2012年中考二模一元二次方程与函数

合集下载

2012年中考第二次模拟试卷数学试题及答案

2012年中考第二次模拟试卷数学试题及答案

11.若分式
2
| x | 1 的值为零,则 x 的值等于 x 1
.
12.方程 x =x 的解是
1 2
B.
1 2
C. 2
D.2 ( D.x≤4 ( ) )
13.甲、乙两位棉农种植的棉花,连续五年的单位面积产量(千克/亩)统计如下表,则产量 较稳定的是棉农 .(填“甲”或“乙”) 棉农甲 棉农乙 14.若 x 1 68 69 70 71 72 71 69 69 71 70
21.(本题满分 8 分) 已知:如图,在平行四边形 ABCD 中,E 是 CA 延长线上的点,F 是 AC 延长线上的点,且 AE=CF.试判断 BE 与 DF 之间有何关系,并说明理由.
E A D
24. (本题满分 10 分)如图,线段 AB 的端点在边长为 1 的 小正方形网格的格点上,现将线段 AB 绕点 A 按逆时 针方向旋转 90° 得到线段 AC. ⑴请你在所给的网格中画出线段 及点 经过的路径 ; ..AC . . ..B . ..... ⑵若将此网格放在一平面直角坐标系中,已知点 A 的坐 标为(1,3),点 B 的坐标为(-2,-1),则点 C 的坐标 为 域的面积为 ; ; .
第 24 题
⑶线段 AB 在旋转到线段 AC 的过程中,线段 AB 扫过的区 ⑷若有一张与⑶中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何 体底面圆的半径长为 25.(本题满分 10 分) 如图,在△ ABC 中,AB=AC,∠B=30° ,O 是 BC 上一点,以点 O 为圆心,OB 长为半径作圆,恰好经过点 A,并与 BC 交于点 D. (1)判断直线 CA 与⊙O 的位置关系,并说明理由; (2)若 AB=2 3 ,求图中阴影部分的面积(结果保留 π) . C

2012年中考数学二轮复习精讲:一元二次方程与二次函数

2012年中考数学二轮复习精讲:一元二次方程与二次函数

中考数学二轮复习专题:一元二次方程与二次函数 第一部分 真题精讲【例1】已知:关于x 的方程23(1)230mx m x m --+-=.⑴求证:m 取任何实数时,方程总有实数根;⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称. ①求二次函数1y 的解析式;②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立;⑶在⑵条件下,若二次函数23y ax bx c =++的图象经过点(50)-,,且在实数范围内,对于x的同一个值,这三个函数所对应的函数值132y y y ≥≥,均成立,求二次函数23=++y ax bx c的解析式.【思路分析】本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式。

由于并未说明该方程是否是一元二次方程,所以需要讨论M=0和M ≠0两种情况,然后利用根的判别式去判断。

第二问的第一小问考关于Y 轴对称的二次函数的性质,即一次项系数为0,然后求得解析式。

第二问加入了一个一次函数,证明因变量的大小关系,直接相减即可。

事实上这个一次函数2y 恰好是抛物线1y 的一条切线,只有一个公共点(1,0)。

根据这个信息,第三问的函数如果要取不等式等号,也必须过该点。

于是通过代点,将3y 用只含a 的表达式表示出来,再利用132y y y ≥≥,构建两个不等式,最终分析出a 为何值时不等式取等号,于是可以得出结果. 【解析】解:(1)分两种情况:当0m =时,原方程化为033=-x ,解得1x =, (不要遗漏) ∴当0m =,原方程有实数根.当0≠m 时,原方程为关于x 的一元二次方程,∵()()()222[31]4236930m m m m m m =----=-+=-△≥.∴原方程有两个实数根. (如果上面的方程不是完全平方式该怎样办?再来一次根的判定,让判别式小于0就可以了,不过中考如果不是压轴题基本判别式都会是完全平方式,大家注意就是了)综上所述,m 取任何实数时,方程总有实数根.(2)①∵关于x 的二次函数32)1(321-+--=m x m mx y 的图象关于y 轴对称,∴0)1(3=-m .(关于Y 轴对称的二次函数一次项系数一定为0) ∴1=m .∴抛物线的解析式为121-=x y .②∵()()221212210y y x x x -=---=-≥,(判断大小直接做差)∴12y y ≥(当且仅当1x =时,等号成立).(3)由②知,当1x =时,120y y ==.∴1y 、2y 的图象都经过()1,0. (很重要,要对那个等号有敏锐的感觉) ∵对于x 的同一个值,132y y y ≥≥, ∴23y ax bx c =++的图象必经过()1,0. 又∵23y ax bx c =++经过()5,0-,∴()()231545y a x x ax ax a =-+=+-. (巧妙的将表达式化成两点式,避免繁琐计算)设)22(54223---+=-=x a ax ax y y y )52()24(2a x a ax -+-+=. ∵对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥均成立, ∴320y y -≥,图7-1-2-3-3-2-1-4-5-621123∴2(42)(25)0y ax a x a =+-+-≥. 又根据1y 、2y 的图象可得 0a >, ∴24(25)(42)04a a a y a---=最小≥.(a>0时,顶点纵坐标就是函数的最小值)∴2(42)4(25)0a a a ---≤. ∴2(31)0a -≤. 而2(31)0a -≥.只有013=-a ,解得13a =. ∴抛物线的解析式为35343123-+=x x y .【例2】关于x 的一元二次方程22(1)2(2)10m x m x ---+=.(1)当m 为何值时,方程有两个不相等的实数根;(2)点()11A --,是抛物线22(1)2(2)1y m x m x =---+上的点,求抛物线的解析式; (3)在(2)的条件下,若点B 与点A 关于抛物线的对称轴对称,是否存在与抛物线只交于点B 的直线,若存在,请求出直线的解析式;若不存在,请说明理由.【思路分析】第一问判别式依然要注意二次项系数不为零这一条件。

2012年全国各地中考数学解析汇编第二十章 一元二次方程

2012年全国各地中考数学解析汇编第二十章 一元二次方程

(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理)第二十章一元二次方程20.1一元二次方程(2012江苏泰州市,4,3分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒。

设平均每次降价的百分率为x,根据题意所列方程正确的是A.36(1-x)2=36-25 B.36(1-2x)=25 C.36(1-x)2=25 D.36(1-x2)=25【解析】解题的关键是连续两次降价,一次降价可表示为36(1-x),再次降价既再乘(1-x),则可列方程为:36(1-x)2=25. 【答案】C【点评】本题是以实际问题为背景考查学生对一元二次方程应用的掌握情况,(连续降价两次)降价率问题的固定模式是M(1-x)2=N,M为原始数据,N为(连续增长两次)最后数据.(2012四川成都,10,3分)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是,根据题意,下面列出的方程正确的是( )A. B.C. D.解析:原价是100元,第一次提价后变为元,第二次提价后变为元,所以本题的方程为。

答案:C点评:增长率问题,也是考得比较勤的考点,若原来为a,增长率为b%,则结果为a(1+b%),而不是a+b%。

20.2 解一元二次方程(2012山东省临沂市,7,3分)用配方法解一元二次方程时,此方程可变形为()A. B. C. D.【解析】根据配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.配方法得,.【答案】选D.【点评】本题考查了学生的应用能力,解题时要注意配方法的步骤,注意在变形的过程中不要改变式子的值,难度适中.(2012山东省聊城,13,3分)一元二次方程的解是 .解析:用分解因式法解得,x(x-2)=0,即x=0或x-2=0,所以答案:点评:解一元二次方程解法思路,一般先考虑直接开平方法,再考虑分解因式法,最后考虑配方法与公式法.(2012贵州铜仁,17,4分一元二次方程的解为____________;【解析】运用分解因式法容易得出.由得(x+1)(x-3)=0∴x+1=0 或 x-3=0解得,【解答】,【点评】此题考查一元二次方程的解法,一元二次方程有直接开平方法、配方法、公式法、因式分解法四种解法,要能够根据方程的不同特点,进行比较、鉴别,灵活选用适当的方法解方程.(2012四川省南充市,5,3分) 方程x(x-2)+x-2=0的解是( )A.2 B.-2,1 C.-1 D.2,-1解析:x(x-2)+x-2=0,化简得,解得.答案:D点评:针对方程特点选用适宜的解法是正确解答一元二次方程的关键。

云南省罗平县中考2012年中考数学第二次模拟试题 人教新课标版

云南省罗平县中考2012年中考数学第二次模拟试题 人教新课标版

APB O罗平县2012年高中阶段学校招生统一考试数学模拟试题卷(二)考生注意:23个小题,满分100分,考试时间120分钟;2.所有题目请在答题卡上作答,在试卷或草稿纸上作答无效: 将某某、考号准确填写在答题卷上。

一、选择题(本大题共8个小题,每小题只有一个符合条件的选项同,每小题3分,满分24分) 1. 下列运算中,结果正确的是( )A .633·x x x =B .422523x x x =+C .532)(x x = D .222()x y x y +=+2. 如图是由几个小方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是( )3.国家体育场“鸟巢”建筑面积达万平方米,将万平方米用科学记数法(四舍五入保留2个有效数字)表示约为()A .42610⨯平方米B .42.610⨯平方米C .52.610⨯平方米D .62.610⨯平方米 4.下列命题中错误的是( )A .两组对边分别相等的四边形是平行四边形B .对角线相等的平行四边形是矩形C .一组邻边相等的平行四边形是菱形D .一组对边平行的四边形是梯形5.如图,PA ,PB 切⊙O 于A ,B 两点,若60APB =∠,⊙O 的半径为3,则阴影部分的面积为( ) A 、4π B 、2π C 、39—3π D 、23π6.关于x 的一元二次方程2(2)10x m x m +-++=有两个相等的实数根,则m 的值是( ) A .0B .8C .42±D .0或87. 在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )8.如图,已知BD 是⊙O 的直径,⊙O 的弦AC ⊥BD 于点E ,若∠AOD=60°,则∠DBC 的度数为( ) °°°°二、填空题(本大题共6个小题,每小题3分,满分18分)9.如果□×(- 23)=1,则“□”内应填的实数是__________.10.实数a 在数轴上的位置如图所示,化简:()2|1|2a a -+-=_______。

人教版版2012年中考数学模拟题(二)含答案

人教版版2012年中考数学模拟题(二)含答案

新世纪教育网精选资料版权全部@新世纪教育网2012 年中考数学模拟试题(二)含答案(满分 120 分钟,考试时间120 分钟 )一.选择题(每题 4 分,共 40 分)1. 不等式2- x>1 的解集是()A. x>1B. x<1C. x>-1D. x<-12. 如图,在△ ABC中,∠ C=90° ,AC=8cm, AB 的垂直均分线MN 交 AC于 D,连接 BD,若,则 BC的长是()A.4cmB.6cmC.8cmD.10cm3. 如图,设 M ,N 分别是直角梯形 ABCD 两腰 AD ,CB 的中点,DE上 AB 于点 E,将△ADE 沿 DE翻折, M 与 N恰巧重合,则 AE : BE 等于()A.2: 1B.1: 2C.3: 2D.2: 34. 对于 x 的一元二次方程kx2+2x-1=0有两个不相等的实数根 , 则 k 的取值范围是()A. k>- 1B. k>1C. k≠0D. k>- 1 且k≠05. 使用同一种规格的以下地砖,不可以密铺的是()A. 正六边形地砖B. 正五边形地砖C. 正方形地砖D. 正三角形地砖6.以下各图中,既是轴对称图形又是中心对称图形的是7.灯塔 A 在察看站 C 的北偏东 40°,灯塔 B 在察看站 C 的南偏东 60°,且两灯塔与察看站 C 的距离相等,则灯塔 A 在灯塔 B 的()A. 北偏西 10°B.北偏西20°C.南偏东10°D.南偏东20°8. 以下命题中错误的选项是()A. 平行四边形的对角相等B. 两条对角线相等的平行四边形是矩形C.等腰梯形的对角线相等D. 对角线相互垂直的四边形是菱形9.小华拿一个矩形木框在阳光下玩,矩形木框在地面上喜爱那形成的投影不行能...是)A B C D10. 已知:对于x 的一元二次方程x2-( +)x+2= 0 无实数根,此中、分别是⊙1、R r d R r O⊙O2的半径, d 为此两圆的圆心距,则⊙O1,⊙ O2的地点关系为()A. 外离B. 相切C.订交D. 内含二 .填空题(每题 3 分,共 24 分 )11. 把一个边长为 2 ㎝的立方体截成八个边长为 1 ㎝的小立方体 ,起码需截________次12. 假如梯形的上底长1cm,中位线长2 cm ,那么梯形的下底长是cm13. 一斜坡的坡度i =1∶, 假如在斜坡上行进了300 米,那么上涨高度等于米14.在△ ABC 中,点 D、E 分别在 AB、AC 边上,假如DE// BC,AD=1,AB=3,DE=2,那么BC =____________ .15.假如两个相像三角形的周长的比1∶3,那么他们的面积比是16.点 E, F 分别是矩形 ABCD的边 AB、AC的中点,连接 CE, BF,设 CE、BF交于点 G(如图).假如矩形 ABCD的面积是12,那么四边形 AEGF的面积是17.相切两圆的公切线条数为18.写出一个图象不经过第一象限的一次函数:________________.三.解答题(共 56 分 )19. 察看下边的等式 :2×2=4, 2+2=4×3=4,+3=4×4=5,+4=5×5=6,+5=6小明概括上边各式得出一个猜想:“两个有理数的积等于这两个有理数的和”,小明的猜想正确吗?为何?请你察看上边各式的构造特色,概括出一个猜想,并证明你的猜想。

2012年全国中考二次函数经典习题(含详细答案)-推荐下载

2012年全国中考二次函数经典习题(含详细答案)-推荐下载

3.(2012•泰安)如图,半径为 2 的⊙C 与 x 轴的正半轴交于点 A,与 y 轴的正半轴交于点 B,点 C 的坐标为 (1,0).若抛物线 y=﹣ x2+bx+c 过 A、B 两点.
(1)求抛物线的解析式; (2)在抛物线上是否存在点 P,使得∠PBO=∠POB?若存在,求出点 P 的坐标;若不存在说明理由; (3)若点 M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为 S,求 S 的最大(小)值.
4.(2012•台州)某汽车在刹车后行驶的距离 s(单位:米)与时间 t(单位:秒)之间的关系得部分数据如下表:
时间 t(秒) 0
行驶距离 s(米)0
0.2
2.8
0.4
5.2
0.6
7.2
0.8
ห้องสมุดไป่ตู้
8.8
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

(手编)2012年中考数学复习题一-一元二次方程及根与系数的关系(含答案)

2012中考数学复习(一)1、关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是( )A .1B .-1C .1或-1D . 2 2、 方程(x +1)(x -2)=x +1的解是( )(A )2 (B )3 (C )-1,2 (D )-1,3 3、关于方程式95)2(882=-x 的两根,下列判断何者正确?( )A .一根小于1,另一根大于3B .一根小于-2,另一根大于2C .两根都小于0D .两根都大于24、用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x += B .2(2)9x += C .2(1)6x -=D .2(2)9x -=5、下列四个结论中,正确的是( ) A.方程x +x1=-2有两个不相等的实数根 B.方程x +x1=1有两个不相等的实数根 C.方程x +x1=2有两个不相等的实数根 D.方程x +x1=a (其中a 为常数,且|a|>2)有两个不相等的实数根6、一元二次方程x 2=2x 的根是 ( )A .x=2B .x=0C .x 1=0, x 2=2D .x 1=0, x 2=-27、已知关于x 的方程x 2+bx +a =0有一个根是-a (a ≠0),则a -b 的值为( )A .-1B .0C .1D .28、关于x 的方程2210x kx k ++-=的根的情况描述正确的是( )A . k 为任何实数,方程都没有实数根B . k 为任何实数,方程都有两个不相等的实数根C . k 为任何实数,方程都有两个相等的实数根D. 根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种9、已知关于x 的一元二次方程)0(02≠=++m k nx mx 有两个实数根,则下列关于判别式的判断正确的是 ( ) (A) 042<-mk n (B) 042=-mk n (C) 042>-mk n (D) 042≥-mk n10、若x 1,x 2(x 1 <x 2)是方程(x -a )(x-b ) = 1(a < b)的两个根,则实数x 1,x 2,a,b 的大小关系为( ) A .x 1<x 2<a <b B .x 1<a <x 2<b C .x 1<a <b <x 2 D .a <x 1<b <x 211、设一元二次方程(x -1)(x -2)=m(m >0)的两实根分别为α,β,则α,β满足( )A. 1<α<β<2B. 1<α<2 <βC. α<1<β<2D. α<1且β>212、关于x 的方程2()0a x m b ++=的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程2(2)0a x m b +++=的解是 。

2012年中考二次函数(1)附详解。

2012年中考二次函数(一)一.解答题(共30小题)1.(2012•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,﹣).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA=2S△AOB;(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.2.(2012•资阳)抛物线的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB=,求点M的坐标.3.(2012•珠海)如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.4.(2012•株洲)如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.1 / 615.(2012•重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a﹣30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:≈15.2,≈20.5,≈28.4)6.(2012•肇庆)已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,O为坐标原点,tan∠CAO﹣tan∠CBO=1.(1)求证:n+4m=0;(2)求m、n的值;(3)当p>0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.7.(2012•湛江)如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A 的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?8.(2012•张家界)如图,抛物线y=﹣x2+x+2与x轴交于C、A两点,与y轴交于点B,OB=4.点O关于直线AB的对称点为D,E为线段AB的中点.(1)分别求出点A、点B的坐标;(2)求直线AB的解析式;(3)若反比例函数y=的图象过点D,求k值;(4)两动点P、Q同时从点A出发,分别沿AB、AO方向向B、O移动,点P每秒移动1个单位,点Q每秒移动个单位,设△POQ的面积为S,移动时间为t,问:S是否存在最大值?若存在,求出这个最大值,并求出此时的t值;若不存在,请说明理由.9.(2012•云南)如图,在平面直角坐标系中,直线y=x+2交x轴于点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(﹣1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.10.(2012•岳阳)我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直接坐标系如图①所示,如果把锅纵断面的抛物线的记为C1,把锅盖纵断面的抛物线记为C2.(1)求C1和C2的解析式;(2)如图②,过点B作直线BE:y=x﹣1交C1于点E(﹣2,﹣),连接OE、BC,在x轴上求一点P,使以点P、B、C为顶点的△PBC与△BOE相似,求出P点的坐标;(3)如果(2)中的直线BE保持不变,抛物线C1或C2上是否存在一点Q,使得△EBQ的面积最大?若存在,求出Q的坐标和△EBQ面积的最大值;若不存在,请说明理由.11.(2012•益阳)已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处.(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D 两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号)12.(2012•义乌市)如图1,已知直线y=kx与抛物线y=交于点A(3,6).(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?13.(2012•宜昌)如图,在平面直角坐标系中,直线y=x+1分别与两坐标轴交于B,A两点,C为该直线上的一动点,以每秒1个单位长度的速度从点A开始沿直线BA向上移动,作等边△CDE,点D和点E都在x轴上,以点C为顶点的抛物线y=a(x﹣m)2+n经过点E.⊙M与x轴、直线AB都相切,其半径为3(1﹣)a.(1)求点A的坐标和∠ABO的度数;(2)当点C与点A重合时,求a的值;(3)点C移动多少秒时,等边△CDE的边CE第一次与⊙M相切?14.(2012•宜宾)如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.15.(2012•扬州)已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.16.(2012•盐城)知识迁移当a>0且x>0时,因为,所以x﹣+≥0,从而x+≥(当x=)是取等号).记函数y=x+(a>0,x>0).由上述结论可知:当x=时,该函数有最小值为2.直接应用已知函数y1=x(x>0)与函数y2=(x>0),则当x=_________时,y1+y2取得最小值为_________.变形应用已知函数y1=x+1(x>﹣1)与函数y2=(x+1)2+4(x>﹣1),求的最小值,并指出取得该最小值时相应的x的值.实际应用已知某汽车的一次运输成本包含以下三个部分,一是固定费用,共360元;二是燃油费,每千米1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x千米,求当x为多少时,该汽车平均每千米的运输成本最低?最低是多少元?17.(2012•盐城)在平面直角坐标系xOy中,已知二次函数y=的图象经过点A(2,0)和点B(1,﹣),直线l经过抛物线的顶点且与t轴垂直,垂足为Q.(1)求该二次函数的表达式;(2)设抛物线上有一动点P从点B处出发沿抛物线向上运动,其纵坐标y1随时间t(t≥0)的变化规律为y1=﹣+2t.现以线段OP为直径作⊙C.①当点P在起始位置点B处时,试判断直线l与⊙C的位置关系,并说明理由;在点P运动的过程中,直线l与⊙C 是否始终保持这种位置关系?请说明你的理由.②若在点P开始运动的同时,直线l也向上平行移动,且垂足P的纵坐标y2随时间t的变化规律为y2=﹣1+3t,则当t在什么范围内变化时,直线l与⊙C相交?此时,若直线l被⊙C所截得的弦长为a,试求a2的最大值.18.(2012•烟台)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.19.(2012•湘潭)如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.20.(2012•咸宁)如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O 出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D.运动时间为t秒.(1)当点B与点D重合时,求t的值;(2)设△BCD的面积为S,当t为何值时,S=?(3)连接MB,当MB∥OA时,如果抛物线y=ax2﹣10ax的顶点在△ABM内部(不包括边),求a的取值范围.21.(2012•武汉)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?22.(2012•武汉)如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C(1)求点C的坐标;(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC于点N.NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.23.(2012•无锡)如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A、B、C、D四个顶点正好重合于上底面上一点).已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?24.(2012•温州)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.(1)当m=3时,求点A的坐标及BC的长;(2)当m>1时,连接CA,问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.25.(2012•潍坊)许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋转位置从0度到90度(如图),燃气关闭时,燃气灶旋转的位置为0度,旋转角度越大,燃气流量越大,燃气开到最大时,旋转角度为90度.为测试燃气灶旋转在不同位置上的燃气用量,在相同条件下,选择燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度x度的范围是18≤x≤90),记录相关数据得到下表:(2)当旋钮角度为多少时,烧开一壶水所用燃气量最少?最少是多少?(3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋钮角度,每月平均能节约燃气10立方米,求该家庭以前每月的平均燃气量.26.(2012•潍坊)如图,已知抛物线与坐标轴分别交于(﹣2,0),B(2,0),C(0,﹣1)三点,过坐标原点O 的直线y=kx与抛物线交于M、N两点.分别过点C、D(0,﹣2)作平行于x轴的直线l1、l2.(1)求抛物线对应二次函数的解析式;(2)求证以ON为直径的圆与直线l1相切;(3)求线段MN的长(用k表示),并证明M、N两点到直线l2的距离之和等于线段MN的长.27.(2012•天门)如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.(1)求抛物线解析式及点D坐标;(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.28.(2012•铜仁地区)如图已知:直线y=﹣x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C (1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(﹣1,0),在直线y=﹣x+3上有一点P,使△ABO与△ADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使△ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.29.(2012•泰州)如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=﹣x2+bx+c的图象经过B、C两点.(1)求该二次函数的解析式;(2)结合函数的图象探索:当y>0时x的取值范围.30.(2012•泰安)如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=﹣x2+bx+c过A、B两点.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.答案与评分标准一.解答题(共30小题)1.(2012•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,﹣).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA=2S△AOB;(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.,﹣2)解得:x2=﹣,﹣3+2,BAP==x(x332.(2012•资阳)抛物线的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB=,求点M的坐标.x(的纵坐标为:,CB=aa(a=,PB=PG==,(﹣,(﹣k=y=x+解方程+x+2=x+,y=)3.(2012•珠海)如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.,则一次函数解析式为4.(2012•株洲)如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.b=ABO===×=2tt+2t+2﹣x5.(2012•重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a﹣30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:≈15.2,≈20.5,≈28.4),将((得:解得:•x+)x﹣=5x﹣=0t=,≈6.(2012•肇庆)已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,O为坐标原点,tan∠CAO﹣tan∠CBO=1.(1)求证:n+4m=0;(2)求m、n的值;(3)当p>0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.x==2,=CAO==,CBO==﹣=1化简得:代入得:=;当.,m=,xx解析式得到:x+x+3=7.(2012•湛江)如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A 的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?t=5=﹣﹣﹣+t BAO=t=××﹣AN=BAO=t,NM=;AN=时,=t=6,即:t=t=t t=或或8.(2012•张家界)如图,抛物线y=﹣x2+x+2与x轴交于C、A两点,与y轴交于点B,OB=4.点O关于直线AB的对称点为D,E为线段AB的中点.(1)分别求出点A、点B的坐标;(2)求直线AB的解析式;(3)若反比例函数y=的图象过点D,求k值;(4)两动点P、Q同时从点A出发,分别沿AB、AO方向向B、O移动,点P每秒移动1个单位,点Q每秒移动个单位,设△POQ的面积为S,移动时间为t,问:S是否存在最大值?若存在,求出这个最大值,并求出此时的t值;若不存在,请说明理由.+﹣=2,,22﹣﹣2OA=2OD=OA=2,纵坐标为(y=,∴k=3AQ=t AQ=2﹣•2t t=﹣2+依题意,得t=2时,.9.(2012•云南)如图,在平面直角坐标系中,直线y=x+2交x轴于点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(﹣1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.y=x.y=x+2y=,(y=x+2x+2 x x+2=x+2,,,BD==MD=﹣,,,MD=﹣,即m+=)﹣,BM=﹣,即,),((,),10.(2012•岳阳)我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直接坐标系如图①所示,如果把锅纵断面的抛物线的记为C1,把锅盖纵断面的抛物线记为C2.(1)求C1和C2的解析式;(2)如图②,过点B作直线BE:y=x﹣1交C1于点E(﹣2,﹣),连接OE、BC,在x轴上求一点P,使以点P、B、C为顶点的△PBC与△BOE相似,求出P点的坐标;(3)如果(2)中的直线BE保持不变,抛物线C1或C2上是否存在一点Q,使得△EBQ的面积最大?若存在,求出Q的坐标和△EBQ面积的最大值;若不存在,请说明理由.xx﹣y=x EBO=,即∠:=(=(﹣((﹣y=x+b=x(,﹣):的距离:=x+b=x(﹣,):的距离:=(﹣,××.d=11.(2012•益阳)已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处.(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D 两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号)(;解得:,,两点的坐标分别为((…12.(2012•义乌市)如图1,已知直线y=kx与抛物线y=交于点A(3,6).(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?为定值.需要注意讨的表达式();,在抛物线和直线上不同位置时,同理可得OC=AC=OA=,,,,(,(∴顶点为(,时,OE=x=时,任取一个时,时,13.(2012•宜昌)如图,在平面直角坐标系中,直线y=x+1分别与两坐标轴交于B,A两点,C为该直线上的一动点,以每秒1个单位长度的速度从点A开始沿直线BA向上移动,作等边△CDE,点D和点E都在x轴上,以点C为顶点的抛物线y=a(x﹣m)2+n经过点E.⊙M与x轴、直线AB都相切,其半径为3(1﹣)a.(1)求点A的坐标和∠ABO的度数;(2)当点C与点A重合时,求a的值;(3)点C移动多少秒时,等边△CDE的边CE第一次与⊙M相切?,,∴,∴,的坐标是(,,=(﹣﹣ a﹣a﹣﹣aa,﹣x+3)﹣a+,14.(2012•宜宾)如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.ABx==1PA=BD=315.(2012•扬州)已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.,解得:,解得:=1±,,﹣16.(2012•盐城)知识迁移当a>0且x>0时,因为,所以x﹣+≥0,从而x+≥(当x=)是取等号).记函数y=x+(a>0,x>0).由上述结论可知:当x=时,该函数有最小值为2.直接应用已知函数y1=x(x>0)与函数y2=(x>0),则当x=1时,y1+y2取得最小值为2.变形应用已知函数y1=x+1(x>﹣1)与函数y2=(x+1)2+4(x>﹣1),求的最小值,并指出取得该最小值时相应的x的值.实际应用已知某汽车的一次运输成本包含以下三个部分,一是固定费用,共360元;二是燃油费,每千米1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x千米,求当x为多少时,该汽车平均每千米的运输成本最低?最低是多少元?变形运用:先得出(时,该函数有最小值为.(=的最小值为:=4=4的最小值为故平均每千米的运输成本为:=0.001x++1.6=0.001x+0.001x=取得最小,此时≥+1.6=1201.617.(2012•盐城)在平面直角坐标系xOy中,已知二次函数y=的图象经过点A(2,0)和点B(1,﹣),直线l经过抛物线的顶点且与t轴垂直,垂足为Q.(1)求该二次函数的表达式;(2)设抛物线上有一动点P从点B处出发沿抛物线向上运动,其纵坐标y1随时间t(t≥0)的变化规律为y1=﹣+2t.现以线段OP为直径作⊙C.①当点P在起始位置点B处时,试判断直线l与⊙C的位置关系,并说明理由;在点P运动的过程中,直线l与⊙C 是否始终保持这种位置关系?请说明你的理由.②若在点P开始运动的同时,直线l也向上平行移动,且垂足P的纵坐标y2随时间t的变化规律为y2=﹣1+3t,则当t在什么范围内变化时,直线l与⊙C相交?此时,若直线l被⊙C所截得的弦长为a,试求a2的最大值.。

2012年全国各地市中考数学模拟试题分类汇编9一元二次方程

2012 年全国各地市中考数学模拟试题分类汇编9 一
元二次方程
一元二次方程
一、选择题
1、(2012 年上海青浦二模)已知关于的一元二次方程有两个实数根,则下列关于判别式的判断正确的是()
.;.;.;..答案:A2、(2012 年浙江金华五模)一元二次方程的解为▲.答案:3、方程的根是(
(A)(B)
(C)(D)答案:D4、函数y=ax2-2 与(a≠0)在同一直角坐标系中的图象可能是()答案:C5、已知二次函数y=ax2+bx+c (a≠0,-2 B.3,-2 C.0,-2 D.1 答案:B10、(2012 江苏扬州中学一模)某村计划新修水渠3600 米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的1.8 倍,结果提前20 天完成任务,若设原计划每天修水渠米,则下面所列方程正确的是(▲)A.B.
C.D.
案答案:C
11. (2012 江西高安)关于x 的一元二次方程有两个相等的实数根,则m 的值是()
A.B.C.D.或答案:D12、(2012 年,江西省高安市一模)关于x 的一元二次方程有两个相等的实数根,则m 的值是()[来源#~&amp;:中教网@%]。

2012年中考数学一元二次方程文选

2012年中考数学一轮复习考点9:一元二次方程考点1 一元二次方程的定义相关知识:形如)0(02≠=++a c bx ax 的方程叫一元二次方程,其中a b c 、、分别为二次项系数、一次项系数、常数项。

相关试题1. (2011甘肃兰州,1,4分)下列方程中是关于x 的一元二次方程的是A .2210x x +=B .20ax bx c ++= C .(1)(2)1x x -+=D .223250x xy y --= 【答案】C考点2 一元二次方程的解法相关知识:一元二次方程一般四种解法:直接开平方法、配方法、公式法、因式分解法。

相关试题1. (2011安徽,8,4分)一元二次方程x (x -2)=2-x 的根是( ) A .-1 B .2 C .1和2 D .-1和2 【答案】D2. (2011浙江省舟山,2,3分)一元二次方程0)1(=-x x 的解是( ) (A )0=x(B )1=x(C )0=x 或1=x(D )0=x 或1-=x【答案】C3. (2011四川南充市,6,3分) 方程(x+1)(x -2)=x+1的解是( )(A )2 (B )3 (C )-1,2 (D )-1,3 【答案】D4. (2011江苏泰州,3,3分)一元二次方程x2=2x 的根是A .x=2B .x=0C .x1=0, x2=2D .x1=0, x2=-2 【答案】C5. (2011甘肃兰州,10,4分)用配方法解方程2250x x --=时,原方程应变形为A .2(1)6x += B .2(2)9x += C .2(1)6x -= D .2(2)9x -= 【答案】C6. (2011台湾全区,31)关于方程式95)2(882=-x 的两根,下列判断何者正确? A .一根小于1,另一根大于3 B .一根小于-2,另一根大于2C .两根都小于0D .两根都大于2 【答案】A7. (2011江苏淮安,13,3分)一元二次方程x2-4=0的解是 . 【答案】±28.(2011山东泰安,21 ,3分)方程2x2+5x -3=0的解是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年中考二模一元二次方程与函数
(西城二模)
已知关于x 的一元二次方程 (m +1)x 2 + 2mx + m - 3 = 0 有两个不相等的实数根. (1)求m 的取值范围;
(2)当m 取满足条件的最小奇数时,求方程的根.
(昌平二模)
已知m 为整数,方程2
21x mx +-=0的两个根都大于-1且小于3
2
,当方程的两个根均为有理数时,求m 的值.
(朝阳二模)
已知二次函数c x x y ++=22.
(1)当c =-3时,求出该二次函数的图象与x 轴的交点坐标;
(2)若-2<x <1时,该二次函数的图象与x 轴有且只有一个交点,求c 的取值范围.
(密云二模)
已知关于x 的方程 2220x ax a b --+=,其中a 、b 为实数.
(1)若此方程有一个根为2 a (a <0),判断a 与b 的大小关系并说明理由; (2)若对于任何实数a ,此方程都有实数根,求b 的取值范围.
(房山二模)
已知:关于x 的方程mx 2
-3(m -1)x +2m -3=0.
⑴当m 取何整数值时,关于x 的方程mx 2
-3(m -1)x +2m -3=0的根都是整数; ⑵若抛物线32)1(32
-+--=m x m mx y 向左平移一个单位后,过反比例函数
)0(≠=
k x
k y 上的一点(-1,3),①求抛物线32)1(32-+--=m x m mx y 的解析式; ②利用函数图象求不等式0>-kx x k
的解集.
1 2 3 4
4 3 2 1
x
y O -1 -2 -3 -4 -4
-3 -2 -1
已知关于x 的方程2(31)220mx m x m --+-= (1)求证:无论m 取任何实数时,方程恒有实数根.
(2)若关于x 的二次函数2(31)22y mx m x m =--+-的图象经过坐标原点(0,0),求
抛物线的解析式.
(3)在直角坐标系xoy 中,画出(2)中的函数图象,结合图象回答问题:当直线y x b =+
与(2)中的函数图象只有两个交点时,求b 的取值范围.
(延庆二模)
已知:关于x 的一元二次方程1)22(2-++-m x m mx (1)若此方程有实根,求m 的取值范围;
(2)在(1)的条件下,且m 取最小的整数,求此时方程的两个根;
(3)在(2)的前提下,二次函数1)22(2-++-=m x m mx y 与x 轴有两个交点,连接这两点间的线段,并以这条线段为直径在x 轴的上方作半圆P,设直线l 的解析式为y=x+b,若直线l 与半圆P 只有两个交点时,求出b 的取值范围.
(海淀二模)
已知抛物线 2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点. (1)求m 的取值范围;
(2)若m >1, 且点A 在点B 的左侧,OA : OB =1 : 3, 试确定抛物线的解析式;
(3)设(2)中抛物线与y 轴的交点为C ,过点C 作直线l //x 轴, 将抛物线在y 轴左侧
的部分沿直线 l 翻折, 抛物线的其余部分保持不变,得到一个新图象. 请你结合
新图象回答: 当直线1
3
y x b =+与新图象只有一个公共点P (x 0, y 0)且 y 0≤7时, 求b 的取值范围.
-1-2-3-4-5
88
1234567-4-3-2-17654321
O x
y
已知:直线1
22
y x =
+分别与 x 轴、y 轴交于点A 、点B ,点P (a ,b )在直线AB 上,点P 关于y 轴的对称点P ′ 在反比例函数x
k
y =图象上.
(1) 当a =1时,求反比例函数x
k
y =的解析式;
(2) 设直线AB 与线段P'O 的交点为C .当P'C =2CO 时,求b 的值;
(3) 过点A 作AD //y 轴交反比例函数图象于点D ,若
AD =2
b
,求△P ’DO 的面积.
(顺义二模)
如图,直线AB 经过第一象限,分别与x 轴、y 轴交于A 、B 两点,P
为线段AB 上任意一点(不与A 、B 重合),过点P 分别向x 轴、y 轴作垂线,垂足分别为C 、D .设OC=x ,四边形OCPD 的面积为S .
(1)若已知A (4,0),B (0,6),求S 与x 之间的函数关系式; (2)若已知A (a ,0),B (0,b ),且当x=
34时,S 有最大值9
8
,求直线AB 的解析式;
(3)在(2)的条件下,在直线AB 上有一点M ,且点M 到x 轴、
y 轴的距离相等,点N 在过M 点的反比例函数图象上,且△OAN 是直角三角形,求点N 的坐标.
(西城二模)
在平面直角坐标系xOy 中,A 为第一象限内的双曲线1
k y x
=
(10k >)上一点,点A 的横坐标为1,过点A 作平行于 y 轴的直线,与x 轴交于点B ,与双曲线2k
y x
=(20k <)
交于点C . x 轴上一点(,0)D m 位于直线AC 右侧,AD 的中点为E .
(1)当m=4时,求△ACD 的面积(用含1k ,2k 的代数 式表示); (2)若点E 恰好在双曲线1
k y x
=
(10k >)上,求m 的值; (3)设线段EB 的延长线与y 轴的负半轴交于点F ,当点D 的坐标为(2,0)D 时,若△BDF 的面积为1,且CF ∥AD ,求1k 的值,并直接写出线段CF 的长.
y x
O P
y
x
B
A D
C
O
已知关于x 的一元二次方程242(1)0x x k -+-=有两个不相等的实数根. (1)求k 的取值范围;
(2)如果抛物线242(1)y x x k =-+-与x 轴的两个交点的横坐标为整数,求正整数k 的值;
(3)直线y =x 与(2)中的抛物线在第一象限内的交点为点C ,点P 是射线OC 上的一个动
点(点P 不与点O 、点C 重合),过点P 作垂直于x 轴的直线,交抛物线于点M ,点
Q 在直线PC 上,距离点P 为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.
(门头沟二模) 已知抛物线y =ax 2
+x +2.
(1)当a =-1时,求此抛物线的顶点坐标和对称轴;
(2)若代数式-x 2+x +2的值为正整数,求x 的值;
(3)若a 是负数时,当a =a 1时,抛物线y =ax 2+x +2与x 轴的正
半轴相交于点M (m ,0);当a =a 2时,抛物线y =ax 2+x +2与x
轴的正半轴相交于点N (n ,0). 若点M 在点N 的左边,试比较a 1与a 2的大小.
(大兴二模)
已知二次函数y=ax 2+bx+2,它的图像经过点(1,2). (1)如果用含a 的代数式表示b ,那么b= ;
(2)如图所示,如果该图像与x 轴的一个交点为(-1,0). ①求二次函数的解析式;
②在平面直角坐标系中,如果点P 到x 轴的距离与点P 到y 轴的距离相等,则称点P 为等距点.求出这个二次函数图像上所有等距点的坐标.
(3)当a 取a 1,a 2时,二次函数图像与x 轴正半轴分别交于点M (m ,0),点N (n ,0).如果点N 在点M 的右边,且点M 和点N 都在点(1,0)的右边.试比较a 1和a 2的大小,并说明理由.
1
2345–1–2
–3–412345
–1–2x
y O -4-3-2-1-4
-3-2-14
32
14
321O x
y
(大兴二模)
已知抛物线y = x2 + bx ,且在x轴的正半轴上截得的线段长为4,对称轴为直线x = c.过点A的直线绕点A (c ,0 ) 旋转,交抛物线于点B ( x ,y ),交y轴负半轴于点C,过点C 且平行于x轴的直线与直线x = c交于点D,设△AOB的面积为S1,△ABD的面积为S2.
(1)求这条抛物线的顶点的坐标;
(2)判断S1与S2的大小关系,并说明理由.。

相关文档
最新文档