全保险,保险金额为1元,若)(x 在n 年内死亡,则在死亡年末给付保险金,若)(x 生存满n 年,则在第n 年年末支付满期保险金。
第四章 人寿保险的精算现值(.3.27)共91页文档

E(Zt)E(bK1vK1)= Zt.kqx E(Zt)E(bTvT) Zt.fT(t)dt
寿险精算
8
这个期望给付就等于被保险人的趸缴纯保费 也就是精算现值,即
精算现值= E ( Z t )
净均衡原理并不是指每个被保险人个人缴 纳的净保费恰好等于他个人得到的保险给 付金额。它的实质是把相同风险的人视作 一个总体,这个总体在统计意义上的收支 平衡
寿险精算
9
§4.1 死亡即付的人寿保险
• 死亡即刻赔付就是指如果被保险人在保障 期内发生保险责任范围内的死亡,保险公 司将在死亡事件发生之后,立刻给予保险 赔付。它是在实际应用场合,保险公司通 常采用的理赔方式。
• 由于死亡可能发生在被保险人投保之后的 任意时刻,所以死亡即刻赔付时刻是一个 连续随机变量,它距保单生效日的时期长 度就等于被保险人签约时的剩余寿命。
连续型寿险
寿险精算
10
主要险种的精算现值(趸缴纯保费)的厘定 1.n年定期保险 2.终身保险 3.生存保险 4.n年期两全保险 5.延期寿险 ——延期m年的终身保险 ——延期m年的n年定期保险 ——延期m年的n年期两全保险
寿险精算
11
一、n年定期保险的精算现值
1.定义——什么是定期保险
2.基础模型假定条件
寿险精算
5
• 为了解决以上问题,趸缴净保费的厘定给 出了以下三条假设:
假定一:同性别、同年龄、同时参保的被保 险人的剩余寿命独立同分布 假定二:被保险人的剩余寿命分布可以用经 验生命表进行拟合 假定三:保险人可以预测将来的投资收益
这三条假定将单个被保险人的风险事故转 化为一个同质总体的风险事故
保险精算第4章(3)

i=10%,求这一保单的精算现值。
64
解: 20000 A40 20000 vk1 q k| 40 20000 vk1 k|q40
k0
k0
q k| 40
k
p40 q40k
l40k l41k l40
1 ,(0 k 65) 65
于是20000
A40
20000
64
(
1
)k + 1
4
一、终身寿险
模型:(x),bk 1, k 0,1, ,贴现函数vk1 于是 Zk 1 vk1; k 0,1, ,
精算现值E(Zk ) vk1 k|qx k0 记为 Ax
5
Ax表示x岁投保,保险金额为1个单位的终身寿险, 并在死亡年度末给付的保单的精算现值。
A v q x
k0
k 1 k|
x
v k 1
k0
dxk lx
lx Ax v k1d xk k0
表明:lx在 x 投保终身寿险的趸缴纯保费总额正好
等于生命表中在死亡年度末死亡人数的单位赔付。
6
例4.8:某人在40岁时买了保险额为20000元的终身
寿险,死亡年度末给付,假设他的生存函数可以表示
为
x
lx
1000
(1
) 105
4
解:
1000
A1 55:5|
50000
v k 1 k p55 q55k
k0
1000
k
4
0
1 1.06
k
1
l55 k l55
l55k l55k 1 l55 k
1000
k
4 0
1 1.06
k
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.21t
0
100.09220.055
70 ln1.21
寿险精算
17
二、终身寿险的精算现值 1.定义——什么是终身寿险 2.基础模型假定条件 1)投保年龄为x岁,保额为1单位元,则
bt 1,t 0
2)按年度实际贴现率复利计息,则 vt vt ,t 0
不容忽视的因素
❖保险赔付时间与赔付金额的不确定性
人寿保险的赔付金额与赔付时间依赖于被保险人的
生命状况。被保险人的死亡是一个随机变量,这就
意味着保险公司的赔付额也是一个随机变量,它依
赖于被保险人剩余寿命分布
❖被保障人群的大数性
这就意味着,保险公司可以依靠概率统计原理计算
出平均赔付并可预测将来的风险
寿险精算
第四章 人寿保险的精算现值
人寿保险精算现值概述
一、什么是人寿保险?
狭义——是以被保险人在保障期内是否死亡
作为保险事故的一种保险
广义——是以被保险人的生命作为保险事故
的一种保险。它包括以保障期内被保险人死
亡为保险事故的狭义寿险,也包括以保障期
内被保险人生存为保险事故的生存保险和两
全保险
本章主要介绍狭义的人寿保险的精算现值
对于保险公司来说,各种类型的保险产品, 无论采用何种缴费方式,在厘定净保费时 都应遵循这条基本原则。
寿险精算
5
• 保费净均衡原理的思想很好理解,但在保 险经营过程中要落实这条原理,保险公司 必须要解决以下几个问题:
1.什么时候会发生索赔事件? 2.发生索赔的概率有多大? 3.发生的索赔额等于多少? 4.钱的时间价值如何测量?
E ( Z 2 )
n 0
z
2 t
fT
(t)d
t
n 0
v 2t
t
px
d x t t
e p d n 2 t
0
t x xt t记 ,则 2Aຫໍສະໝຸດ x:nne2t 0t
px
d xt t
Var(Z)2A1 (A1 )2 x:n x:n
寿险精算
15
例
•设
S(x)1 x , 0x100 100
i0.1
1)投保年龄为x岁,保额为1单位元,保险期
限n年,则
bt
1,t n 0,t n
2)按年度实际贴现率复利计息,则 vt vt ,t 0
3.赔付现值变量
Zt
bt.vt
vt ,tn 0,tn
寿险精算
13
4.趸缴纯保费的厘定
记 A 1 为n年定期保险即刻赔付的趸缴纯保费 x :n 赔付事故发生等于死亡事故发生,所以赔付
3
四、人寿保险精算现值的概念
——也称为趸缴纯保费,是指在保单生效日 被保险人或投保人一次性缴付的,恰好覆盖 保险人将来赔付风险的费用。
就是投保人或被保险人在保单签发之日一 次性交付的纯保险费。
精算现值=毛保费-附加保费
寿险精算
4
五、厘定原理——保费净均衡原 则
保险人收取的净保费应该恰好等于未来支出 的保险赔付金,即保费收入的期望现值正好 等于将来的保险赔付金的期望现值。它的实 质是在统计意义下的收支平衡,是在大数场 合下,收费期望现值等于支出期望现值
寿险精算
6
• 为了解决以上问题,趸缴净保费的厘定给 出了以下三条假设:
假定一:同性别、同年龄、同时参保的被保 险人的剩余寿命独立同分布 假定二:被保险人的剩余寿命分布可以用经 验生命表进行拟合 假定三:保险人可以预测将来的投资收益
这三条假定将单个被保险人的风险事故转 化为一个同质总体的风险事故
寿险精算
7
六、基本符号约定
在以上三个假定条件满足的情况下,趸缴净
保费是这样厘定的:
假定风险事故会在t时刻发生(t为余命),则
b t ——给付额
vt
Zt
——折现因子或贴现因子 ——给付额在保单签发之日的现值
那么给付额的现值函数为:
Zt btvt
t取不同的值,现值函数有不同的表达式
寿险精算
8
余命有两种形式,所以 Zt bK1vK1— — 死 亡 年 末 给 付 Zt= bTvT— — 死 亡 时 立 即 给 付
寿险精算
1
二、人寿保险的分类
1.受益金额是否恒定 ——定额受益保险和变额受益保险 2.保障期是否有限 ——定期寿险和终身寿险 3.保单签约日与保障期起始日是否同时进行 ——非延期寿险和延期寿险 4.保险事故不同 ——死亡保险、生存保险和两全保险
寿险精算
2
三、人寿保险的性质
❖保障的长期性
这使得从投保到赔付期间的投资收益(利息)成为
• 计算
( 1) A1 30:10
(2)Var(zt)
寿险精算
16
(1)
A1 30:10
10vt
0
f30(t)dt
101.1t
1
dt
1
1.1t
0 10
0.092
0
70 70 ln1.1
fT(t)
S(xt)
S(x)
1 100
x
( 2 ) V ar(zt)2A 3 1 0:10(A 3 1 0:10)2
连续型寿险
寿险精算
11
主要险种的精算现值(趸缴纯保费)的厘定 1.n年定期保险 2.终身保险 3.生存保险 4.n年期两全保险 5.延期寿险 ——延期m年的终身保险 ——延期m年的n年定期保险 ——延期m年的n年期两全保险
寿险精算
12
一、n年定期保险的精算现值
1.定义——什么是定期保险
2.基础模型假定条件
已知未来给付的现值,再考虑该给付发生的概 率,就可以得出期望给付额
E(Zt)E(bK1vK1)= Zt.kqx E(Zt)E(bTvT) Zt.fT(t)dt
寿险精算
9
这个期望给付就等于被保险人的趸缴纯保费 也就是精算现值,即
精算现值= E ( Z t )
净均衡原理并不是指每个被保险人个人缴 纳的净保费恰好等于他个人得到的保险给 付金额。它的实质是把相同风险的人视作 一个总体,这个总体在统计意义上的收支 平衡
发生的概率就等于剩余寿命的密度函数
所以
A1 x:n
E(Zt)
n
0 zt fT (t)dt
n 0
v
t
t
p
x
xt
d
t
n 0
et
t
pxxtdt
寿险精算
14
5.赔付现值变量的方差
V a r ( Z ) E ( Z 2 ) [ E ( Z ) ] 2 E ( Z 2 ) ( A 1) 2 x : n
寿险精算
10
§4.1 死亡即付的人寿保险
• 死亡即刻赔付就是指如果被保险人在保障 期内发生保险责任范围内的死亡,保险公 司将在死亡事件发生之后,立刻给予保险 赔付。它是在实际应用场合,保险公司通 常采用的理赔方式。
• 由于死亡可能发生在被保险人投保之后的 任意时刻,所以死亡即刻赔付时刻是一个 连续随机变量,它距保单生效日的时期长 度就等于被保险人签约时的剩余寿命。