重点高中预录数学试题
重点高中提前招生(数学)

综合素质测试科学素养答题卷(数学) 共 8 页 第 1 页重点高中提前招生(数学部分)参考公式:二次函数y=ax 2+bx+c 的顶点坐标是(-ab 2,ab ac 442)一、选择题(本题有6小题,每小题4分,共24分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.如图,数轴上表示1,2的对应点分别为A ,B ,点B 关于点A 的对称点为C ,则点C 所表示的数是 (A )2-2(B )2-2(C )1-2(D )2-12.数学老师布置10道选择题作为课堂练习,课代表将全班同学的答题情况绘制成条形统计图(如图),根据此图可知,每位同学答对的题数所组成样本的中位数和众数分别为 (A )8,8 (B )8,9 (C )9,9(D )9,83.小华和小明到同一早餐店买馒头和豆浆.已知小华买了5个馒头和6杯豆浆;小明买了7个馒头和3杯豆浆,且小华花的钱比小明少1元.关于馒头与豆浆的价钱,下列叙述正确的是 (A )4个馒头比6杯豆浆少2元 (B )4个馒头比6杯豆浆多2元 (C )12个馒头比9杯豆浆少1元(D )12个馒头比9杯豆浆多1元4.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .现有五个结论:①AD =BE ;②PQ ∥AE ;③AP =BQ ;④DE =DP ;⑤∠AOE =120°. 其中一定成立的结论有 (A )2个 (B )3个(C )4个(D )5个5.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,使点D与点D'重合,则重叠部分ΔAFC 的面积为 (A )6(B )8(第4题图)(第5题图)C(第1题图)(第2题图)综合素质测试科学素养答题卷(数学) 共 8 页 第 2 页(C )10 (D )126.如图,正方形ABCD 的边长是3cm ,一个边长为1cm 的小正方形沿着正方形ABCD的边AB →BC →CD →DA →AB 连续地翻转,那么这个小正方形第一次回到起始位置时,它的方向是二、填空题(本题有4小题,每小题4分,共16分) 7.如图,D ,E ,F 分别是等边三角形ΔABC 三边的中点,且ΔDEF 的面积为93,则ΔABC 的周长为 ▲ .8.下表为2008年北京奥运会官方票务网站公布的几种球类比赛的门票价格:小明准备用8000元预订10张表中比赛项目的门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,则他能预订足球门票 ▲ 张.9.如图,已知一次函数y =3x +b 和y =ax -3的 图象交于点P (-2,-5),则根据图象可得不 等式3x +b >ax -3的解集是 ▲ .10.如图,在平面直角坐标系中,⊙A 的圆心在x 轴上,半径为1,直线l 的解析式为y =x -2.若⊙A 沿x 轴向右运动,在运动过程中,⊙A 与直线l 会有两个切点,则这两个切点之间的距离是 ▲ .(第6题图)(A) (B) (C)(D)A BCDE F(第7题图)(第10题图)(第9题图)综合素质测试科学素养答题卷(数学) 共 8 页 第 3 页三、解答题(本题有4小题,第11小题6分,第12小题7分,第13题11分,第14小题11分,共35分)11.(1)已知a ,b 为实数,且1=ab ,设11+++=b b a a M ,1111+++=b a N ,请比较M ,N 的大小,并说明理由;(2)一天,小明爸爸的同事来家做客,已知爸爸的年龄比小明年龄的平方大5岁,爸爸同事的年龄是小明年龄的4倍,请你计算一下:小明爸爸与他的同事,谁的年龄大?12.如图,已知在直角坐标系中的正方形ABCD 的边长为4.现做如下实验:转盘被划分成4个相同的小扇形,并分别标上数字1,2,3,4. 分别转动两次转盘,转盘停止后,指针所指向的数字作为直角坐标系中M 点的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,则重新转动转盘.(1)请你用树状图或列表的方法,求点M 落在正方形ABCD 内(包含边线)的概率; (2)将正方形ABCD 平移整数个单位,则是否存在某种平移,使点M 落在正方形ABCD面上的概率为43?若存在,指出一种具体的平移过程;若不存在,请说明理由.13.已知抛物线32++-=mx x y 与x 轴的一个交点A (3,0),另一个交点为B ,与y 轴的交点为C ,顶点为D .(1)请分别求出点B ,C ,D 的坐标;(第12题图)综合素质测试科学素养答题卷(数学) 共 8 页 第 4 页(2)请在图中画出抛物线的草图. 若点E (-2,n )在直线BC 上,试判断点E 是否在经过点D 的反比例函数的图象上,把你的判断过程写出来;(3)若过点A 的直线L 与x 轴所夹锐角α的正切值满足tan α≤31,试求直线L 与抛物线另一个交点横坐标的取值范围.14.如图,在Rt △PQO 中,∠POQ =90°,∠Q =30°,OP =43.在菱形ABCD 中,点A在边PQ 上运动,B ,C 在边QO 上运动(点B 在点C 的左侧),且∠ABC =60°,设BQ 的长为x .(1)试用含x 的代数式表示菱形ABCD 的边长; (2)当点D 在线段OP 上时,求x 的值;(3)设菱形ABCD 与△OPQ 重合部分的面积为y ,求y 关于x 的函数关系式;(4)连结PD ,OD ,对于不同的x 值,请你比较线段OD 与PD 的大小关系,直接写出结论.(第14题图)(第13题图)综合素质测试科学素养答题卷(数学) 共 8 页 第 5 页综合素质测试科学素养答题卷数学部分一、选择题(本大题共有6小题,每小题4分,共24分)二、填空题(本大题共有4小题,每小题4分,共16分)7. ; 8. ; 9. ; 10. .三、解答题(本大题共有4小题,共35分)11.(本题6分) 解:学校: 姓名: 准考证号:解:(第12题图)综合素质测试科学素养答题卷(数学)共8 页第6 页13.(本题11分)Array解:(第13题图)综合素质测试科学素养答题卷(数学)共8 页第7 页综合素质测试科学素养答题卷(数学) 共 8 页 第 8 页14.(本题11分) 解:(第14题图1)(第14题图3)QP(第14题图2)。
省重点中学高一提前招生考试数学试卷及答案(共4份)

省重点中学高一提前招生考试数学试卷满分:120分 时间:90分钟一、选择题(本题有10个小题,每小题3分,共30分)(1)如果一元一次不等式组⎩⎨⎧>>a x x 3的解集为x >3,则a 的取值范围是A .a >3B .a ≥3C .a <3D .a ≤3(2)若实数x 满足12223-=++x x x ,则9932x x x x ++++ =A .1-B .0C .1D .99(3)如果从一卷粗细均匀的电线上截取1米长的电线, 称得它的质量为a 克,再称得剩余电线的质量为b 克,那么原来这卷电线的总长度是A .a b 1+米B .(a b +1)米C .(a+b a +1)米D .(b a +1)米(4)若实数n 满足2)45()46(22=-+-n n ,则代数式)45)(46(n n --的值是A .1-B .21-C .21D .1(5)已知方程2(21)10x k x k +++-=的两个实数根12,x x 满足1241x x k -=-,则实数k 的值为 A .—3,0 B .1,43-C .1,13- D .1,0 (6)如图,矩形AOBC 的面积为16,反比例函数xky =的图象经过矩形的对角线的交点P ,则反比例函数的解析式是A .x y 1= B .x y 2=C .x y 4=D .x y 8= (7)设213a a +=,213b b +=,且a b ≠,则代数式3311ba +的值为A .24-B .18-C .18D .24(8)当x 分别取值201,191,181,…31,21,1,2,3,…,18,19,20时,计算代数式2211x x +-的值,将所得的结果相加,其和等于A .-20B .0C .1D .20(9)如图,∠ACB =60○,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离为A .32B .4C .πD .2π(10)方程813222=++y xy x 的整数解(,)x y 的组数为A .7B . 6C .5D .4(第9题)二、填空(本题有7个小题,其中11题6分,其余每小题4分,共30分) (11)直接写出下列关于x 的方程的根:①015722=-+x x ; ②24)3)(2)(1(=+++x x x x ;③41122=+++x x xx ;④01)2(2=+--+a x a x ; (12)已知三个数a 、b 、c 的积为负数,和为正数,且x =a a +b b +c c +ab ab +ac ac +cb bc,则ax 3+bx 2+cx +1=_________.(13)若化简16812+---x x x 的结果为52-x ,则x 的取值范围是 . (14)如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________. (15)若实数a 、b 满足b >a >0,且ab b a 422=+,则ba b a +-= . (16)若实数b a ,满足0111=+--ba b a ,则=+ab b a 22. (17)桌面上有三颗球,相互靠在一起。
重点高中自主招生预录模拟数学试题

.
15.已知实数 a,b,c 满足 a+b+c=10,且
,则
的
值是
.
16.如图,在正方形 ABCD 中,O 是对角线 AC 与 BD 的交点,M 是 BC 边上的动点(点 M 不与 B,C 重合),CN⊥DM,CN 与 AB 交于点 N,连接 OM,ON,MN.下列五个结论: ①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若
(x0,x0)为函数图象上的不动点.由此,函数
的图象上不动点的坐标为 .
14.如图,直线 y= x﹣2 与 x,y 轴分别交于点 A,C.抛物线 y=﹣
x﹣2 的图象
经过点 A,C 和点 B(1,0).在直线 AC 上方的抛物线上有一动点 D,当点 D 与直线 AC 的
距离 DE 最大时,最大距离为
数学联考试题
时间 120 分钟 分数 120 分
一.选择题(共 8 小题,每题 3 分,共 24 分)
1.使得关于 x 的一元二次方程 2x(kx﹣4)﹣x2+6=0 无实数根的最小整数 k 为( )
A.﹣1
B.2
C.3
D.4
2.如图,四边形 ABCD 的对角线 AC 与 BD 互相垂直,若 AB=3,BC=4,CD=5,
的图象关于 y 轴对称的( B )
A.
B.y=﹣
C.
D.
【解答】解:设点(x,y)为
的图象上一点,
点(x,y)关于 y 轴的对称点为(﹣x,y), 而点(﹣x,y)满足 y=﹣ ,
所以 y=﹣ 和函数 故选:B.
参考答案及评分标准
1.使得关于 x 的一元二次方程 2x(kx﹣4)﹣x2+6=0 无实数根的最小整数 k 为( B)
重点高中自主招生数学试题

重点高中自主招生数学试题一、选择题1.若函数$f(x)=\frac{2x-1}{x+3}$, 当$x$趋近于无穷大时,$f(x)$的值趋近于A. 2B. -2C. 1D. -12.已知函数$f(x)$的定义域为$x \in (-\infty, 2)$, 那么函数$g(x)=f(e^{2x})$的定义域是A. $x \in (-\infty, \ln4)$B. $x \in (-\infty, 2)$C. $x \in (-\infty, \ln2)$D. $x \in (-\infty, \ln\frac{1}{4})$3.已知函数$f(x)=\frac{x-1}{x+1}$,则$f(x+1)$等于A. $f(x)$B. $f(x)+1$C. $f(x-1)$D. $\frac{1}{f(x)}$二、填空题1.设$a$为正整数,若$a^3-4a^2+5a-2=0$有一个正整数解,则$a$的值是\anst{2}。
2.设等差数列$\{a_n\}$满足$a_1=5$,$a_9=29$,则$a_{15}$的值是\anst{47}。
3.已知$\frac{3^x+3^{-x}}{3^x-3^{-x}}=7$,则$x$的值是\anst{1}。
三、解答题1.解方程:$\log_3(x^2+2x)-2\log_3(x+1)=\log_3(x+2)-2$解答:首先,我们可以利用对数的性质进行简化。
将题目中的等式两边都取对数底为3,得到:$\log_3(x^2+2x)-\log_3(x+1)^2=\log_3(x+2)-1$然后,利用对数的运算相关规律合并右侧表达式:$\log_3\left(\frac{x^2+2x}{(x+1)^2}\right)=\log_3(x+2)-1$进一步简化为:$\log_3\left(\frac{x^2+2x}{x^2+2x+1}\right)=\log_3(x+2)-1$由于等式两边底数相同,因此可以去掉对数符号:$\frac{x^2+2x}{x^2+2x+1}=x+2$接下来,我们将方程进行整理化简为二次方程:$x^2+2x=(x^2+2x+1)(x+2)$展开并合并同类项:$x^2+2x=x^3+4x^2+5x+2$整理得到:$x^3+3x^2+3x+2=0$通过观察,我们可以发现当$x=-1$时,方程成立。
(完整)重点高中提前招生数学试卷.doc

数学试卷 (满分 100 分)一、选择题(每小题均给出了代号为 A 、B 、 C 、 D 的四个结论,其中只有一个是正确的,请将正确答案的代号填在题后的括号内,每题4 分,共 28 分,选择题的答案写在答卷上)1x 11是方程 mx 2m2 0的根,则 xm 的值为 ().若mA .0B . 1C .- 1D . 22.内角的度数为整数的正n 边形的个数是( )A .24B . 22C .20D . 183.某商场五一期间举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的酬宾方式,即顾客每消费满100 元( 100元可以是现金,也可以是购物券,或二者合计)就送20 元购物券,满 200 元就送40 元购物券,依次类推,现有一位顾客第一次就用了16000 元购物,并用所得购物券继续购物,那么他购回的商品大约相当于它们原价的( )A .90%B .85%C . 80%D . 75%4x 1是完全平方数,则它前面的一个完全平方数是 ().设 x 为正整数,若A . xB x 2 x 1C . x 2 x 1 1D . x 2 x 1 2.5.横坐标、 纵坐标都是整数的点叫做整点,6x 3( )函数 y的图象上整点的个数是2x 1A .3 个B . 4 个C . 6 个D . 8 个D6、如图,四边形BDCE 内接于以 BC 为直径的⊙ A ,已知:BC 10, cos BCD 3 ,BCE 30 ,则线段 DE 的长5B是 ()CAA 、 89B 、7 3C 、 4+3 3D 、 3+4 37、某学校共有 3125 名学生,一次活动中全体学生被排成E一个 n 排的等腰梯形阵,且这 n 排学生数按每排都比前一排多一人的规律排列,则当 n 取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是()A.296B.221C.225D.641数学答题卷一、 (每 4 分,共 28 分,每 4 分,共 28 分)1 2 3 4 5 6 7二、填空 (本 共 8 小 ,每小 4 分,共 32 分)8. 算: 1+ 2-3+ 4+ 5- 6+ 7+ 8- 9+⋯+ 97+ 98-99+ 100= .9.若抛物 y2x 2px 4 p 1 中不管 p 取何 都通 定点, 定点坐10.已知 数 x 足 ( x 2 x)24(x 2 x)120 , 代数式 x 2 x 1 的11.若方程5x 3 y 2 3kx a, 且 | k | <3, a b 的取 范 是3x y k 4的解b,y12、若 任意 数 x 不等式 axb 都成立,那么 a 、 b 的取 范13、 1x 2 , x2 1 x 2的最大 与最小 之差 x214.有八个球 号是①至⑧,其中有六个球一 重,另外两个球都 1 克, 了找出 两个 球, 用天平称了三次, 果如下:第一次①+②比③+④重, 第二次⑤ +⑥比⑦+⑧ ,第三次① +③+⑤和② +④ +⑧一 重.那么,两个 球的 号是__15.在 2× 3 的矩形方格 上,各个小正方形的 点 格点。
2023年湖北省重点高中八校联考自主招生优录数学试卷(一)

2023年湖北省重点高中八校联考自主招生优录数学试卷(一)一、选择题(每小题3分,共24分)1.(3分)将x克含糖10%的糖水与y克含糖30%的糖水混合,混合后的糖水含糖()A.20%B.×100%C.×100%D.×100%2.(3分)如图,将长、宽分别为12cm,3cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为()A.(36)cm2B.(36)cm2C.24cm2D.36cm23.(3分)如图,Rt△ABC中,∠BAC=90°,cos B=,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为()A.B.C.D.24.(3分)如图,已知在矩形ABCD中,AB=1,BC=,点P是AD边上的一个动点,连接BP,点C 关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC 1扫过的区域的面积是()A.πB.π+C.D.2π5.(3分)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为,s2,该顾客选购的鸡蛋的质量平均数和方差分别为,,则下列结论一定成立的是()A.<B.>C.s2>D.s2<6.(3分)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.下列结论:①ac>0;②当x>0时,y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的个数有()A.1个B.2个C.3个D.4个7.(3分)连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为()A.B.C.D.8.(3分)由12个有公共顶点O的直角三角形拼成的图形如图所示,∠AOB=∠BOC=…=∠LOM=30°.若OA=16,则OG的长为()A.B.C.D.二、填空题(每小题3分,共24分)9.(3分)如图,在正方形网格中,每个小正方形的边长都是1,⊙O是△ABC的外接圆,点A,B,O在网格线的交点上,则sin∠ACB的值是.10.(3分)综合实践活动课上,小亮将一张面积为24cm2,其中一边BC为8cm的锐角三角形纸片(如图1),经过两刀裁剪,拼成了一个无缝隙、无重叠的矩形BCDE(如图2),则矩形的周长为cm.11.(3分)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是.12.(3分)幻方历史悠久,传说最早出现在夏禹时代的“洛书”当中.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则m的值为.13.(3分)如图,在平面直角坐标系中,正方形ABCD的顶点A在x轴正半轴上,顶点B,C在第一象限,顶点D的坐标(,2).反比例函数y=(常数k>0,x>0)的图象恰好经过正方形ABCD的两个顶点,则k的值是.14.(3分)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG =1,则BF=.15.(3分)如图,在△ABC中,∠ACB=90°,AC<BC.分别以点A,B为圆心,大于AB的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC 延长线于点H,连接AH.若BC=3,则△AFH的周长为.16.(3分)已知△ABC与△ABD在同一平面内,点C,D不重合,∠ABC=∠ABD=30°,AB=4,AC=AD=2,则CD长为.三、解答题(共72分)17.(10分)如图,正比例函数y=x与反比例函数y=(x>0)的图象交于点A,过点A作AB⊥y轴于点B,OB=4,点C在线段AB上,且AC=OC.(1)求k的值及线段BC的长;(2)点P为B点上方y轴上一点,当△POC与△P AC的面积相等时,请求出点P的坐标.18.(12分)有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和A D上,连接BF,DE,M是BF的中点,连接AM交DE于点N.【观察猜想】(1)线段DE与AM之间的数量关系是,位置关系是;【探究证明】(2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,其他条件不变,线段DE与AM之间的关系是否仍然成立?并说明理由.19.(12分)已知在△ACD中,P是CD的中点,B是AD延长线上的一点,连结BC,AP.(1)如图1,若∠ACB=90°,∠CAD=60°,BD=AC,AP=,求BC的长.(2)过点D作DE∥AC,交AP延长线于点E,如图2所示,若∠CAD=60°,BD=AC,求证:BC=2 AP.(3)如图3,若∠CAD=45°,是否存在实数m,当BD=mAC时,BC=2AP?若存在,请直接写出m 的值;若不存在,请说明理由.20.(12分)如图,BD是半径为3的⊙O的一条弦.BD=4,点A是⊙O上的一个动点(不与点B,D 重合),以A、B,D为顶点作平行四边形ABCD.(1)如图2,若点A是劣弧的中点.①求证:平行四边形ABCD是菱形;②求平行四边形ABCD的面积.(2)若点A运动到优弧上,且平行四边形ABCD有一边与⊙O相切.①求AB的长;②直接写出平行四边形ABCD对角线所夹锐角的正切值.21.(12分)今年以来,我市接待的旅客人数逐月增加,据统计,游玩某景区的游客人数二月份为4万人,四月份为5.76万人.(1)求三、四月份该景区游客人数的平均月增长率;(2)若该景区仅有A、B两个景点,售票处的三种购票方式如下表所示:购票方式甲乙丙可游玩景点A B A和B门票价格100元/人80元/人160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别为2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,则景区六月份的门票总收入为万元;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?22.(14分)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.(1)求抛物线及直线BC的函数表达式;(2)点F是抛物线对称轴上一点,当F A+FC的值最小时,求出点F的坐标及F A+FC的最小值;(3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由.2023年湖北省重点高中八校联考自主招生优录数学试卷(一)参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)将x克含糖10%的糖水与y克含糖30%的糖水混合,混合后的糖水含糖()A.20%B.×100%C.×100%D.×100%【解答】解:由题意可得,混合后的糖水含糖:×100%=×100%,故选:D.2.(3分)如图,将长、宽分别为12cm,3cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为()A.(36)cm2B.(36)cm2C.24cm2D.36cm2【解答】解:根据翻折可知,∠MAB=∠BAP,∠NAC=∠P AC,∴∠BAC=∠P AB+∠P AC=(∠MAB+∠BAP+∠NAC+∠P AC)=180°=90°,∵∠α=60°,∴∠MAB=180°﹣∠BAC﹣∠α=180°﹣90°﹣60°=30°,∴AB==6(cm),AC==2(cm),∴阴影部分的面积=S长方形﹣S△ABC=12×3﹣6×=(36﹣6)(cm2),故选:A.3.(3分)如图,Rt△ABC中,∠BAC=90°,cos B=,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为()A.B.C.D.2【解答】解:设DE交AC于T,过点E作EH⊥CD于H.∵∠BAC=90°,BD=DC,∴AD=DB=DC,∴∠B=∠DAB,∵∠B=∠ADE,∴∠DAB=∠ADE,∴AB∥DE,∴∠DTC=∠BAC=90°,∵DT∥AB,BD=DC,∴AT=TC,∴EA=EC=ED,∴∠EDC=∠ECD,∵EH⊥CD,∴CH=DH,∵DE∥AB,∴∠EDC=∠B,∴∠ECD=∠B,∴cos∠ECH=cos B=,∴=,∴==2,方法二:证△AED∽△ADB,从而得AE:AD=AD:AB=2:1,再证ED为AC的垂直平分线,得EC=ED=AE,等量代换得CE:AD=2:1.故选:D.4.(3分)如图,已知在矩形ABCD中,AB=1,BC=,点P是AD边上的一个动点,连接BP,点C 关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC 1扫过的区域的面积是()A.πB.π+C.D.2π【解答】解:如图,当P与A重合时,点C关于BP的对称点为C′,当P与D重合时,点C关于BP的对称点为C″,∴点P从点A运动到点D,则线段CC1扫过的区域为:扇形BC'C''和△BCC'',在△BCD中,∵∠BCD=90°,BC=,CD=1,∴tan∠DBC=,∴∠DBC=30°,∴∠CBC″=60°,∵BC=BC'',∴△BCC''为等边三角形,∴S扇形BC′C″==π,作C''F⊥BC于F,∵△BCC''为等边三角形,∴BF=,∴C''F=tan60°×=,∴S△BCC''=,∴线段CC1扫过的区域的面积为:π+.故选:B.5.(3分)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为,s2,该顾客选购的鸡蛋的质量平均数和方差分别为,,则下列结论一定成立的是()A.<B.>C.s2>D.s2<【解答】解:∵超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,∴货架上原有鸡蛋的质量的方差s2>该顾客选购的鸡蛋的质量方差,而平均数无法比较.故选:C.6.(3分)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.下列结论:①ac>0;②当x>0时,y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的个数有()A.1个B.2个C.3个D.4个【解答】解:把点A(﹣1,0),B(3,0)代入二次函数y=ax2+bx+c,可得二次函数的解析式为:y=ax2﹣2ax﹣3a,∵该函数图象开口方向向下,∴a<0,∴b=﹣2a>0,c=﹣3a>0,∴ac<0,3a+c=0,①错误,③正确;∵对称轴为直线:x=﹣=1,∴x<1时,y随x的增大而增大,x>1时,y随x的增大而减小;②错误;∴当x=1时,函数取得最大值,即对于任意的m,有a+b+c≥am2+bm+c,∴a+b≥am2+bm,故④正确.综上,正确的个数有2个,故选:B.7.(3分)连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为()A.B.C.D.【解答】解:如图所示,令S△ABC=a,则S阴影=6a,S正六边形=18a,∴将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为=,故选:B.8.(3分)由12个有公共顶点O的直角三角形拼成的图形如图所示,∠AOB=∠BOC=…=∠LOM=30°.若OA=16,则OG的长为()A.B.C.D.【解答】解:由图可知,∠ABO=∠BCO=…=∠LMO=90°,∵∠AOB=∠BOC=…=∠LOM=30°,∴∠A=∠OBC=∠OCD=…=∠OLM=60°,∴AB=OA,OB=AB=OA,同理可得,OC=OB=()2OA,OD=OC=()3OA,…OG=OF=()6OA=()6×16=.故选:A.二、填空题(每小题3分,共24分)9.(3分)如图,在正方形网格中,每个小正方形的边长都是1,⊙O是△ABC的外接圆,点A,B,O在网格线的交点上,则sin∠ACB的值是.【解答】解:如图,连接AO并延长交⊙O于D,由圆周角定理得:∠ACB=∠ADB,由勾股定理得:AD==2,∴sin∠ACB=sin∠ADB===,故答案为:.10.(3分)综合实践活动课上,小亮将一张面积为24cm2,其中一边BC为8cm的锐角三角形纸片(如图1),经过两刀裁剪,拼成了一个无缝隙、无重叠的矩形BCDE(如图2),则矩形的周长为22cm.【解答】解:延长AT交BC于点P,∵AP⊥BC,∴•BC•AP=24,∴×8×AP=24,∴AP=6(cm),由题意,AT=PT=3(cm),∴BE=CD=PT=3(cm),∵DE=BC=8cm,∴矩形BCDE的周长为8+8+3+3=22(cm).故答案为:22.11.(3分)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是﹣1.【解答】解:∵地毯面积被平均分成了3份,∴每一份的边长为=,∴CD=3×=,在Rt△ACD中,根据勾股定理可得AD==,又根据剪裁可知BD=CK=1,∴AB=AD﹣BD=﹣1.故答案为:﹣1.12.(3分)幻方历史悠久,传说最早出现在夏禹时代的“洛书”当中.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则m的值为8.【解答】解:∵每一横行数字之和是15,∴第一行7后面的数字为15﹣2﹣7=6,∵每条对角线上的数字之和是15,∴中间的数字为15﹣6﹣4=5,∴2+5+m=15,解得m=8,故答案为:8.13.(3分)如图,在平面直角坐标系中,正方形ABCD的顶点A在x轴正半轴上,顶点B,C在第一象限,顶点D的坐标(,2).反比例函数y=(常数k>0,x>0)的图象恰好经过正方形ABCD的两个顶点,则k的值是5或22.5.【解答】解:作DM⊥x轴于M,BN⊥x轴于N,过C点作x轴的平行线,交MD的延长线于E,交NB 的延长线于F,正方形ABCD中,∠BAD=90°,∴∠DAM+∠BAN=90°,∵∠ADM+∠DAM=90°,∴∠ADM=∠BAN,在△ADM和△BAN中,,∴△ADM≌△BAN(AAS),∴AM=BN,DM=AN,∵顶点D的坐标(,2).∴OM=,DM=2,同理:△ADM≌△DCE,∴AM=DE,CE=DM,∴AM=BN=DE,DM=AN=CE=2,设AM=BN=DE=m,∴ON=+m+2=4.5+m,∴B(4.5+m,m),C(4.5,2+m),当反比例函数y=(常数k>0,x>0)的图象经过点B、D时,则k=×2=5;当反比例函数y=(常数k>0,x>0)的图象经过点B、C时,则k=(4.5+m)•m=4.5•(2+m),解得m=3(负数已经舍去),∴k=4.5×(2+3)=22.5,故答案为5或22.5.14.(3分)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=.【解答】解:∵四边形ABCD是正方形,∴AB=AD=5,∠ABC=∠BAD=90°,∵AE=DG=1,∴AG=4,∵AF⊥EG,∴∠BAF+∠AEG=90°=∠BAF+∠AFB,∴∠AFB=∠AEG,∴△ABF∽△GAE,∴,∴,∴BF=,故答案为.15.(3分)如图,在△ABC中,∠ACB=90°,AC<BC.分别以点A,B为圆心,大于AB的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC 延长线于点H,连接AH.若BC=3,则△AFH的周长为6.【解答】解:由基本作图方法得出:DE垂直平分AB,则AF=BF,可得AF=AH,AC⊥FH,∴FC=CH,∴AF+FC=BF+FC=AH+CH=BC=3,∴△AFH的周长为:AF+FC+CH+AH=2BC=6.故答案为:6.16.(3分)已知△ABC与△ABD在同一平面内,点C,D不重合,∠ABC=∠ABD=30°,AB=4,AC=AD=2,则CD长为2±2或4或2.【解答】解:如图,当C,D同侧时,过点A作AE⊥CD于E.在Rt△AEB中,∠AEB=90°,AB=4,∠ABE=30°,∴AE=AB=2,∵AD=AC=2,∴DE==2,EC==2,∴DE=EC=AE,∴△ADC是等腰直角三角形,∴CD=4,当C,D异侧时,过C′作C′H⊥CD于H,∵△BCC′是等边三角形,BC=BE﹣EC=2﹣2,∴CH=BH=﹣1,C′H=CH=3﹣,在Rt△DC′H中,DC′===2,∵△DBD′是等边三角形,∴DD′=2+2,∴CD的长为2±2或4或2.故答案为:2±2或4或2.三、解答题(共72分)17.(10分)如图,正比例函数y=x与反比例函数y=(x>0)的图象交于点A,过点A作AB⊥y轴于点B,OB=4,点C在线段AB上,且AC=OC.(1)求k的值及线段BC的长;(2)点P为B点上方y轴上一点,当△POC与△P AC的面积相等时,请求出点P的坐标.【解答】解:(1)∵点A在正比例函数y=x上,AB⊥y轴,OB=4,∵点B的坐标为(0,4),∴点A的纵坐标是4,代入y=x,得x=8,∴A(8,4),∵点A在反比例函数y=(x>0)的图象上,∴k=4×8=32,∵点C在线段AB上,且AC=OC.设点C(c,4),∵OC==,AC=AB﹣BC=8﹣c,∴=8﹣c,解得:c=3,∴点C(3,4),∴BC=3,∴k=32,BC=3;(2)如图,设点P(0,p),∵点P为B点上方y轴上一点,∴OP=p,BP=p﹣4,∵A(8,4),C(3,4),∴AC=8﹣3=5,BC=3,∵△POC与△P AC的面积相等,∴×3p=×5(p﹣4),解得:p=10,∴P(0,10).18.(12分)有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和A D上,连接BF,DE,M是BF的中点,连接AM交DE于点N.【观察猜想】(1)线段DE与AM之间的数量关系是DE=2AM,位置关系是DE⊥AM;【探究证明】(2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,其他条件不变,线段DE与AM之间的关系是否仍然成立?并说明理由.【解答】解:(1)∵四边形ABCD和四边形AEGF都是正方形,∴AD=AB,AF=AE,∠DAE=∠BAF=90°,∴△DAE≌△BAF(SAS),∴DE=BF,∠ADE=∠ABF,∵∠ABF+∠AFB=90°,∴∠ADE+∠AFB=90°,在Rt△BAF中,M是BF的中点,∴AM=FM=BM=BF,∴DE=2AM.∵AM=FM,∴∠AFB=∠MAF,又∵∠ADE+∠AFB=90°,∴∠ADE+∠MAF=90°,∴∠AND=180°﹣(∠ADE+∠MAF)=90°,即AN⊥DN;故答案为DE=2AM,DE⊥AM.(2)仍然成立,证明如下:延长AM至点H,使得AM=MH,连接FH,∵M是BF的中点,∴BM=FM,又∵∠AMB=∠HMF,∴△AMB≌△HMF(SAS),∴AB=HF,∠ABM=∠HFM,∴AB∥HF,∴∠HFG=∠AGF,∵四边形ABCD和四边形AEGF是正方形,∴∠DAB=∠AFG=90°,AE=AF,AD=AB=FH,∠EAG=∠AGF,∴∠EAD=∠EAG+∠DAB=∠AFG+∠AGF=∠AFG+∠HFG=∠AFH,∴△EAD≌△AFH(SAS),∴DE=AH,又∵AM=MH,∴DE=AM+MH=2AM,∵△EAD≌△AFH,∴∠ADE=∠FHA,∵△AMB≌△HMF,∴∠FHA=∠BAM,∴∠ADE=∠BAM,又∵∠BAM+∠DAM=∠DAB=90°,∴∠ADE+∠DAM=90°,∴∠AND=180°﹣(∠ADE+∠DAM)=90°,即AN⊥DN.故线段DE与AM之间的数量关系是DE=2AM.线段DE与AM之间的位置关系是DE⊥AM.19.(12分)已知在△ACD中,P是CD的中点,B是AD延长线上的一点,连结BC,AP.(1)如图1,若∠ACB=90°,∠CAD=60°,BD=AC,AP=,求BC的长.(2)过点D作DE∥AC,交AP延长线于点E,如图2所示,若∠CAD=60°,BD=AC,求证:BC=2 AP.(3)如图3,若∠CAD=45°,是否存在实数m,当BD=mAC时,BC=2AP?若存在,请直接写出m 的值;若不存在,请说明理由.【解答】解:(1)∵∠ACB=90°,∠CAD=60°,∴AB=,∵BD=AC,∴AD=AC,∴△ADC是等边三角形,∴∠ACD=60°,∵P是CD的中点,∴AP⊥CD,在Rt△APC中,AP=,∴,∴,(2)证明:连接BE,∵DE∥AC,∴∠CAP=∠DEP,在△CP A和△DPE中,∴△CP A≌△DPE(AAS),∴AP=EP=,DE=AC,∵BD=AC,∴BD=DE,又∵DE∥AC,∴∠BDE=∠CAD=60°,∴△BDE是等边三角形,∴BD=BE,∠EBD=60°,∵BD=AC,∴AC=BE,在△CAB和△EBA中,∴△CAB≌△EBA(SAS),∴AE=BC,∴BC=2AP,(3)存在这样的m,m=.理由如下:作DE∥AC交AP延长线于E,连接BE,由(2)同理可得DE=AC,∠EDB=∠CAD=45°,AE=2AP,当BD=时,∴BD=,作BF⊥DE于F,∵∠EDB=45°,∴BD=,∴DE=DF,∴点E,F重合,∴∠BED=90°,∴∠EBD=∠EDB=45°,∴BE=DE=AC,同(2)可证:△CAB≌△EBA(SAS),∴BC=AE=2AP,∴存在m=,使得BC=2AP,20.(12分)如图,BD是半径为3的⊙O的一条弦.BD=4,点A是⊙O上的一个动点(不与点B,D 重合),以A、B,D为顶点作平行四边形ABCD.(1)如图2,若点A是劣弧的中点.①求证:平行四边形ABCD是菱形;②求平行四边形ABCD的面积.(2)若点A运动到优弧上,且平行四边形ABCD有一边与⊙O相切.①求AB的长;②直接写出平行四边形ABCD对角线所夹锐角的正切值.【解答】(1)①证明:∵=,∴AD=AB,∵四边形ABCD是平行四边形,∴四边形ABCD是菱形;②解:连接OA交BD于J,连接OC.如图2,∵=,∴OA⊥BD,∵四边形ABCD是菱形,∴AC⊥BD,∴A,O,C共线,在Rt△OJD中,DJ=BJ=2,OD=3,∴OJ===1,∴AJ=OA﹣OJ=3﹣1=2,∵四边形ABCD是菱形,∴AJ=CJ=2,∴S菱形ABCD=•AC•BD=×4×4=8;(2)①解:当CD与⊙O相切时,连接AC交BD于H,连接OH,OD,延长DO交AB于P,过点A 作AJ⊥BD于J.如图3,∵CD是⊙O的切线,∴OD⊥CD,∵CD∥AB,∴DP⊥AB,∴P A=PB,∴DB=AD=4,∵四边形ABCD是平行四边形,∴DH=BH=2,∴OH⊥BD,∴∠DHO=∠DPB=90°,∵∠ODH=∠BDP,∴△DHO∽△DPB,∴==,∴==,∴DP=,PB=,∴AB=2PB=,当BC与⊙O相切时,如图4,同理可证AB=BD=4.综上所述,AB的长为4或.②解:如图3,过点A作AJ⊥BD于J.∵•AB•DP=•BD•AJ,∴AJ=,∴BJ===,∴JH=BH﹣BJ=2﹣=,∴tan∠AHJ===,如图4中,同法可得平行四边形ABCD对角线所夹锐角的正切值为,综上所述,平行四边形ABCD对角线所夹锐角的正切值为.21.(12分)今年以来,我市接待的旅客人数逐月增加,据统计,游玩某景区的游客人数二月份为4万人,四月份为5.76万人.(1)求三、四月份该景区游客人数的平均月增长率;(2)若该景区仅有A、B两个景点,售票处的三种购票方式如下表所示:购票方式甲乙丙可游玩景点A B A和B门票价格100元/人80元/人160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别为2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,则景区六月份的门票总收入为798万元;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【解答】解:(1)设四月和五月这两个月中该景区游客人数平均每月增长率为x,由题意,得4(1+x)2=5.76,解这个方程,得x1=0.2,x2=﹣2.2(舍去),答:四月和五月这两个月中该景区游客人数平均每月增长率为20%;(2)①由题意,得100×(2﹣10×0.06)+80×(3﹣10×0.04)+(160﹣10)×(2+10×0.06+10×0.04)=798(万元).答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m元,景区六月份的门票总收入为W万元,由题意,得W=100(2﹣0.06m)+80(3﹣0.04m)+(160﹣m)(2+0.06m+0.04m),化简,得W=﹣0.1(m﹣24)2+817.6,∵﹣0.1<0,∴当m=24时,W取最大值,为817.6万元.答:当丙种门票价格下降24元时,景区六月份的门票总收入有最大值,最大值是817.6万元.22.(14分)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.(1)求抛物线及直线BC的函数表达式;(2)点F是抛物线对称轴上一点,当F A+FC的值最小时,求出点F的坐标及F A+FC的最小值;(3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)由点A的坐标知,OA=2,∵OC=2OA=4,故点C的坐标为(0,4),将点A、B、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为y=﹣x2+x+4;将点B、C的坐标代入一次函数表达式得:,解得,故直线BC的表达式为y=﹣x+4;(2)∵点A、B关于抛物线的对称轴对称,设抛物线的对称轴交BC于点F,则点F为所求点,此时,当F A+FC的值最小,理由:由函数的对称性知,AF=BF,则AF+FC=BF+FC=BC为最小,当x=1时,y=﹣x+4=3,故点F(1,3),由点B、C的坐标知,OB=OC=4,则BC=BO=4,即点F的坐标为(1,3)、F A+FC的最小值为4;(3)存在,理由:设点P的坐标为(m,﹣m2+m+4)、点Q的坐标为(t,﹣t+4),①当点Q在点P的左侧时,如图2,过点P、Q分别作x轴的垂线,垂足分别为N、M,由题意得:∠PEQ=90°,∴∠PEN+∠QEM=90°,∵∠EQM+∠QEM=90°,∴∠PEN=∠EQM,∴∠QME=∠ENP=90°,∴△QME∽△ENP,∴=tan∠EQP=tan∠OCA===,则PN=﹣m2+m+4,ME=1﹣t,EN=m﹣1,QM=﹣t+4,∴==,解得m=±(舍去负值),当m=时,﹣m2+m+4=,故点P的坐标为(,).②当点Q在点P的右侧时,分别过点P、Q作抛物线对称轴的垂线,垂足分别为N、M,则MQ=t﹣1,ME=t﹣4,NE=﹣m2+m+4、PN=m﹣1,同理可得:△QME∽△ENP,∴=2,=2,解得m=(舍去负值),故m=,故点P的坐标为(,),故点P的坐标为(,)或(,).。
省重点高中高一新生提前招生考试数学试卷及答案(共5份)

18.解:按颜色把 8 个扇形分为红 1、绿 1、黄 1、红 2、绿 2、黄 2、绿 3、黄
3,所有可能结果的总数为 8。
( 1)指针指向红色可能结果为
21
2,∴ P(指针指向红色) =
。
84
( 2)指针指向黄色或绿色可能结果为
6,∴ P(指针指向黄色或绿色)
63
=
。
84
a2 4
1
a2a2 a3
19.解:
2
3 m2
=
4
x1
x 2 ቤተ መጻሕፍቲ ባይዱ即
9 m 4 = 3 m 2。解之得
16
4
此时
3m2 4
2
32 3
43
1 。 点 C 的坐标为
OC 1。
m 2 3。 3
0, 1 。
又 x2
2
x1
2
x1 x2
4 x1 x2
2
m4
3 m2 4
4 m 2,
m > 0 , x 2 x1
2m 4 3 ,即 AB 3
4 3。 3
1
∴ ∠PDF= ∠ DFA= ∠ DFP。∴ PD=PF。
∴ PA=PF。即 P 是线段 AF 的中点。
( 3)∵∠ DAF= ∠DBA ,∠ ADB= ∠ FDA ,∴△ FDA ∽△ ADB 。
AD AF
∴
。
DB AB
15
AD AF ∴在△ ADB 中, tan ABD
2
3 。
DB AB 10 4
D. 12 3
10.二次函教 y x2 2x 5 有
A .最大值 5 B.最小值 5 C.最大值 6 D .最小值 6
重点高中提前招生数学练习卷(有答案)

重点高中提前招生数学练习卷班级 姓名 成绩一、选择题(每小题4分,共32分)1.若0<x <1,则x -1,x ,x 2的大小关系是( C )A .x -1<x <x 2B . x <x 2<x -1C .x 2<x <x -1D .x 2<x -1<x 【解析】用特殊值法,例如,取x =12.2.匀速行驶的城际列车,若将速度提高25%,则相同距离的 行车时间可节省k %,那么k 的值是( D )A .35B .30C .25D .20【解析】设距离为s ,原速为v ,则(s v -s 1.25v )÷sv =20%,∴k =20.3.如图,将△ADE 绕正方形ABCD 的顶点A 顺时针旋转90°, 得△ABF ,连接EF 交AB 于H ,则下列结论错误的是( C )A .AE ⊥AFB .EF ∶AF =2∶1C .AF 2=FH •FED .FB ∶FC =HB ∶EC4.用0,l ,2,3,4,5,6,7,8这九个数字组成若干个一位数或两位数(每个数字都只用一次),然后把所得的数相加,它们的和不可能是( C ) A. 36 B. 117 C. 115 D. 153【解析】由于a +b +c +d +e +f +g +h +i =36,当组成的数中含有两位数时(如a 为十位数字),它们的和为10a +b +c +d +e +f +g +h +i =9a +(a +b +c +d +e +f +g +h +i) =36+9a 为9的倍数.同理,当多个数为十位数字时(如a ,b ,c 为十位数字),它们的和为10a +10b +10c +d +e +f +g +h +i =9a +9b +9c +(a +b +c +d +e +f +g +h +i)=36+9a +9b +9c 仍为9的倍数. ∵115不是9的倍数,∴C 答案不可能.5.如图,四边形ABMN ,BCPQ 是两个全等的矩形(AB ≤BC ),点R 在线段AC 上移动,则满足∠NRP =90°的点R 有( C )A. 1个B. 2个C. 1个或2个D. 无数多个 【解析】设AB =a ,BC =b ,AR =x. ∵∠A =∠C =∠NRP =90°,∴△ANR ∽△CRP , ∴AN RC =AR CP ,即b a +b -x =x a ,∴x 2-(a +b)x +ab =0, 解得x 1=a ,x 2=b. ∴当a <b 时点R 有2个,当a =b 时点R 有1个,故选C.6. 实数a ,b ,c 满足a +b +c =0,且abc >0,则1a +1b +1c的值是( B )A. 正数B. 负数C. 零D. 不能确定【解析】将等式a +b +c =0两边平方,得a 2+b 2+c 2+2ab +2bc +2ca =0, ∴ab +bc +ca =-12(a 2+b 2+c 2)<0. ∵abc >0,∴1a +1b +1c =ab +bc +caabc<0.7.在△ABC 中,点D ,E 分别在AB ,AC 上,CD 与BE 相交于点F ,已知△BDF 的面积为10,△BCF 的面积为20,△CEF 的面积为16,则四边形ADFE 的面积等于( D ) A .22 B .24 C .36 D .44 【解析】如图,由题意得x y +16=1020,y x +10=1620, ∴⎩⎨⎧2x =y +16,5y =4x +40,解得⎩⎨⎧x =20,y =24.∴四边形ADFE 的面积为44.8.某医院内科病房有护士15人,每2人一班,轮流值班,每8小时换班一次,某两人同值一班后,到下次两人再同班,最长需要( B )A .30天B .35天C .56天D .448天 【解析】15人每2人一班,轮流值班,有15×142=105种排法.每8小时换班一次,一天须排3班,某两人同值一班后,到下次两人再同班,最长需要105÷3=35(天). 二、填空题(每小题5分,共40分)9.已知∠A 为锐角,且4sin 2A -4sin A cos A +cos 2A =0,则tan A = . 【答案】12【解析】由题意得(2sin A -cos A )2=0,∴2sin A -cos A =0,∴sinA cosA =12. ∴tan A =sinA cosA =12.10.在某海防观测站的正东方向12海里处有A ,B 两艘船相遇,然后A 船以每小时12海里的速度往南航行,B 船以每小时3海 里的速度向北漂移.则经过 小时后,观测站及A ,B 两 船恰成一个直角三角形. 【答案】211.一个样本为l ,3,2,2,a ,b ,c .已知这个样本唯一的众数 为3,平均数为2,则这个样本的方差为 . 【答案】87【解析】这个样本为l ,3,2,2,3,3,0.∴方差为87.12.如图,直角坐标系中,沿着两条坐标轴摆着三个相同的长方 形,其长、宽分别为4,2,则通过A ,B ,C 三点的拋物线对应的 函数关系式是 . 【答案】y =-512x 2-12x +20313. 在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l 的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是 . 【答案】4914. 如图,在边长为2的正方形ABCD 的四边上分别取点E ,F ,G ,H ,当四边形EFGH 各边的平方和EF 2+FG 2+GH 2+HE 2取得最小值时,四边形EFGH 的面积为 . 【答案】2【解析】设AE =a ,BF =b ,CG =c ,DH =d ,∴EF 2+FG 2+GH 2+HE 2=(2-a)2+b 2+(2-b)2+c 2+(2-c)2+d 2+(2-d)2+a 2 =2a 2+2b 2+2c 2+2d 2-4a -4b -4c -4d +16 =2[(a -1)2+(b -1)2+(c -1)2+(d -1)2+4] 当a =b =c =d =1时,四边形EFGH 恰好是 正方形ABCD 的中点四边形, ∴四边形EFGH 的面积为2.15.点P ,Q 从点A (2,0)同时出发,沿正方形BCDE 的边匀速运动,点P 以每秒1个单位的速度按逆时针方向运动,点Q 以每秒2个单位的速度按顺时针方向运动,则P ,Q 两点第11次相遇时的坐标是 . 【答案】(-43,-2)【解析】∵P ,Q 第一次相遇时,点P 所走的路程为周长的13,∴第3次相遇时点P 回到A 处.以此类推,第6次、第9次相遇时点P 均在A 处. 第11次相遇时,点P 从A 处出发,走了周长的23,其坐标为(-43,-2).16. 已知2,a ,b 分别为三角形三边,且a ,b 为方程(3x 2-4x -1)(3x 2-4x -5)=12的根,则三角形周长为 .【答案】163,203【解析】解方程(3x 2-4x -1)(3x 2-4x -5)=12,设3x 2-4x =y ,则(y -1)(y -5)=12, 解得y =-1或y =7.当y =-1时,3x 2-4x +1=0,解得x 1=1,x 2=13,当y =7时,3x 2-4x -7=0,解得x 3=-1,x 4=73.其中能与2组成三角形只有2种:(2,1,73),(2,73,73),∴周长为163或203.三、解答题(共58分)17.(10分)已知a =12+3, 求1-2a +a 2a -1-a 2-2a +1a 2-a 的值.【解】由已知得a =2- 3.原式=(1-a)2a -1-(a -1)2a(a -1). a =2-3<1,∴(a -1)2=1-a.∴原式=a -1+1a=2-3-1+2+3=3.18.(10分)在凸四边形ABCD 中,∠A -∠B =∠B -∠C =∠C -∠D >0,且四个内角中有一个角为84°,求其余各角的度数.【解】设∠A -∠B =∠B -∠C =∠C -∠D =x , 则∠C =∠D +x ,∠B =∠D +2x ,A =∠D +3x ,∵∠A +∠B +∠C +∠D =6x +4∠D =360°,∴∠D +32x =90°.若∠D =84°,则x =4°,∴∠A =96°,∠B =92°,∠C =88°; 若∠C =84°,则2x +4∠C =360°,x =12°,∴∠A =108°,∠B =96°,∠D =72°. 若∠B =84°,则-2x +4∠B =360°,x =-12°(舍去). 若∠A =84°,则-6x +4∠A =360°,x =-4(舍去).. ∴各角的度数为∠A =96°,∠B =92°,∠C =88°,∠D =84°;或∠A =108°,∠B =96°,∠C =84°,∠D =72°.19.(12当比赛进行到12 (1)试判断甲队胜、平、负各几场?(2)若每一场每名参赛队员均得出场费500元,设甲队中一位参赛队员所得的奖金与出场费的和为W (元),试求W 的最大值.【解】(1)设甲队胜x 场,平y 场,负z 场,则⎩⎨⎧x +y +z =12,3x +y =19,∴⎩⎨⎧y =19-3x ,z =2x -7,依题意知x≥0,y≥0,z≥0,且x ,y ,z 均为整数,∴⎩⎪⎨⎪⎧x ≥019-3x ≥0,2x -7≥0,∴解得72≤x ≤193,∴甲队胜、平、负的场数有三种情况:当x =4时,y =7,z =1; 当x =5时,y =4,z =3; 当x =6时,y =1,z =5.(2)∵W =(1500+500)x +(700+500)y +500z =-600x +19300. 当x =4时,W 最大值=-600×4+19300=16900(元) ∴W 的最大值为16900元.20.(12分)对于平面直角坐标系 xOy 中的点P (a ,b ),若点P'的坐标为(a +bk ,ka +b )(k 为常数,k ≠0),则称点P'为点P 的“k 属派生点”.例如:P (1,4)的“2属派生点”为P'(1+42,2×1+4),即P'(3,6).(1)①点P (-1,-2)的“2属派生点”P'的坐标为___________. ②若点P 的“k 属派生点”为P'(3,3),请写出一个符合条件的点P 的坐标____________. (2)若点P 在x 轴的正半轴上,点P 的“k 属派生点”为P'点,且△OPP'为等腰直角三角形,则k 的值为 .(3)如图, 点Q 的坐标为(0,43),点A 在函数y =-43x(x <0)的图象上,且点A 是点B 的“-3属派生点”,当线段BQ 最短时,求B 点坐标. 【解】(1)①(-2,-4);②答案不唯一,只需横、纵坐标之和为3即可,如(1,2).(2)±1. (3)设B (a ,b ),则A (a -b3,-3a +b ). ∵点A 在反比例函数y =-43x的图象上, ∴(a -b3)(-3a +b)=-4 3.∴(3a -b)2=12.∴b =3a -23或b =3a +2 3.∴B 在直线y =3x -23或y =3x +23上.过Q 作y =3x +23的垂线Q B 1,垂足为B 1,求得B 1(32,723). ∵点Q 到直线y =3x -23的距离大于Q B 1,∴B 1即为所求的B 点,∴B (32,723).21.(14分)已知:矩形ABCD (字母顺序如图)的边长AB =3,AD =2,将此矩形放在平面直角坐标系xOy 中,使AB 在x 轴的正半轴上,矩形的其它两个顶点在第一象限,且直线y =32x -1经过这两个顶点中的一个. (1)求矩形的各顶点的坐标.(2)以AB 为直径作⊙M ,经过A ,B 两点的抛物线y =ax 2+bx +c 的顶点是P 点. ①若点P 位于⊙M 外,且在矩形ABCD 内部,求a 的取值范围.②过点C 作⊙M 的切线交AD 于F 点,当PF ∥AB 时,试判断抛物线与y 轴的交点Q 是位于直线y =32x -1的上方?还是下方?还是正好落在此直线上?并说明理由.【解】(1)设A (m ,0)(m >0),则有B (m +3,0);C (m +3,2),D (m ,2); 若C 点过直线y =32x -1;则2=32( m +3)-1,解得m =-1(舍去);若点D 过直线y =32x -1,则2=32m -1,m =2(符合题意).∴A (2,0),B (5,0),C (5,2),D (2,2). (2)①∵⊙M 以AB 为直径,∴M (72,0),设抛物线y =a(x -2)( x -5)=ax 2-7ax +10a , ∴抛物线顶点P (72,-94a ).∵顶点同时在⊙M 内和在矩形ABCD 内部, ∴32<-94a <2,∴-89<a <-23. ②设切线CF 与⊙M 相切于Q ,交AD 于F (如图所示). 设AF =n ,由切线长定理得FQ =AF =n ,∴CF =n +2.由勾股定理得DF 2+DC 2=CF 2,∴32+(2-n)2=( n +2)2,解得n =98,∴F (2,98).当PF ∥AB 时,P 点纵坐标为98,∴-94a =98,∴a =-12.∴抛物线的解析式为y =-12x 2+72x -5,与y 轴的交点为Q (0,-5).∵直线y =32x -1与y 轴交点(0,-1),∴Q 在直线y =32x -1下方.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年春六校九年级联考
数 学 试 卷
(福田河中学 夏玉焰 满分:120 时间:120分钟)
一.选择题.(每小题4分,共32分)
1.下列结论正确的是 ( )
A .一组对边平行,另一组对边相等的四边形是平行四边形
B .对角线相等的四边形是矩形
C .对角线互相垂直且相等的四边形是正方形
D .对角线互相垂直平分的四边形是菱形
2.若定义:(,)(,)f a b a b =-,(,)(,)g m n m n =-,例如(1,2)(1,2)f =-
,(4,5)(4,5)g --=-,则((2,3))g f -=( )
A .(2,3)-
B .(2,3)-
C .(2,3)
D .(2,3)--
3.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( )
A. 5个
B. 6个
C. 7个
D. 8个
4.关于x 的不等式组25
53
32
x x x x a
+⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围是( ) A 1162a -<<- B .1162a -<≤- C .1162a -<≤- D .1162
a -≤≤- 5.已知y=+
(x ,y 均为实数),则y 的最大值与最小值的差为( ) 22
2
2
﹣
6.如图,AB 为⊙O 的一固定直径,它把⊙O 分成上,下两个半圆,自上半圆上一点C 作弦
CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) 等分
7. 已知a 、b 为质数且是方程0132
=+-c x x 的根,那么
b
a
a b +
的值是( ) A .
22127 B .22
125
C .22123
D .22121
8. 甲、乙两车从A 地将一批物品匀速运往B 地,甲出发0.5小时后乙开始出发,结果比甲早1小时到达B 地.如图,线段OP 、MN 分别表示甲、乙两车离A 地的距离s (千米)与
时间t (小时)的关系,a 表示A 、B 两地间的距离.现有以下4个结论: ①甲、乙两车的速度分别为40km/h 、60km/h; ②甲、乙两地之间的距离a 为180km;
③点N 的坐标为(3,180);
④乙车到达B 地后以原速度立即返回,甲车到达B 地后以90km/h 的速度立即匀速返回,
才能与乙车同时回到
A 地.
以上四个结论正确的是 ( )
A .①②④ B. ①③④ C.②③④
D. ①②③④ 二.填空题.(每小题4分,共28分)
9.已知实数m 、n 满足m 2
﹣4m ﹣1=0
,n 2
﹣4n ﹣1=0,则+= .
10.一项“过关游戏”规定:在过第n 关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n 次,若n 次抛掷所出现的点数之和大于n 2,则算过关;否则不算过关,
姓
学 校 班 级 考 号
姓 名
封
线
第8题图
则能过第二关的概率是_________.
11.有一满池水,池底有泉总能均匀地向外涌流,已知用24部A 型抽水机6天可抽干池水,若用21部A 型抽水机8天也可抽干池水,设每部抽水机单位时间的抽水量相同,要使这一池水永抽不干,则至多只能用______部A 型抽水机抽水.
12.当x 变化时,分式1
5
632
212++++x x x x 的最小值是___________.
13. 如图,矩形ABCD 中,AB=4,BC=3,边CD 在直线l 上,将矩形ABCD 沿直线l 作无滑动翻滚,当点A 第一次翻滚到点A 1位置时,则点A 经过的路线长为 .
14.如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B ′,则图中阴影部分的面积是 。
15.G 是△ABC 的重心,过G 的直线交AB 于M ,交AC 于N ,BM CN
AM AN
+
= 。
则
三.解答题.(60分)
16.(本题8分)分别以▱ABCD (∠CDA ≠90°)的三边AB ,CD ,DA 为斜边作等腰直角三角形,△ABE ,△CDG ,△ADF .
(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF ,EF .请判断GF 与EF 的关系(只写结论,不需证明);
(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF ,EF ,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.
17.(10)如图,过圆O 直径的两端点M N 、各引一条切线, 在圆O 上取一点P ,过O 、P 两点的直线交两切线于R Q 、. (1)求证:NPQ △∽PMR △;
(2)如果圆O
4PMR PNQ S S ∆∆=, 求NP 的长.
18.(10分)(2016•云南)有一列按一定顺序和规律排列的数:
第一个数是
;
第二个数是;
第三个数是;
…
对任何正整数n ,第n 个数与第(n+1
)个数的和等于.
(1
)经过探究,我们发现:
设这列数的第5个数为a
,那么
,
,
,哪个正确?
请你直接写出正确的结论;
(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 数),并且证明你的猜想满足“第n 个数与第(n+1
)个数的和等于
”;
(3)设M
表示
,
,,…
,,这2016
个数的和,即
,
求证:.
19、(10分)设m 是不小于1-的实数,关于x 的方程033)2(22
2
=+-+-+m m x m x 有
两个不相等的实数根1x 、2x ,(1)若2
1x 62
2=+x ,求m r 值;(2)求2
2
2
12
111x mx x mx -+
-的最大值。
P O
R Q
N
M
姓
学 校 班 级 考 号
姓 名
封
线
20(10分).已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离d可用公式
计算.
例如:求点P(-2,1)到直线y=x+1的距离.
解:因为直线y=x+1可变形为x-y+1=0,其中k=1,b=1,
所以点P(-2,1)到直线y=x+1的距离为:
.
根据以上材料,求:
(1)点P(1,1)到直线y=3x-2的距离,并说明点P与直线的位置关系;
(2)点P(2,-1)到直线y=2x-1的距离;
(3)已知直线y=-x+1与y=-x+3平行,求这两条直线的距离.
21.(12分)(2013•雅安)如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C
(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.
(1)求该抛物线的解析式;
(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;
(3)如图(2),若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y
轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.
①求S与m
的函数关系式;
②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.。