用蚁群算法解决TSP问题
蚁群算法实现TSP

蚁群算法实现TSP蚁群算法(Ant Colony Optimization, ACO)是一种模拟蚂蚁觅食行为的算法,常被用来解决旅行商问题(Traveling Salesman Problem, TSP)。
旅行商问题是一个经典的组合优化问题,目标是找到一条最短的路径,使得旅行商能够访问所有城市并返回起始城市。
蚁群算法的基本思想是模拟蚂蚁寻找食物的行为,每只蚂蚁在过程中释放信息素,并根据信息素浓度和距离选择下一个城市。
信息素的释放和更新规则是蚁群算法的核心。
蚁群算法的实现步骤如下:1.初始化蚁群:随机放置一定数量的蚂蚁在不同城市。
2.计算路径长度:根据蚂蚁的选择规则,计算每只蚂蚁的路径长度。
3.更新信息素:根据路径长度,更新城市之间的信息素浓度。
4.更新蚂蚁的选择规则:根据信息素浓度和距离,更新蚂蚁的选择规则。
5.重复步骤2-4,直到达到指定的迭代次数或找到最优解。
在蚂蚁的选择规则中,信息素浓度和距离是两个重要的因素。
信息素浓度越高,蚂蚁越有可能选择该路径;距离越短,蚂蚁越倾向于选择该路径。
为了平衡这两个因素,通常使用一个参数来调节它们的权重。
在更新信息素时,一般采用全局信息素更新和局部信息素更新两种方式。
全局信息素更新是将所有蚂蚁路径上的信息素浓度进行更新,以加强优质路径的信息素浓度。
局部信息素更新是只更新最优路径上的信息素浓度,以加强当前最优路径的信息素浓度。
蚁群算法的优点是能够找到近似最优解,并且具有较好的鲁棒性和适应性。
然而,蚁群算法也存在一些问题,例如易陷入局部最优解、收敛速度较慢等。
针对TSP问题,蚁群算法的实现可以按照上述步骤进行。
具体来说,可以通过以下几个方面的设计来优化算法的性能:1.蚂蚁的选择规则:可以采用轮盘赌选择法,即根据信息素浓度和距离计算每个城市被选择的概率,然后根据概率选择下一个城市。
2.信息素更新:可以采用全局信息素更新和局部信息素更新相结合的方式,以平衡全局和局部的效果。
蚁群算法在解决TSP问题中的应用

蚁 群 算法 之所 以在 多个 领域 获得 广泛 应
2 . 2 . I 对算法进行初 始化 对所 有 城 市的坐 标进 行 获取 ,以此 为依 据 ,对距 离矩阵 Di s t ma t r i x进行计 算,同时对 随机发生器状态进行初始 化,并 以随机的形式
其 它 算 法 结合 使 用 。 但 是 在 应 用 实 践 中 发 现 ,
虽然蚁群 算法 的优点较多,其也或多或少地存 在一定 的不足 ,如搜索时间较长 ,规模越 大时
间 越 长 ; 容 易 出现 停 滞 现 象 等 等 。
1 . 2 T S P 问 题
从 n个城市 中选 出初 始的 出发城市,并将该城 优 的遍 历顺序、最优的遍历结果 以及总体运行 时 间输 出,便可完成对 T S P问题 的求解 。 市设定为 :
图1 :蚁群寻找最短路径的演 示图
蚁的数 目 = AK+ 1 。
S t e p 5 :蚂蚁个体按照 A n t — Q S y s t e ms算法 提出的状态转移概率,选择下个城市 j 并前进 。
S t e p 6 : 对 允 许 矩 阵 进 行 更 新 , 使 其 变 为
【 关键词 】蚁群 算法 T S P问题 最优解
a l l o w( A K, j ) - O ,即将蚂蚁所选 城市标号在该矩 阵中对应位置 的值 重新 设定为 0 。
S t e p 7 : 如 果 蚂 蚁 为 遍 历 集 合 C 中 的所
1蚁群算 法与T S P 问题简介
1 . 1蚁群算法
蚁群算法是一种 随机 的、概率搜索算法 , 它是 目前求解 复杂组合优化 问题较为有 效的手
S t e p 4 ,若 是遍 历所有 元素,则可执 行 S t e p 8 。
分层递进的改进聚类蚁群算法解决TSP问题

分层递进的改进聚类蚁群算法解决TSP问题1.引言蚁群算法是一种模拟昆虫觅食行为的群体智能优化算法,它通过模拟蚂蚁在寻找食物过程中留下的信息素轨迹,使得较优路径上的信息素浓度增加,从而实现全局最优解的搜索。
而TSP问题是指旅行商问题,即在给定的一组城市中,旅行商要找到一条最短路径,使得每个城市都被访问一次并回到起点。
TSP问题是一个经典的组合优化问题,它在实际中具有广泛的应用。
在实际应用中,TSP问题的规模往往十分庞大,传统的算法在解决大规模TSP问题时效率低下,因此需要寻找更加高效的算法来解决TSP问题。
本文将介绍一种分层递进的改进聚类蚁群算法来解决TSP问题,该算法结合了分层聚类和蚁群算法的特点,能够有效地求解大规模TSP问题。
接下来,将从蚁群算法和TSP问题入手,介绍分层递进的改进聚类蚁群算法的基本原理和关键步骤,最后对算法进行实验验证,并对结果进行分析。
2.蚁群算法蚁群算法是由意大利学者Dorigo在上世纪90年代提出的,它模拟了蚂蚁在寻找食物的过程中通过信息素的传递来寻找最短路径的行为。
在蚁群算法中,蚂蚁会在城市之间不断地移动,并根据信息素浓度选择下一个要移动的城市,当所有蚂蚁都完成了一次移动后,会更新信息素浓度,然后进行下一轮的移动。
通过这种方式,蚁群算法能够逐步找到最短路径,同时也能够实现全局搜索和局部搜索的平衡,从而得到较好的优化结果。
在传统的蚁群算法中,蚂蚁在每一次移动时都会依据信息素浓度进行选择,但这种策略可能导致蚂蚁集中在某个局部最优解附近而无法跳出去探索其他地方,因此算法收敛速度较慢。
为了解决这个问题,一种改进的策略是引入聚类的概念,将蚂蚁分为不同的类别,并在每一类中进行搜索,使得蚂蚁能够更好地利用全局信息进行搜索。
接下来将介绍如何将聚类融入到蚁群算法中来解决TSP问题。
3.分层递进的改进聚类蚁群算法3.1 基本原理分层递进的改进聚类蚁群算法是基于蚁群算法和聚类算法相结合的一种优化算法。
蚁群优化算法在解决TSP问题中的应用

还有页眉没有添加,页眉上写章标题,把我给你标注的问题改完就可以打印了摘要根据蚂蚁生态学提出的蚁群算法是一种新颖的用于求解复杂组合优化问题的模拟进化算法,具有典型的群体智能特征,表现出较强的学习能力和适应能力。
本文阐述了该算法的基本原理、算法模型和在TSP( Traveling Salesman Problem,旅行商)问题中的具体应用过程,并对算法进行了总结和展望。
关键词:蚁群算法,旅行商问题,外激素目录摘要Ⅰ目录II第一章引言 (1)第二章蚁群算法的基本原理和模型 (2)2.1 蚁群算法的基本原理 (2)2.2 蚁群算法的模型 (3)第三章基于蚁群算法的TSP求解 (5)3.1 TSP问题的描述 (5)3.2 基于蚁群算法的TSP求解 (5)3.3 蚁群算法的局限性 (6)第四章蚁群算法的改进 (8)4.1 优选参数m (8)4.2 参数 的调整 (8)4.3 信息素的更新 (8)4.4 信息素链表L 和禁忌链表TL 的构建 (9)第五章改进的算法基本流程 (10)第六章结论 (11)参考文献 (12)第一章引言研究群居性昆虫行为的科学家发现,昆虫在群落一级上的合作基本上是自组织的,在许多场合中尽管这些合作可能很简单,但它们却可以解决许多复杂的问题。
蚁群算法就是利用群集智能解决组合优化问题的典型例子。
蚁群算法(Ant Colony Algorithm, ACA)是由意大利学者M.Dorigo,V.Mzniezzo,A.Colorni 等人在20世纪90年代初首先提出来的。
它是继模拟退火算法、遗传算法、禁忌搜索算法、人工神经网络算法等元启发式搜索算法以后的又一种应用于组合优化问题的启发式搜索算法。
蚁群算法不仅能够智能搜索、全局优化,而且具有稳健性A、鲁棒性B、正反馈、分布式计算、易与其它算法结合等特点。
利用正反馈原理,可以加快进化过程;分布式计算使该算法易于并行实现,个体之间不断进行信息交流和传递,有利于找到较好的解,不容易陷入局部最优;该算法易与多种启发式算法结合,可改善算法的性能;由于鲁棒性强,故在基本蚁群算法模型的基础上进行修改,便可用于其它问题。
计算智能大作业--蚁群算法解决TSP问题资料

(计算智能大作业)应用蚁群算法求解TSP问题目录蚁群算法求解TSP问题 (3)摘要: (3)关键词: (3)一、引言 (3)二、蚁群算法原理 (4)三、蚁群算法解决TSP问题 (7)四、解决n个城市的TSP问题的算法步骤 (9)五、程序实现 (11)六、蚁群算法优缺点分析及展望 (18)七、总结 (18)采用蚁群算法解决TSP问题摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。
本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。
关键词:蚁群算法;TSP问题;matlab。
一、引言TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。
TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。
TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。
目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。
本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。
20世纪90年代,意大利学者M.Dorigo等人在新型算法研究的过程中,通过模拟自然界蚂蚁的觅食过程:即通过信息素(pheromone)的相互交流从而找到由蚁巢至食物的最短路径,提出了一种基于信息正反馈原理的新型模拟进化算法——蚁群算法(Ant Colony algorithm)。
蚁群算法(ACO)解决TSP问题

蚁群算法(ACO)解决TSP问题⼀、蚁群算法1.基本原理蚁群算法(Ant Colony Optimization,ACO)是⼀种基于种群寻优的启发式搜索算法,有意⼤利学者M.Dorigo等⼈于1991年⾸先提出。
该算法受到⾃然界真实蚁群集体在觅⾷过程中⾏为的启发,利⽤真实蚁群通过个体间的信息传递、搜索从蚁⽳到⾷物间的最短路径等集体寻优特征,来解决⼀些离散系统优化中的困难问题。
经过观察发现,蚂蚁在寻找⾷物的过程中,会在它所经过的路径上留下⼀种被称为信息素的化学物质,信息素能够沉积在路径上,并且随着时间逐步挥发。
在蚂蚁的觅⾷过程中,同⼀蚁群中的其他蚂蚁能够感知到这种物质的存在及其强度,后续的蚂蚁会根据信息素浓度的⾼低来选择⾃⼰的⾏动⽅向,蚂蚁总会倾向于向信息素浓度⾼的⽅向⾏进,⽽蚂蚁在⾏进过程中留下的信息素⼜会对原有的信息素浓度予以加强,因此,经过蚂蚁越多的路径上的信息素浓度会越强,⽽后续的蚂蚁选择该路径的可能性就越⼤。
通常在单位时间内,越短的路径会被越多的蚂蚁所访问,该路径上的信息素强度也越来越强,因此,后续的蚂蚁选择该短路径的概率也就越⼤。
经过⼀段时间的搜索后,所有的蚂蚁都将选择这条最短的路径,也就是说,当蚁巢与⾷物之间存在多条路径时,整个蚁群能够通过搜索蚂蚁个体留下的信息素痕迹,寻找到蚁巢和⾷物之间的最短路径。
蚁群算法中,蚂蚁个体作为每⼀个优化问题的可⾏解。
⾸先随机⽣成初始种群,包括确定解的个数、信息素挥发系数、构造解的结构等。
然后构造蚁群算法所特有的信息素矩阵每只妈蚁执⾏蚂蚊移动算⼦后,对整个群体的蚂蚁做⼀评价,记录最优的蚂蚁。
之后算法根据信息素更新算⼦更新信息素矩阵,⾄此种群的⼀次选代过程完成。
整个蚂蚁群体执⾏⼀定次数的选代后退出循环、输出最优解。
2.术语介绍(1)蚂蚁个体。
每只蚂蚁称为⼀个单独的个体,在算法中作为⼀个问题的解。
(2)蚂蚁群体。
⼀定数量的蚂蚁个体组合在⼀起构成⼀个群体,蚂蚁是群体的基本单位。
基于自然选择策略的蚁群算法求解TSP问题

基于自然选择策略的蚁群算法求解TSP问题一、本文概述本文旨在探讨基于自然选择策略的蚁群算法在求解旅行商问题(TSP)中的应用。
旅行商问题是计算机科学和运筹学中的经典难题,其目标是在给定一系列城市和城市之间的距离后,找出一个最短的路径,使得旅行商能够访问每个城市一次并返回原点。
蚁群算法作为一种模拟自然界蚂蚁觅食行为的优化算法,具有很强的全局搜索能力和鲁棒性,因此在解决TSP问题中具有广阔的应用前景。
本文首先介绍了TSP问题的定义、特点以及求解难度,然后详细阐述了蚁群算法的基本原理和算法流程。
在此基础上,本文提出了一种基于自然选择策略的蚁群算法,该算法通过引入自然选择的思想,使得蚁群在搜索过程中能够自动适应环境变化,优化搜索策略,从而提高算法的求解效率。
本文的主要研究内容包括:分析TSP问题的数学模型和求解难点,为蚁群算法的应用奠定基础;设计并实现基于自然选择策略的蚁群算法,通过仿真实验验证算法的有效性和优越性;将算法应用于实际TSP问题中,评估其在实际应用中的性能和效果。
本文的研究不仅有助于深入理解TSP问题的求解方法和蚁群算法的优化原理,而且能够为解决其他优化问题提供新的思路和方法。
本文的研究结果也为蚁群算法在实际应用中的推广和应用提供了有力支持。
二、自然选择策略的基本原理自然选择策略,源自达尔文的进化论,是生物进化过程中的核心机制。
在自然界中,生物体通过遗传、变异和选择三个基本过程不断适应和进化。
遗传使得生物体的特征能够传递给后代,变异则引入新的遗传信息,而自然选择则决定了哪些特征在生存和繁衍中更具优势。
经过长时间的演化,适应性强的特征会得到保留和增强,而适应性弱的特征则可能逐渐消失。
将这种自然选择的思想引入算法设计,就形成了自然选择策略。
在算法中,每个解被视为一个个体,而个体的适应度则通过某种评价函数来衡量。
算法通过模拟自然选择的过程,不断迭代生成新的解,并保留适应度高的解,淘汰适应度低的解。
浅谈用蚁群算法求解TSP

6 2 甘肃联合大学学报 (自然科学版) 第 24 卷
周游完成时 ,才允许蚂蚁游走已访问的城市 ;3) 当
完成一次周游 ,每只蚂蚁在每条访问过的支路上
留下信息素.
我们以求解平面上 n 个城市的 TSP 问题 (1 ,
2 , . . . , n 表示城市序号) 为例说明 ACA 的模型. n
2 基本蚁群算法解决旅行商问题的 软件实现
基于不同开发环境的基本蚁群算法软件 ,一 是 Eyckelhof CJ 基于 Delp hi 开发的“简单蚁群算 法仿真软件”,二是陈烨基于 VisualBasic 开发的 “蚁群算法试验室”.
Delp hi 开发所示的软件界面简洁 ,所实现的 功能也比较简单 ,只能实现显示城市的路径状态. VisualBasic 开发的“蚁群算法试验室”可以实时 显示程序的当前运行状态 ,即城市的路径状态 、最 优路径上城市排序的序号以及当前最短路径的总 长度等 ,用户根据需要可在城市状态图和最优路径 演化图之间进行切换 ,并可在程序运行过程中随时 停止运行 ,此外还具有良好、开放的可扩展性.
量要根据下式作调整 : τij ( t + n) = (1 - ρ) ·τij ( t) + Δτij ( t) , (3)
m
∑ Δτij ( t) =
τk ij
(
t)
.
(4)
k =1
其中ρ表示了 t 时刻和 t + n 时刻之间信息素的挥
发程度 ,Δτij ( t) 表示本次循环中路径 ( i , j) 上的信
引言
自仿生学创立以来 ,科学家们就根据生物进 化的机理先后提出了多种适合于现实世界中复杂 问题优化的模拟进化算法 ,蚁群算法 ( A nt Colo n2 yAlgo rit hm ,简称 ACA) 是由意大利学者 Dorigo 等人于 20 世纪 90 年代初首先提出来的一种基于 种群的启发式仿生类并行智能进化算法的新型的 模拟进化算法[1] . 其主要特点就是 :通过正反馈分 布式并行计算机制来寻找最优路径. 它充分利用 了自然界蚁群能通过个体间简单的信息传递 ,从 而能相互协作 ,搜索从蚁穴至食物间最短路径的 集体寻优特征 ,以及该过程与旅行商问题求解之 间的相似性 ,得到了具有 N P 难度的旅行商问题 的最优解答. 同时 ,该算法还被成功应用在图着色 问题[2] 、大规模集成电路设计 、通讯网络中的路由 问题 、负载平衡 、车辆调度问题等 ,表明该算法具 有良好的解决复杂问题的能力.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用蚁群算法解决TSP 问题
一、引言
蚁群算法是一种受自然界生物行为启发而产生的“自然”算法,产生于对蚂蚁行为的研究。
蚁群中的蚂蚁以“信息素”为媒介,间接异步的相互联系。
蚂蚁在行动中,会在他们经过的地方留下一些化学物质,称为“信息素”。
这些物质能被同一种群众后来的蚂蚁感受到,并作为一种信号影响后者的行动,具体表现在后到的蚂蚁选择有这些物质的路径的可能性比选择没有这些物质的路径的可能性大的多。
后者留下的信息素会对原有的信息素进行加强,并循环下去。
这样,经过蚂蚁多的路径,后到蚂蚁选择这条路径的可能性就越来越大。
由于在一定的时间内,越短的路径会被越多的蚂蚁访问,因而积累的信息素就越多,在下一个时间内被其他的蚂蚁选中的可能性也越大。
这个过程会持续到所有的蚂蚁都走到最短的那一条路径为止。
二、关键技术
(1) 解的表达形式
在应用蚁群优化算法时,只需要建立一个虚拟的始终点,相当于蚁群的巢穴和食物所在地,这样一个所经过城市的路径的排列就构成了一个解;
(2) 信息素的记忆和更新
在算法开始时,由于从来没有蚂蚁去寻找过路径,因此可以认为是没有任何先验信息,即每条路上的信息相等。
客观地将,信息素应该都为0,但是由于在蚁群算法中,信息素决定了蚂蚁选择这条路径的概率,因此可以认
为初始信息素矩阵为:1/(*(1))0ij N N p -⎧=⎨⎩
i j i j ≠=其中N 为城市数 当算法运行过程中,每次放出m 支蚂蚁,每只蚂蚁按照信息素选择路径,将其中路径最短的记录下来,对这条最短路进行信息素的加强;而对于其他路径,因为信息素的挥发,信息素浓度将会降低,更新后的信息素矩阵为: 11(1)//(1)/k ij k ij k ij p N p p ρρρ--⎧-+⎪=⎨-⎪⎩
i j i j →→经过路径不经过路径其中N 为城市数,ρ为挥发系数 (3) 蚁群的规模
在一般应用中,蚁群中蚂蚁的个数m 是固定数,不超过TSP 图的节点数。
三、算法实现
步骤1 设定蚁群规模m ,计算次数n ,挥发系数ρ,初始化信息素矩阵,设定变量best =+∞记录全局最优解;
步骤2 若n =0,推出并输出结果;否则n=n-1,分别放出m 只蚂蚁,按照信息素概率选择路径,并找出m 条路径中的当代最优路径cubest ; 步骤3 根据当代最有路径更新信息素;
步骤4 如果cubest<best ,best=cubest ,执行步骤2;否则直接执行步骤2;
四、结果及分析
通过五个城市节点的TSP 问题的求解,其城市间的距离矩阵为:01015621008139158020156132005291550⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭
蚁群算法找到的最优路径为A C B D E →→→→,总路程为43;
通过试验结果发现,对于小规模的TSP问题,蚁群算法和禁忌搜索、模拟退火算法的计算结果相似,而且耗时很短,因此该算法是合理的。