三段电流保护实验报告
实验三 三段式电流保护实验

实验三三段式电流保护实验【实验名称】三段式电流保护实验【实验目的】1.掌握无时限电流速断保护、限时电流速断保护及过电流保护的电路原理,工作特性及整定原则;2.理解输电线路阶段式电流保护的原理图及保护装置中各继电器的功用;3.掌握阶段式电流保护的电气接线和操作实验技术。
【预习要点】1.复习无时限电流速断保护、限时电流速断保护及过电流保护相关知识。
2.根据给定技术参数,对三段式电流保护参数进行计算与整定。
【实验仪器设备】【实验原理】1.无时限电流速断保护三段式电流保护通常用于3-66kV电力线路的相间短路保护。
在被保护线路上发生短路时,流过保护安装点的短路电流值,随短路点的位置不同而变化。
在线路的始端短路时,短路电流值最大;短路点向后移动时,短路电流将随线路阻抗的增大而减小,直至线路末端短路时短路回路的阻抗最大,短路电流最小。
短路电流值还与系统运行方式及短路的类型有关。
图3-1曲线1表示在最大运行方式下发生三相短路时,线路各点短路电流变化的曲线;曲线2则为最小运行方式下两相短路时,短路电流变化的曲线。
图3-1 瞬时电流速断保护的整定及动作范围由于本线路末端f1点短路和下一线路始端的f2点短路时,其短路电流几乎是相等的(因f1离f2很近,两点间的阻抗约为零)。
如果要求在被保护线路的末端短路时,保护装置能够动作,那么,在下一线路始端短路时,保护装置不可避免地也将动作。
这样,就不能保证应有的选择性。
为了保证保护动作的选择性,将保护范围严格地限制在本线路以内,就应使保护的动作电流I op1.1(为保护1的动作电流折算到一次电路的值)大于最大运行方式下线路末端发生三相短路时的短路电流I f.B.max,即I op1.1 I f.b.max,I op1.1=K rel I f.b.max式中,K rel—可靠系数,当采用电磁型电流继电器时,取K rel=1.2~1.3。
显然,保护的动作电流是按躲过线路末端最大短路电流来整定,可保证在其他各种运行方式和短路类型下,其保护范围均不至于超出本线路范围。
PLC综合实验实验报告单侧电源辐射型电网三段式过电流保护

单侧电源辐射型电网三段式过电流保护PLC 综合实验实验报告学院:电控学院专业:电气1001班姓名:学号:可编程综合实验实验报告一.实验名称:用可编程控制器来实现单侧电源辐射型电网三段式过电流保护。
二.实验目的:本次实验针对电气工程及其自动化专业。
通过综合实验,使学生对所学过的可编程控制器在继电保护中的应用有一个系统的认识,并运用自己学过的知识,自己设计三段保护装置。
要求用可编程取代传统的继电器装置,自己设计,自己编程,最后自行调试,达到设计要求。
三.实验原理:电流的增大和电压降低是电力系统中发生短路故障的基本特征。
利用此特征实现的保护是基本的,也是最早得到应用的继电保护原理。
单侧电源网络的相间电流保护属于无方向性的、具有阶梯动作特征的多段式保护,其选择性依靠上、下级保护的整定值和动作值的配合来保证。
电流保护的段数根据整定配合的需要而定,但一般至少应有三段。
此外,参考“工厂供电”、“继电保护原理”和“电气控制技术”有关部分。
四.欧姆龙CPM2A PLC资料1.基本配置与功能电源电压: AC : 220V 50Hz允许电压波动范围 AC 83~264V供给外部电源 DC 24V指令种类基本指令14种 16us应用指令77种 MOV=16.3us输入继电器入口地址 00000~00915输出继电器出口地址 01000~01915内部继电器地址 20000~23115 不做出口用输入电压:24V 10%IN00000~00002的输入电阻为2K. 输入电流为12mA.其他入口的输入电阻为4.7K. 输入电流为5mA.ON 响应时间 1~128毫秒以下OFF响应时间 1~128毫秒以下最大开关能力:DC 24V I 2A ON、OFF 响应时间15毫秒AC 250V I 2A2.输入与输出图输入24点输出16点 Vcc可用外部电源或本机电源、输出24V、二极管反向耐压,负载电压3倍以上,平均整流1A二极管反向耐压负载电压3倍电流1A 负载为交流时五.实验设计要求:(1)各段保护动作时,均应以中间间电器ZJ1为断路器跳闸出口执行元件。
微机线路继电保护实验报告

微机线路继电保护实验报告开课学院及实验室:学院年级、专业、班姓名学号实验课程名称电力工程基础成绩实验项目名称微机线路继电保护实验指导老师一、实验目的1)熟悉微机保护装置及其定值设置。
2)掌握采用微机保护装置实现三段式保护的原理、参数设置方法。
二、实验原理三段式电流保护是分三段相互配合构成的一套保护装置。
第一段是电流速断保护、第二段是限时电流速断保护、第三段是定时限过电流保护。
第一段电流速断是按照躲开某一点的最大短路电流来整定,第二段限时电流速断是按照躲开下一级相邻元件电流速断保护的动作电流整定,第三段定时限过电流保护则是按照躲开最大负荷电流来整定。
但由于电流速断不能保护线路全长,限时电流速断又不能作为相邻元件的后备保护,因此,为保证迅速而有选择地切除故障,常将电流速断、限时电流速断和过电流保护组合在一起,构成三段式电流保护。
电流速断部分由继电器1、2、3组成、限时电流速断部分由继电器4、5、6组成和过电流保护由继电器7、8、9组成。
由于三段的启动电流和动作时间整定得均不相同,因此,必须分别使用三个电流继电器和两个时间继电器,而信号继电器3、6、9分别用以发出I、II、III段动作的信号。
三段式电流保护优点:接线简单、动作可靠,切除故障快,在一般情况下能够满足快速切除故障的要求。
所以在电网中35kV、10kv及以下的电压配电系统中获得了广泛的应用。
三段式电流保护范围说明图三段式电流保护原理接线图三段式电流保护展开图三、实验设备电源屏,NFL641微机线路保护装置,MDLA断路器模拟装置,DL-802微机继电保护测试仪,PC机,实验导线若干。
4.1 定值管理本装置的整定值均以数字形式存放在CPU 插件的E2PROM 中,可同时存放32套不同的整定值,以适应不同的运行方式。
正常选择0区定值。
4.2 定值及软压板清单4.2.1 定值说明序号定值名称范围单位备注1 控制字一0000~FFFF 无参见控制字说明,装置自动生成2 控制字二0000~FFFF 无参见控制字说明,装置自动生成GD NFL641微机线路保护装置电源端子板1 直流220V电源正极6 直流220V电源负极1-1D NFL641微机线路保护装置接口端子板7 保护电流输入端IA8 保护电流输入端IB9 保护电流输入端IC10 零线端IN33 合闸线圈信号39 跳闸线圈信号42 跳合闸操作电源负MDLA模拟断路器:合A 合闸信号输入端跳A 跳闸信号输入端跳合闸输入跳合闸输入操作电源负A跳A跳闸信号输出端A 跳合闸信号公共端A合A合闸信号输出端DL-802微机继电保护测试仪:IA A相故障电流输出端IB B相故障电流输出端微机继电保护测试仪分别在A、B、C三相加入4A电流,步长设置为0.01A IC C相故障电流输出端IN 故障电流输出端公共端A A跳闸信号输入端公共A跳合闸信号公共端R A跳闸信号输入端电源屏:1 外部三相电源A相输入端2 外部三相电源B相输入端3 外部三相电源C相输入端4 三相电源零线输入端17 电源屏直流220V正极输出端18 电源屏直流220V负极输出端五、实验过程原始记录(数据、图表、计算等)微机继电保护测试仪在A、B、C三相加入5A电流,步长设置为0.01A:微机继电保护测试仪分别在A、B、C三相加入3A电流,步长设置为0.01A六、实验结果分析1) 说明三段式保护的原理2)分析实验记录现象的原因。
三段式带低压闭锁的电流方向保护实验内容

三段式带低压闭锁的电流方向保护实验内容
三段式带低压闭锁的电流方向保护实验内容如下:
1. 实验目的:通过实验验证三段式带低压闭锁的电流方向保护装置的工作原理和保护效果。
2. 实验装置和材料:电流变压器、闭锁装置、电流方向保护装置、电阻箱、电流表、电压表、直流电源、开关等。
3. 实验步骤:
- 首先,搭建实验电路,将电流变压器连接到待保护的电路中,并将电流方向保护装置连接到电流变压器的输出端,同时接入闭锁装置。
- 接下来,将电压表和电流表分别连接到闭锁装置和待保护的电路中,以测量电流和电压的大小。
- 打开直流电源,并逐渐增加输出电流,观察实验电路中的电流和电压变化情况。
- 当电流方向保护装置检测到电流方向短路或逆变时,闭锁装置将自动切断电路,并显示保护动作信号。
- 记录实验数据,包括保护装置的保护动作值、闭锁电压和电流的大小等。
4. 实验注意事项:
- 在进行实验前,应仔细检查实验装置和电路连接是否正确,并确保安全可靠。
- 在实验过程中,根据实验需求适当调节直流电源的输出电流,避免超出装置的额定范围。
- 在进行实验时,应严格遵守实验安全规范,注意防电击和防短路等安全措施。
通过这个实验,可以验证三段式带低压闭锁的电流方向保护装置的有效性,了解其在电力系统中的应用和作用。
三段式零序电流保护

实习〔实训〕报告实习〔实训〕名称:电力系统继电保护课程设计学院:专业、班级:指导教师:报告人:学号:时间: 2017年1月5日I / 21II / 21目录1设计题目......................................................................... (3)2 分析设计要求........................................................................... (4)2.1设计规定................................................................... . (5)2.2本线路保护计........................................................................... .. (6)2.3 系统等效电路图 (7)3 三段式零序电流保护整定计算........................................................................... .. (8)III / 213.1 三段式零序电流保护中的原那么........................................................................... . (9)3.2 M侧保护1零序电流保护Ⅰ段整定........................................................................... (10)3.3 N侧保护1零序电流保护Ⅰ段整定........................................................................... . (11)4 零序电流保护评价........................................................................... .. (12)4.1原理与容 (13)4.2零序电流保护的优缺点 (13)5 总结........................................................................... . (14)参考文献.............................................................................. (15)IV / 21V / 216 / 211 设计题目如图1所示为双电源网络中,线路的阻抗km X /4.01Ω=,km X /4.10Ω=,两侧系统等值电源的参数:相电动势:kV E E N M 3115==各电源阻抗:Ω==521M M X X ,Ω==1021N N X X ,Ω=80M X ,Ω=150N X 。
三段式电流保护课程设计心得【模版】

学号 125《电力系统继电保护》课程设计(2012届本科)题目:三段式电流保护课程设计学院:物理与机电工程学院专业:电气工程及其自动化作者姓名:指导教师:职称:完成日期: 2015 年 12 月 25 日摘要本次课程设计以电网的某条线路为例进行了三段式电流保护的分析设计。
重点进行了电路的化简,求各节点短路电流,继电保护中电流保护整定值的具体计算,并对计算出的数值进行灵敏度校验。
由于题中所给部分数据缺失,保护3限时电流速断未进行整定计算。
关键字:继电保护;电流保护目录1设计原始资料 (1)1.1具体题目 (1)2设计要考虑的问题 (2)2.1设计规程 (2)2.1.1短路电流计算规程 (2)2.1.2保护方式的选取及整定计算 (3)2.2设计的保护配置 (3)2.2.1主保护配置 (3)2.2.2后备保护配置 (3)3短路电流计算 (3)3.1等效电路的建立 (3)3.2保护短路点及短路点的选取 (4)3.3短路电流的计算 (5)3.3.1最大运行方式短路电流计算 (5)3.3.2最小运行方式短路电流计算 (5)4保护的配合及整定计算 (6)4.1主保护的整定计算 (6)4.1.1动作电流的整定 (6)5原理图及展开图的的绘制 (8)5.1原理接线图 (8)5.2交流回路展开图 (8)5.3直流回路展开图 (9)6继电器的选择 (9)7保护的评价 (11)参考文献 (12)1设计原始资料1.1 具体题目如图所示网络,过电流保护1、2、3的最大负荷电流分别为300、400、500A ,E φ=37/√3KV ,Z 1=0.4Ω/km ,K rel Ⅰ=1.2,K rel Ⅱ=1.1,K rel ,Ⅲ=1.15,K ss =1.5,K res =0.85;L A−B =40Km ,L B−C =60Km,Z T =72Ω。
t 1.max =t 2.max =0.5s ,t 3.max =1s 。
Z s.min =3Ω,Z s.max =5 Ω。
线路三段式电流保护 报告

实验一三段式电流保护一、传统电磁型继电器三段式电流保护(1)实验目的1.掌握无时限电流速断保护、带时限电流速断保护及过电流保护的电路原理、工作特性及整定原则。
2.理解输电线路阶段式电流保护的原理图、展开图及保护装置中各继电器的功用。
(2)实验原理1.阶段式电流保护的构成无时限电流速断只能保护线路的一部分,带时限电流速断只能保护本线路全长,但却不能作为下一线路的后备保护,还必须采用过电流保护作为本线路和下一线路的后备保护。
由无时限电流速断、带时限电流速断与定时限过电流保护相配合可构成的一整套输电线路阶段式电流保护,叫做三段式电流保护。
输电线路并不一定都要装三段式电流保护,有时只装其中的两段就可以了。
例如用于“线路-变压器组”保护时,无时限电流速断保护按保护全线路考虑后,此时,可不装设带时限电流速断保护,只装设无时限电流速断和过电流保护装置。
又如在很短的线路上,装设无时限电流速断往往其保护区图1 三段式电流保护各段的保护范围及时限配合很短,甚至没有保护区,这时就只需装设带时限电流速断和过电流保护装置,叫做二段式电流保护。
在只有一个电源的辐射式单侧电源供电线路上,三段式电流保护装置各段的保护范围和时限特性见图2.11-1。
XL-1线路保护的第Ⅰ段为无时限电流速断保护,它的保护范围为线路XL-1的前一部分即线路首端,动作时限为t1I,它由继电器的固有动作时间决定。
第Ⅱ段为带时限电流速断保护,它的保护范围为线路XL-1的全部并延伸至线路XL-2的一部分,其动作时限为t1II=t2I+△t。
无时限电流速断和带时限电流速断是线路XL-1的主保护。
第Ⅲ段为定时限过电流保护,保护范围包括XL-1及XL-2全部,其动作时限为t 1III,它是按照阶梯原则来选择的,即t1III=t2III+△t ,t2III为线路XL-2的过电流保护的动作时限。
当线路XL-2短路而XL-2的保护拒动或断路器拒动时,线路XL-1的过电流保护可起后备作用使断路器1跳闸而切除故障,这种后备作用称远后备。
输电线路电流微机保护实验报告.

实验报告姓名: 班级: 学号:实验二 输电线路电流微机保护实验一、实验目的1.学习电力系统中微机型电流、电压保护时间、电流、电压整定值的调整方法。
2.了解电磁式保护与微机型保护的区别。
二、基本原理1.试验台一次系统原理图试验台一次系统原理图如图3-1所示。
2.电流电压保护基本原理1)三段式电流保护当网络发生短路时,电源与故障点之间的电流会增大。
根据这个特点可以构成电流保护。
电流保护分无时限电流速断保护(简称I 段)、带时限速断保护(简称II 段)和过电流保护(简称III 段)。
下面分别讨论它们的作用原理和整定计算方法。
(1) 无时限电流速断保护(I 段)单侧电源线路上无时限电流速断保护的作用原理可用图3-2来说明。
短路电流的大小I k 和短路点至电源间的总电阻R ∑及短路类型有关。
三相短路和两相短路时,短路电流I k 与R ∑的关系可分别表示如下:lR R E R E I s ss k 0)3(+==∑ 图3-1 电流、电压保护实验一次系统图lR R E I s s k 0)2(*23+=式中, E s ——电源的等值计算相电势;R s —— 归算到保护安装处网络电压的系统等值电阻;R 0—— 线路单位长度的正序电阻;l —— 短路点至保护安装处的距离。
由上两式可以看到,短路点距电源愈远(l 愈长)短路电流L k 愈小;系统运行方式小(R s 愈大的运行方式)I k 亦小。
I k 与l 的关系曲线如图3-2曲线1和2所示。
曲线1为最大运行方式(R s 最小的运行方式)下的I K = f (l )曲线,曲线2为最小运行方式(Rs 最大的运行方式)下的I K = f (l )曲线。
线路AB 和BC 上均装有仅反应电流增大而瞬时动作的电流速断保护,则当线路AB 上发生故障时,希望保护KA 2能瞬时动作,而当线路BC 上故障时,希望保护KA 1能瞬时动作,它们的保护范围最好能达到本路线全长的100%。
但是这种愿望是否能实现,需要作具体分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Beijing Jiaotong University
电力系统继电保护实验报告
三段电流保护实验
姓名:
学号:
班级:电气1103
实验指导老师:倪平浩
一、电力系统继电保护实验要求
①认真预习实验,保证在进实验室前,要掌握继电保护实验基础知识,熟悉继电保护实验环境。
要有一份详细的预习报告,预习报告必须认真写,须包含自己设计的实验电路。
不得有相同的或者复印的预习报告。
如果没有预习报告、预习报告雷同或者复印预习报告,则报告相同的同学都不得进入实验室做实验,回去重新预习,以后约时间做实验。
②实验过程中要认真记录数据和实验中出现的问题,积极思考实验中的问题,可以讨论,但不能大声喧哗,不得做与实验无关的事情。
③实验报告要认真写,要写出调试过程的问题,分析问题原因,和如何解决问题,不得抄袭。
④保持实验室卫生,不得在实验室里乱丢弃垃圾。
实验结束后,把实验桌周围的垃圾打扫干净。
二、电力系统继电保护常用继电器
1、电流继电器
电流继电器装设于电流互感器二次回路中,当电流大于继电器动作电流时动作,经跳闸回路作用于断路器跳闸。
结构图内部接线图
1.电磁铁2.线圈3.Z型舌片
4.弹簧5.动触点6.静触点
8.刻度盘9.舌片行程限制杆
7.整定值调整把
手
10.轴承
图13-1 DL-11型电流继电器结构图
动作原理:
如图13-1,当继电器线圈回路(图中2)中有电流通过时,产生电磁力矩,使舌片(图中3)向磁极靠近,但由于舌片转动时必须克服弹簧(图中4)的反作用力,因此通过线圈的电流必须足够大,当大于整定的电流值时(图中7、8),产生的电磁力矩使得舌片足以克服弹簧阻力转动,使继电器动作,接点闭合(图中5、6)。
电流继电器动作电流、返回电流、返回系数:
使继电器刚好动作时的最小电流,称为继电器的动作电流。
使继电器刚好返回时的最大电流,称为继电器的返回电流。
电流继电器的返回电流与动作电流的比值,称为返回系数。
电流继电器动作电流的调整方法:
1.改变整定值调整把手的位置(图中7、8)。
通过调整把手,可改变弹簧的反作用力矩,从而可平滑地调整继电器动作电流。
2.改变线圈地连接方式。
电流继电器线圈有两个,因此有两种连接方式:串联和并联。
当调整把手位置一定,采用串联接法,继电器动作电流为刻度盘标注动作电流值;若采用并联接法,继电器动作电流为刻度盘标注动作电流值的两倍。
图13-2 DL-11型电流继电器
2、时间继电器
时间继电器在继电保护回路中,当保护设备故障发生后,经过指定的延时后作用于断路器跳闸。
结构图内部接线图
1.线圈2.磁导体3.衔铁
4.返回弹簧5.切换接点压头6.瞬时动触点
7.瞬时常闭触点8.瞬时常开触点9.扇形齿曲臂
10.扇形齿11.钟表弹簧12.钟表弹簧调整
器
13.传动齿轮14.摩擦离合器15.主传动齿轮
16.传动齿轮17、18中间齿轮19.摆齿轮
20.钟摆21.摆锤22.延时动触点
23.延时静触点24.时间刻度盘25.动触点轴
图13-3 DS-110型时间继电器结构图
动作原理:
当线圈(图中1)接入电压后,衔铁(图中3)即被瞬时吸入电磁线圈中,依附在衔铁上的杠杆(图中9)被释放,在弹簧(图中11)的的作用下,使扇形齿轮(图中10)顺时针方向旋转,并带动齿轮(图中13)、动触点(图中22)及与其同轴的摩擦离合器(图中14)一起逆时针旋转,通过主齿轮(图中15)传动钟表机构,钟表机构按整定的时间(图中23)接通动触点(图中22),从而实现了延时的作用。
当加在线圈上的电压消失后,在返回弹簧(图中4)的作用下,杠杆(图中9)立即使扇形齿轮恢复原位,动触点(图中25)轴顺时针方向旋转,摩擦离合器(图中14)与传动齿轮(图中13)脱开,此时钟表机构不参加工作,接点瞬时返回。
图13-4 DS-110型时间继电器
3、中间继电器
中间继电器主要用来扩大接点容量和数量,作为保护出口跳闸用,也作为辅助继电器用。
结构图内部接线图
1.电磁铁2.线圈3.衔铁
4.静触点5.动触点6.反作用弹簧
7.衔铁行程限制器
图13-5 DZ-17型中间继电器结构图
动作原理:
当线圈(图中2)加上70%以上额定电压时,衔铁(图中3)就会被吸到电磁铁(图中1)的磁极上,动触点(图中5)与静触点(图中4)接通,继电器动作。
如线圈失电,衔铁受弹簧(图中6)的拉力而返回原位。
图13-6 DZ-17型中间继电器
4、信号继电器
结构图内部接线图
1.电磁铁2.线圈3.衔铁
4.动触点5.静触点6.信号掉牌
7.弹簧8.复归把手9.观察窗
图13-7 DX-11型信号继电器结构图
动作原理:
当信号继电器线圈(图中2)流过电流时,电磁力吸引衔铁(图中3)而释放信号牌(图中6),信号牌由于本身的重量而下落,并停留在垂直位置,通过观察窗(图中9)可以看见继电器动作掉牌信号,同时固定信号牌的轴旋转90度,使动触点(图中4)与静触点(图中5)接通,从而接通灯光或音响信号回路。
当故障处理复位信号时,由工作人员转动信号继电器上的复位复位把手(图中8),信号掉牌和触点复归原位。
图13-8 DX-11型信号继电器
三、继电保护实验内容
1、三段电流保护实验
1)实验目的
①熟悉三段电流保护的接线;
②掌握三段电流保护的整定计算原则和保护的性能。
2.)实验电路
实验电路如图13-1所示。
图13-1 实验电路图
3)实验注意问题
①交流电流回路用允许大于5A的导线;
②接好线后请老师检查。
4)保护动作参数的整定
①要求整定参数如下:
保护I段动作电流为,动作时间为0秒;
保护III段动作电流为;动作时间为2秒。
②按上述要求进行电流继电器和时间继电器的整定。
时间继电器的整定:将时间继电器整定把手调整到要求的刻度位置。
电流继电器的整定:按图接线。
先合交流电源开关(注意:直流电源先不投入),按下模拟断路器手合按钮,调节单相调压器改变电流,分别整定电流I、III段的动作电流,要求电流继电器的动作电流与整定值的误差不超过5%。
将实际整定结果填入表13-1。
表13-1 整定结果
名称I段III段
动作电流
动作时间0S2S
5)模拟故障观察保护的动作情况
①电流I段
通入5A电流(模拟I段区内故障):先合交流电源开关(注意:直流电源先不投入),按下模拟断路器手合按钮,调节调压器使电流为5A,再按下模拟断路器手分按钮,投入直流
电源,按下模拟断路器手合按钮(模拟手合I段区内故障),观察各继电器的动作情况并记录:电流继电器(DL11)、(DL13)起动;时间继电器(会)起动;信号继电器(2XJ)掉牌,保护(0)秒跳闸。
②电流III段
通入电流(模拟III段区内故障):实验方法同上。
电流继电器(DL13)起动,时间继电器(会)起动;信号继电器(1XJ)掉牌,保护(2)秒跳闸。
区外故障:通入1A电流,模拟III段范围以外故障:实验方法同上。
所有继电器(都不)动作。
6)思考题
①在三段式电流保护中,如果在I段保护范围内发生了相间短路,当I段的起动元件拒绝动作,将如何切除故障
答:第III段保护会作为后备保护而动作,切出故障
②中间继电器的作用是什么
答:中间继电器是用来转换和传递控制信号的元件。
输入信号是线圈的通电断电信号,输出信号为触点的动作。
它本质上是电压继电器,但具有触头多(多至六对或更多)、触头能承受的电流较大、动作灵敏等特点。
可以用中间继电器来扩大接点容量。