《实数》测试卷及答案

合集下载

中考数学复习《实数》专项测试卷(带答案)

中考数学复习《实数》专项测试卷(带答案)

中考数学复习《实数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.与2(9)-结果相同的是( )A.3±B.|3|C.23D.方程281x =的解2.下列说法正确的是( )A.81-平方根是-B.81的平方根是9C.平方根等于它本身的数是1和0D.21a +一定是正数3.一个正方体的棱长为a ,体积为b ,则下列说法正确的是( )A.b 的立方根是a ±B.a 是b 的立方根C.a b =D.b a =4.下列关于5说法错误的是( ) A.5是无理数 B.数轴上可以找到表示5的点C.5相反数是5-D.53>5.估计11832的运算结果介于( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间6.若实数a ,b 满足13a b +=( )A.a ,b 都是有理数B.a b -的结果必定为无理数C.a ,b 都是无理数D.a b -的结果可能为有理数7.如图,在ABC △中90ACB ∠=︒,AC=3,BC=1,AC 在数轴上,点A 所表示的数为1,以点A 为圆心,AB 长为半径画弧,在点A 左侧交数轴于点D ,则点D 表示的数是( )10 B.10- C.110-1018.若1014M -=,12N =则M ,N 的大小关系是( )A.M N <B.M N =C.M N >D.无法比较9.已知实数tan30sin 45cos60a b c =︒=︒=︒,,,则下列说法正确的是( )A.b a c >>B.a b c >>C.b c a >>D.a c b >>10.定义运算:若,则,例如328=,则2log 83=.运用以上定义,计算:53log 125log 81-=( )A.1-B.2C.1D.411.在下列计算中,正确的是( )A.()56+-=-B.122=C.()26⨯-=D.3sin 30︒= 12.式子52的倒数是( ) A.52 B.52- C.25+ D.52213.对于实数a 、b ,定义22()*2()a b ab a b a b ab a b a b +-≥⎧=⎨--<⎩,则结论正确的有( )①5*31=;②22272(1)*(21)451(1)m m m m m m m m ⎧-+-<-=⎨-+≥⎩; ③若1x ,2x 是方程2560x x --=的两个根,则12*16x x =或17-;④若1x ,2x 是方程210x mx m +--=的两个根12*4x x =,则m 的值为3-或.A.1个B.2个C.3个D.4个二、填空题14.在实数: 中无理数有______个.15a 是一个无理数,且13a <<,请写出一个满足条件的a 值_____.16.011|3|(3π)()tan 45162--+-+-+︒+=______. 17.若m 为7的整数部分,n 为7的小数部分,则)7m n =______. 18.实数a ,b ,c 在数轴上的点如图所示,化简222()()a a b b c +-=____________.三、解答题19.计算m a b =log (0)a b m a =>6-(1)11233- (2)12632322⨯- (3)2245tan 30cos60︒+⋅︒︒20.计算:)102cos6031(16)27--︒-+-. 21.设5a 是一个两位数,其中a 是十位上的数字(9a ≤≤).例如,当a =时5a 表示的两位数是45.尝试:①当1a =时2152251210025=⨯⨯+=;①当2a =时2256252310025==⨯⨯+;①当3a =时2351225==______;…… 归纳:()25a 与()100125a a ++有怎样的大小关系? 验证:请论证“归纳”中的结论正确.22.若正整数a 是4的倍数,则称a 为“四倍数”,例如:8是4的倍数,所以8是“四倍数”.(1)已知p 是任意三个连续偶数的平方和,设中间的数为2n (n 为整数),判断p 是不是“四倍数”,并说明理由;(2)已知正整数k 是一个两位数,且10k x y =+(19x y ≤<≤,其中x ,y 为整数),将其个位上的数字与十位上的数字交换,得到新数m .若m 与k 的差是“四倍数”,求出所有符合条件的正整数k . 参考答案1.答案:C 解析:2(9)819-==33=239=方程281x =的解为9x =±. 故选C.2.答案:D解析:A 、81-是负数,负数没有平方根,不符合题意;B 、819= 9的平方根是3±,不符合题意;C 、平方根等于它本身的数是0,1的平方根是1±,不符合题意;D 、21>0a + 正数的算术平方根大于0,符合题意.故选:D.3.答案:B 解析:一个正方体的棱长为a ,体积为b∴3b a =,即:3a b =∴a 是b 的立方根故选:B.4.答案:D 解析:①5 2.2365857......≈属于无限不循环小数 ①5是无理数,故A 选项正确;①数轴上可以表示任意实数 ①数轴上可以找到表示5的点,故B 选项正确;①5相反数是5,故C 选项正确; ①5 2.2365857......≈①53<,故D 选项错误,符合题意故选:D.5.答案:C 解析:1183232223=+33=+; 132<<4335∴<<;故选:C.6.答案:D解析:A 、当2a =时13213b ==--a 是有理数,b 是无理数,故A 错误;B 、当1322a b ==-,那么0a b -=,所以B 错误; C 、当2a =时13b =-,a 是有理数,故选项C 错误;D 、当1322a b ==-,那么0a b -=,所以选项正确,D 正确. 故选:D.7.答案:C 解析:在Rt ABC △中3AC =,BC=1 22223110AB AC BC ∴=++=∴点D 表示的数为:110故选:C.8.答案:C 解析:1014M -=12= 1011103424M N ∴-=-=103> 0M N ∴->M N ∴>.故选C.9.答案:A 解析:321tan 30sin 45cos 602a b c =︒==︒==︒= 132232<< ∴b a c >> 故选:A.10.答案:A解析:35125= 4381=5log 1253∴= 3log 814=53log 125log 81∴-34=-1=-.故选:A.11.答案:A解析:A 、5(6)561+-=-=-正确,符合题意; B 、1222=原计算错误,不符合题意; C 、3(2)6⨯-=-原计算错误,不符合题意;D 、1sin 302=︒原计算错误,不符合题意. 故选: A.12.答案:A 解析:()()1521 52525252⨯==--+式子5的倒数是52式子5的倒数是52,故选:A.13.答案:C 解析:①5*32523531=⨯+⨯-⨯=,故①正确;②当21m m ≥-时即1m ≤时()()()22*212221212422272m m m m m m m m m m m m -=+---=+--+=-+-当21m m <-时即1m >时 ()()()22*21221214221451m m m m m m m m m m m m -=----=---+=-+()()222721*21451(1)m m m m m m m m ⎧-+-≤∴-=⎨-+>⎩,故②错误; ③1x ,2x 是方程2560x x --=的两个根 125x x ∴+= 126x x =-当12x x ≥时()()121212*225616x x x x x x =+-=⨯--= 当12x x <时()()121212*226517x x x x x x =-+=⨯--=-,故③正确;④1x ,2x 是方程210x mx m +--=的两个根12x x m ∴+=- 121x x m =--当12x x ≥时()()121212*22114x x x x x x m m m =+-=----=-+= 解得:3m =-当12x x <时()()121212*221()24x x x x x x m m m =-+=⨯----=--=解得:6m =-综上可知:①③④正确 故选:C.14.答案:4 解析:3644= 其中8 ⋯ π -2是无理数,共4个 故答案为:4.15.答案:2解析:2123<< 2a ∴=.故答案:2(答案不唯一).16.答案:7 解析:0113(3π)()tan 45162-+-+-+︒+31(2)14=++-++7=.17.答案:3 解析:479<<273∴<2m ∴= 72n = )7(72)(72)743m n ==-=∴故答案为3.18.答案:0解析:由数轴可知0b c a <<<则0a b +< 0b c -<222()||()a a b c b c +---()()a a b c b c =-+++-a abc b c =--++-0=.故答案为:0.19.答案:(1)1(2)5 (3)76解析:(1)(133********===; (2)12632322⨯- 22126322⨯=+632=-+5=;(3)2245tan 30cos60︒+⋅︒︒2312222=+⨯⎝⎭ 21113=+⨯ 76=. 20.答案:532 解析:)102cos6031(16)27--︒-+- 1113133222=-+=53.21.答案:尝试3410025⨯⨯+ 归纳()()25100125a a a =++ 验证:见解析解析:尝试:当3a =时2351225==3410025⨯⨯+; 归纳:()()25100125a a a =++; 验证:等号左边222(5)(105)10010025a a a a =+=++ 等号右边2100(1)2510010025a a a a ++=++ 所以,等号左边=等号右边,等式成立,即证.22.答案:(1)p 是“四倍数”;理由见解析(2)15,19,26,37,48,59解析:(1)p 是“四倍数”,理由如下:①()()()22222222p n n n ++=+-()22128432n n =+=+①p 是“四倍数”;(2)由题意得10m y x =+,则()()10109m k y x x y y x -=+-+=-. ①19x y ≤<≤,其中x ,y 为整数①18y x ≤-≤.若()9y x -.是4的倍数,则4y x -=或8y x -=.当4y x -=时符合条件的k 是15,26,37,48,59; 当8y x -=时符合条件的k 是19.①所有符合条件的正整数k 是15,19,26,37,48,59.。

2023年七年级下学期第6章《实数》测试卷及答案解析

2023年七年级下学期第6章《实数》测试卷及答案解析

位长度沿数轴向右运动,当点 A 运动到﹣6 所在的点处时,求 A,B 两点间距离.
(3)在(2)的条件下,现 A 点静止不动,B 点沿数轴向左运动时,经过多长时间 A,B
两点相距 4 个单位长度.
30.不用计算器,比较下列各个数的大小: t和 .
第 4 页 共 14 页
2023 年七年级下学期第 6 章《实数》测试卷
参考答案与试题解析
一.选择题(共 10 小题) 1.已知(a﹣3)2+|b﹣4|=0,则 的平方根是( )
A.
B.﹣2
C.
解:∵(a﹣3)2+|b﹣4|=0, 而(a﹣3)2≥0,|b﹣4|≥0 ∴(a﹣3)2=0,|b﹣4|=0,
∴a=3 且 b=4.
∴,
D.﹣4
∴ 的平方根为 ,
故选:A. 2.下列运算正确的是( )
故选:D.
3.若|3﹣a|
h 0,则 a+b 的值是( )
A.﹣9
B.﹣3
C.3
解:∵|3﹣a|
h 0,
∴3=a,b=﹣6,
则 a+b=﹣3.
故选:B.
4.下列各式中,正确的是( )
25.用计算器探索.已知按一定规律排列的一组数:1, , ,…, 中选择出若干个数,使它们的和大于 3,那么至少要选几个数?
26.已知实数 x,y 满足关系式 t |y2﹣1|=0.
, ,如果从 t
(1)求 x,y 的值;
(2)判断 t 是有理数还是无理数?并说明理由.
27.给出定义如下:若一对实数(a,b)满足 a﹣b=ab+4,则称它们为一对“相关数”,如:
t
,故 , 是一对“相关数”.
(1)数对(1,1),(﹣2,﹣6),(0,﹣4)中是“相关数”的是

人教版初中七年级数学下册第六单元《实数》测试题(含答案解析)

人教版初中七年级数学下册第六单元《实数》测试题(含答案解析)

一、选择题1.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个D解析:D【分析】 直接根据无理数的定义直接判断得出即可.【详解】解:无理数有8,π,2.32232223共3个. 故选D .【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.2.64的算术平方根是( )A .8B .±8C .22D .22± C解析:C【分析】先化简64,再求算术平方根即可.【详解】64=8, 8的算术平方根是22,即64的算术平方根是22.故选择:C .【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.3.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ B解析:B【分析】根据是数的运算,A 点表示的数加两个圆周,可得B 点,根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:A 点表示的数加两个圆周,可得B 点,所以,21π-,故选:B .【点睛】本题考查了实数与数轴,直径为1个单位长度的圆从A 点沿数轴向右滚动,A 点表示的数加两个圆周.4.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .10C 解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n 的值.【详解】解:∵<5<6,∴8<<9,∴n =9.故选:C .【点睛】5.下列选项中,属于无理数的是( )A .πB .227-CD .0A 解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数; B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.6.若53a=-,则a在()A.3-和2-之间B.2-和1-之间C.1-和0之间D.0和1之间C解析:C【分析】依据被开方数越大对应的算术平方根越大可求得5的大致范围,然后可得到问题的答案.【详解】解:∵4<5<9,∴2<5<3.∴-1<5-3<0.故选:C.【点睛】本题考查了估算无理数的大小,求得5的大致范围是解题的关键.7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第(n﹣2)个数是()(用含n的代数式表示)A21n-D24n- Bn-C23n-B22解析:B【分析】观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣222n-.故选:B.【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.8.已知:m、n为两个连续的整数,且5<<,以下判断正确的是()m nA 4B .3m =C 0.236D .9m n += A解析:A【分析】根据无理数的估算、实数的运算即可得.【详解】 459<<,<<23<<,22,则选项C 错误;∴)224-=A 正确;又m 、n 为两个连续的整数,且m n <<,2,3m n ==∴,则选项B 错误;235m n ∴+=+=,则选项D 错误;故选:A .【点睛】本题考查了无理数的估算、实数的运算,熟练掌握无理数的估算方法是解题关键.9. )A .5和6B .6和7C .7和8D .8和9A 解析:A【分析】【详解】解:∵∴56,∴在两个相邻整数5和6之间.故选:A .【点睛】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.10.1的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题11.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.(1)a=-8;(2)1或9【分析】(1)根据平方运算可得(1-a )的值求解可得答案;(2)根据题意可知相等或互为相反数列式求解可得a 的值根据平方运算可得答案【详解】解:(1)∵x 的算术平方根是3∴解析:(1)a=-8;(2)1或9.【分析】(1)根据平方运算,可得(1-a )的值,求解可得答案;(2)根据题意可知x y ,相等或互为相反数,列式求解可得a 的值,根据平方运算,可得答案.【详解】解:(1)∵x 的算术平方根是3,∴1-a=9,∴a=-8;(2)x ,y 都是同一个数的平方根,∴1-a=2a-5或1-a+(2a-5)=0,解得a=2,或a=4,当a=2时,(1-a )=(1-2)2=1,当a=4时,(1-a )=(1-4)2=9,答:这个数是1或9.【点睛】本题考查了平方根和算术平方根,注意第(2)问符合条件的答案有两个,小心漏解. 12.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.(1)3;(2)【分析】(1)由新定义的运算法则进行计算即可得到答案;(2)由新定义列出方程解方程即可得到答案【详解】解:∵∴;(2)由题意则∵∴解得:【点睛】本题考查了一元一次方程新定义的运算法则解析:(1)3;(2)1x =.【分析】(1)由新定义的运算法则进行计算,即可得到答案;(2)由新定义列出方程,解方程即可得到答案.【详解】解:∵*a b b ab =-,∴(2)*11(2)1123-=--⨯=+=;(2)由题意,则∵(2)*36x -=,∴(2)*333(2)6x x -=--=,解得:1x =.【点睛】本题考查了一元一次方程,新定义的运算法则,解题的关键是掌握运算法则进行解题. 13.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=(1)或;(2)【分析】(1)整理后利用平方根的定义得到然后解两个一元一次方程即可;(2)整理后利用立方根的定义得到然后解一元一次方程即可【详解】(1)移项得:∴∴或;(2)整理得:∴∴【点睛】本题解析:(1)1x =-或5x =-;(2)32x =-. 【分析】(1)整理后,利用平方根的定义得到32x +=±,然后解两个一元一次方程即可; (2)整理后,利用立方根的定义得到212x +=-,然后解一元一次方程即可.【详解】(1)2(3)40x +-=, 移项得:2(3)4x +=,∴32x +=±,∴1x =-或5x =-;(2)33(21)240x ++=, 整理得:3(21)8x +=-,∴212x +=-, ∴32x =-. 【点睛】 本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.也考查了平方根.14.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.【分析】将转化为2ax=x 来解答【详解】解:∵可转化为:2ax=x 即∵不论x 取何值都成立∴解得:故答案为:【点睛】本题考查实数的运算正确理解题目中的新运算是解题的关键 解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答.【详解】解:∵a x x ⊗=可转化为:2ax=x ,即()210a x -=,∵不论x 取何值,()210a x -=都成立,∴210a -=, 解得:12a =, 故答案为:12. 【点睛】本题考查实数的运算,正确理解题目中的新运算是解题的关键.15.把下列各数填在相应的集合里:4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0)正分数集合{ …}负有理数集合{ …}非负整数集合{ …}无理数集合{ …}.510;;402016;﹣2030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案【详解】解析:5,10%;52,43--;4,0,2016;3π,﹣2.030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案.【详解】16.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b时,a*b=a ,则当时,()()1*-3*=x x x ______【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时a*b=当a <b 时a*b=a ∴当x=时1*=13*=2∴(1*)-(3*)=故答案为:【点睛】本题是新定义的问题解决此类问题的关键是按2【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时,a*b=2b ,当a <b 时,a*b=a∴ 当=1,=2,∴)2,2.【点睛】本题是新定义的问题,解决此类问题的关键是按题中的规定去运算即可;17.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.18.若30a +=,则+a b 的立方根是______.-1【分析】根据绝对值和二次根式的非负性求出ab 的值计算即可;【详解】∵∴∴∴∴的立方根-1故答案是-1【点睛】本题主要考查了代数式求值结合绝对值二次根式的非负性立方根的性质计算是解题的关键解析:-1【分析】根据绝对值和二次根式的非负性求出a ,b 的值计算即可;【详解】∵30a ++=,∴30a +=,20b -=,∴3a =-,2b =, ∴321a b +=-+=-,∴+a b 的立方根-1. 故答案是-1.【点睛】本题主要考查了代数式求值,结合绝对值、二次根式的非负性、立方根的性质计算是解题的关键.19_____;16的平方根为_____;()34-的立方根是_____.【分析】分别根据算术平方根相反数平方根和立方根的概念直接计算即可求解【详解】解:=所以的相反数是;16的平方根为;的立方根是故答案为:;±4;-4【点睛】本题考查了算术平方根平方根和立方根的概念进行解析:- 4± 4-【分析】分别根据算术平方根、相反数、平方根和立方根的概念直接计算即可求解.【详解】-;16的平方根为4±;()34-的立方根是4-.故答案为:—±4;-4【点睛】本题考查了算术平方根、平方根和立方根的概念进行求解即可.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.20.已知3y =,则y x 的平方根是____.±3【分析】根据二次根式的非负性和平方根的定义即可求出【详解】∵二次根式的被开方数是非负数∴且∴∴y=3∴yx=32=9∴yx 的平方根是±3故答案是:±3【点睛】本题主要考查了二次根式非负性和平方根解析:±3【分析】根据二次根式的非负性和平方根的定义即可求出.【详解】∵二次根式的被开方数是非负数∴20x -≥且20x -≥∴=2x∴y=3∴y x =32=9∴y x 的平方根是±3故答案是:±3.【点睛】本题主要考查了二次根式非负性和平方根知识点,准确理解记住它们的基本性质是解题关键.三、解答题21.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.解析:(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解; (2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解 .【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.22.(1)求x 的值:2490x -=;(2)计算:()2325227+-- 解析:(1)32x =或32x =-;(2)4 【分析】 (1)利用开方要根的概念求出x 的值即可;(2)根据实数混合运算的法则进行计算即可.【详解】解:(1)294x = 32x =或3-2x = (2)原式=5+2﹣3=4.【点睛】 本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.23.计算:()23143282--⨯-⨯-() 解析:【分析】 利用实数的混合运算法则计算得出答案.【详解】解:原式=4+9⨯12-(2)2⎡⎤⨯-⎢⎥⎣⎦=4+9⨯[]2+1=4+9⨯3=4+27=31.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.24.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.解析:2a-c【分析】根据数轴得到a<b<0<c ,由此得到a-c<0,a+b<0,依此化简各式,再合并同类项即可.【详解】由数轴得a<b<0<c ,∴a-c<0,a+b<0,∴|-|a c =-b-(c-a )+(a+b)=-b-c+a+a+b=2a-c.【点睛】此题考查数轴上的点表示数,利用数轴比较数的大小,绝对值的性质,立方根的化简,整式的加减法计算法则,解题的关键是依据数轴确定各式子的符号由此化简各式. 25.计算题.(1)12(7)6(22)-+----(2)2122⨯(33(2)(4)-⨯- (4)13248243⎛⎫-⨯-+- ⎪⎝⎭ 解析:(1)-3(2)-1(3)2(4)-20【分析】(1)先去括号在进行加减运算.(2)先进行平方和开方,在进行乘法和减法的运算.(3)先进行开方和平方,在由左至右进行除法和乘法的运算.(4)首先去括号内的绝对值,在进行括号内的分式加减,最后相乘.【详解】(1)12(7)6(22)-+----=127622---+=3-(2)2122⨯ 1=432⨯- =1-(33(2)(4)-⨯-=4(8)(4)÷-⨯-1=(-)(4)2⨯- =2 (4)13248()243-⨯-+-4354812=-⨯ 20=-【点睛】考察有理数的混合运算,掌握运算法则的顺序是解答本题的关键.26.计算:(12(2)22(2)8x -=解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算; (2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.27.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 解析:10102021【分析】利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭22021 ⎪⎝⎭1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 28.把下列各数填在相应的横线上1.4,2020,,32-,0.31,0π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______解析:(1)2020,02)1.4,32-,0.31;(3),π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可.【详解】,(1)整数:2020,0(2)分数:1.4,32-,0.31(3)无理数:π-,1.3030030003…(每相邻两个3之间0的个数依次加1)故答案为:2020,0 1.4,32-,0.31;π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【点睛】本题考查了实数的分类,掌握实数的分类是解题的关键.。

2022-2023学年七年级数学上《实数》测试卷及答案解析

2022-2023学年七年级数学上《实数》测试卷及答案解析

2022-2023学年七年级数学上《实数》一.选择题(共9小题)1.(2022春•海淀区校级期中)下列各数中,一定没有平方根的是()A.﹣a B.﹣a2+1C.﹣a2D.﹣a2﹣1 2.(2021秋•卧龙区期末)36的算术平方根是()A.6B.±6C.18D.±18 3.(2022•安徽)下列为负数的是()A.|﹣2|B.C.0D.﹣5 4.(2022春•长沙期中)81的平方根是()A.9B.9和﹣9C.3D.3和﹣3 5.(2022•陕西模拟)的平方根是()A.B.C.D.6.(2022春•岳麓区校级期中)若2m﹣4与3m﹣1是同一个正数的两个平方根,则这个正数为()A.1B.4C.±1D.±4 7.(2022•南山区模拟)若一个正方形的面积是28,则它的边长为()A.B.C.D.8.(2022春•仙居县期中)﹣2的最小值是()A.﹣2B.﹣1C.0D.2 9.(2020春•朝阳区期末)下列说法错误的是()A.3的平方根是B.﹣1的立方根是﹣1C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和1二.多选题(共1小题)(多选)10.(2021春•安丘市期中)下列说法错误的是()A.1的平方根是1B.﹣1的立方根是﹣1C.是3的平方根D.﹣3是的平方根三.填空题(共6小题)11.(2022春•惠城区月考)如果=1.08,那么x=.12.(2022春•天门校级月考)若,则x2018+y2019=.13.(2022•安徽模拟)的平方根为.14.(2022春•如皋市校级月考)2a﹣3与5﹣a是同一个正数x的平方根,则x=.15.(2021秋•零陵区期末)已知一个正数的平方根是3x+2和5x+14,则这个数是.16.(2022春•大兴区期中)若实数m的两个不相等的平方根是a+1和2a﹣7,则实数m 为.四.解答题(共4小题)17.(2022春•江汉区期中)(1)已知25x2﹣36=0,求x的值;(2)某正数a的两个不同的平方根分别是x+2和3x﹣10,求x和a的值.18.(2022春•浦北县校级月考)解方程:(1)4x2=16;(2)9x2﹣121=0.19.(2022春•潮安区校级月考)求x的值:(x+4)2=81.20.(2022春•汉阴县月考)已知a﹣3是16的算术平方根,求a的值.2022-2023学年七年级数学上《实数》参考答案与试题解析一.选择题(共9小题)1.(2022春•海淀区校级期中)下列各数中,一定没有平方根的是()A.﹣a B.﹣a2+1C.﹣a2D.﹣a2﹣1【考点】平方根.【专题】实数;运算能力.【分析】根据平方根的被开方数不能是负数,可得答案.【解答】解:在﹣a,﹣a2+1,﹣a2,﹣a2﹣1中,﹣a2﹣1是负数,没有平方根.故选:D.【点评】本题考查了平方根,注意负数没有平方根.2.(2021秋•卧龙区期末)36的算术平方根是()A.6B.±6C.18D.±18【考点】算术平方根.【专题】计算题.【分析】根据算术平方根的定义即可作答.【解答】解:∵62=36,∴36的算术平方根是6.故选:A.【点评】本题主要考查算术平方根的定义:一个正数的正的平方根,叫做这个正数的算术平方根,0的算术平方根是0.算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.3.(2022•安徽)下列为负数的是()A.|﹣2|B.C.0D.﹣5【考点】非负数的性质:算术平方根;有理数;绝对值.【专题】实数;数感.【分析】根据实数的定义判断即可.【解答】解:A.|﹣2|=2,是正数,故本选项不合题意;B.是正数,故本选项不合题意;C.0既不是正数,也不是负数,故本选项不合题意;D.﹣5是负数,故本选项符合题意.故选:D.【点评】本题考查了有理数,绝对值以及算术平方根,掌握负数的定义是解答本题的关键.4.(2022春•长沙期中)81的平方根是()A.9B.9和﹣9C.3D.3和﹣3【考点】平方根.【专题】实数;运算能力.【分析】根据正数的平方根有两个,且互为相反数即可解答.【解答】解:81的平方根是±9.故选:B.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.5.(2022•陕西模拟)的平方根是()A.B.C.D.【考点】平方根.【专题】实数;数感.【分析】根据平方根的定义解答即可.【解答】解:∵(±)2=,∴的平方根是±.故选:C.【点评】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是解题关键.6.(2022春•岳麓区校级期中)若2m﹣4与3m﹣1是同一个正数的两个平方根,则这个正数为()A.1B.4C.±1D.±4【考点】平方根.【专题】二次根式;运算能力.【分析】根据平方根的性质即可求出答案.【解答】解:由题意可知:2m﹣4+3m﹣1=0,∴m=1,∴2m﹣4=﹣2,∴这个正数为4,故选:B.【点评】本题考查算术平方根,解题的关键是正确理解平方根的性质,本题属于基础题型.7.(2022•南山区模拟)若一个正方形的面积是28,则它的边长为()A.B.C.D.【考点】算术平方根.【专题】实数;运算能力.【分析】根据算术平方根的定义解答即可.【解答】解:∵正方形的面积是28,∴它的边长为=2.故选:B.【点评】此题主要考查了算术平方根,解题的关键是熟练掌握算术平方根的定义.算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.8.(2022春•仙居县期中)﹣2的最小值是()A.﹣2B.﹣1C.0D.2【考点】非负数的性质:算术平方根.【专题】实数;数感;运算能力.【分析】根据非负数的性质解答即可.【解答】解:=≥0,所以,﹣2的最小值是﹣2.故选:A.【点评】本题主要考查了非负数的性质,掌握非负数的性质是解题的关键.9.(2020春•朝阳区期末)下列说法错误的是()A.3的平方根是B.﹣1的立方根是﹣1C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和1【考点】立方根;平方根;算术平方根.【专题】实数;运算能力.【分析】根据立方根的定义和求法,平方根的定义和求法,以及算术平方根的定义和求法,逐项判定即可.【解答】解:A、3的平方根是±,原说法错误,故此选项符合题意;B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.故选:A.【点评】此题考查了立方根、平方根、算术平方根.解题的关键是熟练掌握立方根的定义,平方根的定义,以及算术平方根的定义.二.多选题(共1小题)(多选)10.(2021春•安丘市期中)下列说法错误的是()A.1的平方根是1B.﹣1的立方根是﹣1C.是3的平方根D.﹣3是的平方根【考点】立方根;平方根;算术平方根.【专题】实数;运算能力.【分析】直接利用平方根和立方根的定义分别分析得出答案.【解答】解:A、1的平方根是±1,故此选项错误;B、﹣1的立方根是﹣1,正确;C、是3的平方根,正确;D、=3,则是的平方根,故此选项错误;故选:AD.【点评】此题主要考查了平方根和立方根,正确掌握平方根和立方根的定义是解题关键.三.填空题(共6小题)11.(2022春•惠城区月考)如果=1.08,那么x= 1.1664.【考点】算术平方根.【分析】被开方数的小数向左移动2n位,对应的算术平方根的小数点向左移动n位.【解答】解;∵,∴.∴x=1.1664.故答案为:1.1664.【点评】本题主要考查的是算术平方根,明确被开方数的小数向左移动2n位,对应的算术平方根的小数点向左移动n位是解题的关键.12.(2022春•天门校级月考)若,则x2018+y2019=0.【考点】非负数的性质:算术平方根.【专题】实数;数感.【分析】直接利用非负数的性质得出x,y的值,进而结合有理数的乘方得出答案.【解答】解:∵,∴x﹣1=0,x+y=0,解得:x=1,y=﹣1,则x2018+y2019=12018+(﹣1)2019=1﹣1=0.故答案为:0.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.13.(2022•安徽模拟)的平方根为±2.【考点】立方根;平方根.【专题】计算题.【分析】根据立方根的定义可知64的立方根是4,而4的平方根是±2,由此就求出了这个数的平方根.【解答】解:∵4的立方等于64,∴64的立方根等于4.4的平方根是±2,故答案为:±2.【点评】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.14.(2022春•如皋市校级月考)2a﹣3与5﹣a是同一个正数x的平方根,则x=49或.【考点】平方根.【专题】实数;运算能力.【分析】根据正数的平方根有2个,且互为相反数,求出a的值,即可确定出x的值.【解答】解:∵2a﹣3与5﹣a是同一个正数x的平方根,∴2a﹣3+5﹣a=0或2a﹣3=5﹣a,解得:a=﹣2或a=,则x=49或.故答案为:49或.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.15.(2021秋•零陵区期末)已知一个正数的平方根是3x+2和5x+14,则这个数是16.【考点】平方根.【专题】实数;运算能力.【分析】根据正数的平方根有两个,且互为相反数列出方程,求出方程的解得到x的值,即可得到这个正数.【解答】解:根据题意得:3x+2+5x+14=0,解得:x=﹣2,所以3x+2=﹣4,5x+14=4,则这个数是16.故答案为:16.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.16.(2022春•大兴区期中)若实数m的两个不相等的平方根是a+1和2a﹣7,则实数m为9.【考点】平方根.【专题】实数;运算能力.【分析】一个正数有两个平方根,它们互为相反数,和为0,列出方程求出m即可.【解答】解:根据题意,得:a+1+2a﹣7=0,解得:a=2.则m=(a+1)2=32=9.故答案为:9.【点评】本题主要考查平方根的定义,解题的关键是要知道这两个平方根之间的关系.四.解答题(共4小题)17.(2022春•江汉区期中)(1)已知25x2﹣36=0,求x的值;(2)某正数a的两个不同的平方根分别是x+2和3x﹣10,求x和a的值.【考点】平方根.【专题】二次根式;运算能力.【分析】(1)方程变形后,开方即可求出解;(2)根据平方根的性质可得x的值,代入x+2即可得a的值.【解答】解:(1)25x2=36,,∴;(2)由题意知x+2+3x﹣10=0,解得x=2,则x+2=4,所以a=16.【点评】此题主要考查了平方根,解题的关键是熟练掌握平方根的定义和性质.18.(2022春•浦北县校级月考)解方程:(1)4x2=16;(2)9x2﹣121=0.【考点】平方根.【专题】实数;运算能力.【分析】(1)先化成x2=a的形式,然后再两边直接开方即可.(2)先移项,化成x2=a的形式,然后再两边直接开方即可.【解答】解:(1)4x2=16,x2=4,x=±2;(2)9x2﹣121=0,9x2=121,x2=,x=±.【点评】本题考查了平方根的知识,掌握开平方的定义是解题的关键.19.(2022春•潮安区校级月考)求x的值:(x+4)2=81.【考点】平方根.【专题】实数;运算能力.【分析】根据平方根的意义,进行计算即可解答.【解答】解:(x+4)2=81,x+4=±9,x+4=9或x+4=﹣9,x=5或x=﹣13,∴x的值为5或﹣13.【点评】本题考查了平方根,熟练掌握平方根的意义是解题的关键.20.(2022春•汉阴县月考)已知a﹣3是16的算术平方根,求a的值.【考点】算术平方根.【专题】实数;运算能力.【分析】根据算术平方根的定义即可求出答案.【解答】解:由题意可知:a﹣3=4,∴a=7.【点评】本题考查算术平方根,解题的关键是正确理解算术平方根的定义,本题属于基础题型.。

人教版本初中数学初中七年级下册的《实数》测试卷试题含答案

人教版本初中数学初中七年级下册的《实数》测试卷试题含答案

精选文档第六章《实数》测试题一、单项选择题(每题只有一个正确答案)1.25的平方根是()A.±5B.﹣5C.5D.252.以下式子中,正确的选项是()A.3838B.C.(3)23D.3663.要使代数式x2存心义,则x的取值范围是()A.x≠2B.x≥2C.x>2D.x≤24.以下说法正确的选项是()A.一个数的平方根有两个,它们互为相反数B.一个数的立方根不是正数就是负数C.负数没有立方根D.假如一个数的立方根是这个数自己,那么这个数必定是-1或0或15.在以下各数2, 3,38, ,22, (两个1之间,挨次增3加1个0),此中无理数有()A.6个B.5个C.4个D.3个6.以下说法正确的选项是()A.正有理数和负有理数统称为有理数B.符号不一样的两个数互为相反数C.绝对值等于它的相反数的数是非正数D.两数相加,和必定大于任何一个加数7.以下各组数中互为相反数的是()A.-2与(-2)2B.-2与38C.2与(-2)2D.|-2|与28.预计56﹣24的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间9.如图,若A是实数a在数轴上对应的点,则对于a,a,1的大小关系表示正确的选项是()A.a 1 a B.a a 1 C.1 a a D.1 a a .精选文档10.一个正数的两个平方根分是2a1与a2,a的()A.-1B.1C.-2D.23的大小,正确的选项11.比2,5,7是()A.3725B.2537C.2375D.5372 12.正方形ABCD在数上的地点如所示,点D、A的数分0和1,若正方形ABCD点方向在数上翻,翻1次后,点B所的数2;按此律翻下去,数上数2020所的点是()A.点A B.点B C.点C D.点D二、填空13.算:(3)2=________;364=________.12514.52的相反数是__________,-36的是__________.15.若x+x存心,x+1___________.16.已知a、b两个的整数,且a11b,a b__________.17.已知913与913的小数部分分是a和b,a b_____________。

实数测试题及答案

实数测试题及答案

实数测试题及答案一、选择题(每题2分,共10分)1. 实数集R中,最小的正整数是:A. 0B. 1C. 2D. 3答案:B2. 下列哪个数不是实数?A. πB. -√2C. √4D. 0.33333(无限循环)答案:无3. 若a, b, c是实数,且a > b,则下列哪个不等式一定成立?A. a + c > b + cB. a - c > b - cC. a × c > b × cD. a ÷ c > b ÷ c答案:A4. 实数x满足|x - 1| < 2,则x的取值范围是:A. -1 < x < 3B. -2 < x < 0C. 0 < x < 2D. 1 < x < 3答案:A5. 若实数x满足x² - 4x + 4 = 0,则x的值为:A. 2B. -2C. 0D. 4答案:A二、填空题(每题2分,共10分)1. 一个实数的绝对值等于它本身,那么这个实数一定是______。

答案:非负数2. 若实数x满足x² = 1,则x的值是______。

答案:±13. 实数-3的相反数是______。

答案:34. 若实数a和b满足a² + b² = 0,则a和b的值分别是______。

答案:05. 一个实数的平方根是它本身,那么这个实数只能是______。

答案:1或0三、解答题(每题10分,共20分)1. 已知实数a和b满足a² - 4a + 4 = 0,求a的值。

答案:由于(a - 2)² = 0,所以a = 2。

2. 证明:对于任意实数x,x² ≥ 0。

答案:设x² = y,由于平方总是非负的,所以y ≥ 0,即x² ≥0。

四、综合题(每题15分,共30分)1. 已知实数x和y满足x² + y² = 1,求证x + y ≤ √2。

10.第六章《实数》测试及答案

10.第六章《实数》测试及答案

第六章《实数》测试(时间:120分钟;满分150分)一、选择题(每题4分,共60分)1、在直线AB上任取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是()A.60°B.120°C.60°或90°D.60°或120°2、如图,CA⊥BE于A,AD⊥BF于D,下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补第2题第3题3、如图,在长方体ABCD-EFGH中,与面ABFE垂直的棱有()A.3条B.4条C.5条D.6条4、下列说法错误的有几个()(1)不相交的两直线一定是平行线;(2)点到直线的垂线段就是点到直线的距离;(3)两点之间直线最短;(4)过一点有且只有一条直线与已知直线垂直.A.1个B.2个C.3个D.4个5、两条相交直线所成的角中()A.必有一个钝角B.必有一个锐角C.必有一个不是钝角D.必有两个锐角6、如果∠α与一个50°的角互余,那么∠α的一半的补角是()A.20°B.40°C.140°D.160°7、下列说法正确的是()A.两点之间的距离是两点间的线段B.同一平面内,过一点有且只有一条直线与已知直线平行C.同一平面内,过一点有且只有一条直线与已知直线垂直D.与同一条直线垂直的两条直线也垂直8、对图,有以下列判断:①∠1与∠3是内错角;②∠2与∠3是内错角;③∠2与∠4是同旁内角;④∠2与∠3时同位角.其中,正确的说法有()A.0个B.1个C.2个D.3个第8题第9题9、如图所示是一个会场的台阶的侧视图,要在上面披上红地毯,则至少需要()米的地毯才能铺好整个台阶.A.2.5 B.5 C.7.5 D.1010、已知,如图,AB∥CD,则∠α、∠β、∠γ之间的关系为()A.∠α+∠β+∠γ=360°B.∠α-∠β+∠γ=180°C.∠α+∠β-∠γ=180°D.∠α+∠β+∠γ=180°第10题第11题11、点P是△ABC内一点,连接BP并延长交AC于D,连接PC,则图中∠1,∠2,∠A的大小关系是()A.∠A>∠2>∠1 B.∠A>∠1>∠2C.∠2>∠1>∠A D.∠1>∠2>∠A12、如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A=120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A.120°B.130°C.140°D.150°第12题第13题13、如图所示,∠A+∠B+∠C+∠D+∠E+∠F等于()A.180°B.360°C.270°D.540°14、如图所示,已知AC⊥BC,CD⊥AB,垂足分别是C,D,那么以下线段大小的比较必定成立的是()A.CD>AD B.AC<BC C.BC>BD D.CD<BD第14题第15题15、如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,若∠BAC=150°,则∠θ的度数是()A.60°B.50°C.40°D.30°二、填空题(每小题5分,共25分)16、如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD于点G,如果∠1=50°,那么∠2的度数是_______度.第16题第18题17、已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为_______.18、如图,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B,C,若∠A=35°,则∠ABX+∠ACX的度数是_______度.19、如图,按虚线剪去长方形纸片相邻的两个角,并使∠1=120°,∠B=90°,则∠2的度数为_______度.第19题第20题20、如图,在△ABC中,∠ACB=90°,∠A=20°.将△ABC绕点C按逆时针方向旋转角α后到△A′B′C′的位置,其中A′、B′分别是A、B的对应点,B在A′B′上,CA′交AB于D.则∠BDC的度数为_______度.三、解答题(写出详细过程,共65分)21、(10分)如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.22、(10分)如图:已知△ABC与△DEF是一副三角板的拼图,A,E,C,D在同一条线上.(1)求证EF∥BC;(2)求∠1与∠2的度数.23、(10分)如图,EG⊥BC于点G,AD⊥BC于点D,∠1=∠E,请证明AD平分∠BAC.24、(15分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.25、(20分)如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.参考答案一、选择题01-05、DDBDC06-10、DCCCC11-15、DDBCA二、填空题16、6517、2cm或8cm.18、5519、15020、60三、解答题21、解:BE∥DF.理由如下:∵∠A=∠C=90°(已知),∴∠ABC+∠ADC=180°(四边形的内角和等于360°).∵BE平分∠ABC,DF平分∠ADC,∠ABC,×180°=90°(等式的性质).又∠1+∠AEB=90°(三角形的内角和等于180°),∴∠3=∠AEB(等量代换).∴BE∥DF(同位角相等,两直线平行).22、解:(1)∵EF⊥AD,BC⊥AD,∴BC∥EF(同一平面内,垂直于同一条直线的两直线平行).(2)∵∠APE=180°-∠AEP-∠A=180°-90°-45°=45°,又∵∠APE=∠OPF,∴∠1=∠F+∠OPF=30°+45°=75°,∠2=∠DCQ+∠D=90°+60°=150°.23、证明:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°(垂直定义),∴AD∥EG(同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∠E=∠3(两直线平行,同位角相等),∵∠E=∠1,∴∠2=∠3(等量代换),∴AD平分∠BAC(角平分线定义).24、证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义)25、解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,又∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠EHA,又∵∠1=∠2,即∠1=∠EHA,∴BF∥DE.另解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,∵∠5=∠6,∴∠BAF=∠6,∵△BFA、△DEC的内角和都是180°∴△BFA=∠1+∠BFA+BAF;△DEC=∠2+∠4+∠6∵∠1=∠2;∠BAF=∠6∴∠BFA=∠4,∴BF∥DE.。

实数测试题及答案

实数测试题及答案

实数测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是实数?A. √2B. √-1C. 0.1010010001…D. 2+3i答案:A2. 以下哪个选项是正确的?A. 0是最小的实数B. 没有最大的实数C. 所有实数都是有理数D. 所有有理数都是实数答案:D3. 计算下列哪个表达式的结果是一个正实数?A. (-3)^2B. -(-2)^3C. √(-4)D. 1/0答案:A4. 以下哪个数是无理数?A. 1/3B. √4C. πD. 0.5答案:C5. 以下哪个数是实数集合的元素?A. 2B. √2C. 2+3iD. 1/0答案:B6. 以下哪个数是虚数?A. 3B. √2C. 2+3iD. -5答案:C7. 以下哪个数是纯虚数?A. 3+iB. -iC. √(-1)D. 2i答案:D8. 以下哪个数是复数?A. 3B. √2C. 2+3iD. -5答案:C9. 以下哪个数是实数?A. √9B. √(-9)C. 0.33333…D. 2/3答案:A10. 以下哪个数是实数?A. 3.14B. √3C. 2+3iD. 0.1010010001…答案:A二、填空题(每题4分,共20分)1. √9 = ________。

答案:32. √(-1) = ________。

答案:i3. 2π是实数集合中的一个元素,其值为 ________。

答案:6.284. 如果x是实数,那么x^2 ________ 0。

答案:≥5. 一个数的绝对值总是 ________。

答案:非负三、解答题(每题10分,共50分)1. 计算:(√3 + √2)^2。

答案:7 + 4√62. 证明:√2是一个无理数。

答案:假设√2是有理数,设√2 = a/b,其中a和b是互质的整数。

那么2 = a^2 / b^2,即2b^2 = a^2。

这意味着a^2是偶数,所以a必须是偶数。

设a = 2k,则2b^2 = (2k)^2,所以b^2 = 2k^2,这意味着b也是偶数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学第六章《实数》测试卷
一、选择题(每小题3分,共30分)
1、若x 是9的算术平方根,则x 是( ) A 、3 B 、-3 C 、9 D 、81
2、下列说法不正确的是( ) A 、
251的平方根是1
5
± B 、-9是81的一个平方根 C 、0.2的算术平方根是0.04 D 、-27的立方根是-3 3、若a 的算术平方根有意义,则a 的取值范围是( ) A 、一切数 B 、正数 C 、非负数 D 、非零数
4、在下列各式中正确的是( )
A 、2
)2(-=-2 B
、 3 C 、16=8 D 、22=2
5、估计76的值在哪两个整数之间( ) A 、75和77 B 、6和7 C 、7和8 D 、8和9
6、下列各组数中,互为相反数的组是( )
A 、-2与2
)2(- B 、-2和38- C 、-
2
1
与2 D 、︱-2︱和2 7、在-2,4,2,3.14, 327-,
5
π
,这6个数中,无理数共有( ) A 、4个 B 、3个 C 、2个 D 、1个 8、下列说法正确的是( )
A 、数轴上的点与有理数一一对应
B 、数轴上的点与无理数一一对应
C 、数轴上的点与整数一一对应
D 、数轴上的点与实数一一对应 9.8-的立方根与4的算术平方根的和是 ( )
A.0
B.4
C.2±
D.4± 10、 -27的立方根为 ( )
A.±3
B. 3
C.-3
D.没有立方根
二、填空题(每小题3分,共18分)
11、81的平方根是__________,1.44的算术平方根是__________。

12、一个数的算术平方根等于它本身,则这个数应是__________。

13、38-的绝对值是__________。

14、比较大小:27____42。

15、若36.25=5.036,6.253=15.906,则253600=__________。

16、若10的整数部分为a ,小数部分为b ,则a =________,b =_______。

17
2x ,则x 的取值范围是 。

三、解答题(每题6分,共24分)
18、327-+2)3(--31- 19、33364
631125.041027-++-
--
求下列各式中的x
20、4x 2-16=0 21、27(x -3)3=-64
四、(每题7分,共21分)
22、若5a +1和a -19是数m 的平方根,求m 的值。

23、已知a 31-和︱8b -3︱互为相反数,求(ab )-
2-27 的值。

24、若:0)3
3(32=-++y x 则: x (·2014)y 等于多少
五、(第23题7分,)
25、已知m 是313的整数部分,n 是13的小数部分,求m -n 的值。

26、已知121
12y x x ,求23x y 的平方根。

27、已知a 、
b 、
c 2
a b c a
b c
28
1.732
5.477,
求(1
;(2 ;
(3
)0.03的平方根约为 ;(454.77,则x。

29
1.442
3.107
6.694,
求(1 ;(2)3000的立方根约为

(331.07,则=x 。

30、如果一个数的平方根是1a 和27a ,求这个数.
31、已知34a a a
,求a 的值。

c a O b
人教版七年级数学第十章《实数》测试卷
参考答案
一、1、A ;2、C ;3、C ;4、D ;5、D ;6、B ;7、C ;8、D ;9、D ;10、B
二、11、9,1、2 ; 12、1,0;13、2;14、<;15、503、6;16、a =3,b =10-3 三、17、1;18、-
411;19、x =±2;20、3
5; 四、21、256;22、37 23、9
五、24、5-13;25、(1)、D (2;2),(2)、s =32≈4、24;(3)、 A '(4;-2)B '(7;-2)C '(7;-22) D '(4;-22)。

相关文档
最新文档