第十章 时间序列分析
第十章时间序列分析

第十章 时间序列分析Ⅰ.学习目的本章阐述常规的时间序列分析方法,通过学习,要求:1.理解时间序列的概念和种类,掌握时间序列的编制方法;2.掌握时间序列分析中水平指标和速度指标的计算及应用;3.掌握时间序列中长期趋势、季节变动、循环变动及不规则变动等因素的基本测定方法;4.掌握基本的时间序列预测方法。
Ⅱ.课程内容要点 第一节 时间序列分析概述一、时间序列的概念将统计指标的数值按时间先后顺序排列起来就形成了时间序列。
二、时间序列的种类反映现象发展变化过程的时间序列按其统计指标的形式不同,可分为总量指标时间序列、相对指标时间序列和平均指标时间序列三种类型。
其中总量指标时间序列是基础序列,相对指标和平均指标时间序列是派生序列。
根据总量指标反映现象的时间状况不同,总量指标时间序列又可分为时期指标时间序列和时点指标时间序列。
三、时间序列的编制方法:(一)时间长短应一致;(二)经济内容应一致;(三)总体范围应一致;(四)计算方法与计量单位要一致。
第二节 时间序列的分析指标一、时间序列分析的水平指标(一)发展水平。
发展水平是时间序列中与其所属时间相对应的反映某种现象发展变化所达到的规模、程度和水平的指标数值。
(二)平均发展水平。
将一个时间序列各期发展水平加以平均而得的平均数,叫平均发展水平,又称为动态平均数或序时平均数。
1.总量指标时间序列序时平均数的计算(1)时期序列:ny n y y y y in ∑=+++= 21 (2)时点序列①连续时点情况下,又分为两种情形:a .若掌握的资料是间隔相等的连续时点 (如每日的时点) 序列,则ny n y y y y in ∑=+++= 21 b .若掌握的资料是间隔不等的连续时点序列,则 ②间断时点情况下。
间断时点也分两种情况:a .若掌握的资料是间隔相等的间断时点,则采用首末折半法:b .若掌握的资料是间隔不等的间断时点序列,计算公式为:2.相对指标和平均指标时间序列序时平均数的计算。
统计学-第十章 时间序列分析

1
38(a1)
2
42(a2)
3
39(a3)
4
37(a4)
5
41(a5)
解: a 38 42 39 37 41 39.(4 台/天) 11111
三、平均发展水平
3.由绝对数时间序列计算的序时平均数
(2)由时点序列计算序时平均数
②间隔不相等的连续的时点数列
a af
季度在某地区销售量的走势 250 200
图。
150
100
那么,如何预测该品牌 50
空调2018年各个季度在该地 0
区的销售量呢?
单位:销售量(百台)
3
第一节 时间序列概述
一、时间序列概述
1.定义:将表明社会经济现象在不同时间发展 变化的某同一指标数值,按时间先后顺序排列所形 成的序列。(规模和水平)
③序列中每个指标的数值,通 常通过连续不断的登记取得。
由反映某种现象在一定 时点(瞬间)上发展状况的总量 指标所构成的绝对数动态序列所 处的数量水平。其中时点序列无 时点长度;两个相邻时点间的时 间距离称为时点间隔。也可为 日、周、旬、季、年等。
①序列中各个指标的 数值不可以直接相加;
②序列中指标数值的大小与其 时间间隔长短没有直接联系;
表9.3 我国普通高校毕业生数(时期序列)
年份 1912-1948 1978 1995 2000 2004 2014 2016
毕业生数(万人) 21.08 16.5 80.5 95 239.1 669.4 756
10
第二节 时间序列分析的基本原 理 一、时间序列分析的意义
:以时间序列为依据,对影响动态序列变 动过程的主要因素及其相互关系进行分解与综合, 以认识社会经济现象发展变量的规律性,借以鉴别 过去、预测未来的分析研究工作。
应用统计硕士(MAS)考试过关必做习题集(含名校考研真题详解)统计学(第10章 时间序列分析和预测)

第10章 时间序列分析和预测一、单项选择题 1.已知某公司近5年经营收入的增长速度分别为6%,8.2%,9.3%,8%和10.5%,则该公司近5年的年平均增长速度为( )。
[浙江工商大学2017研]A .(6%×8.2%×9.3%×8%×10.5%)/5B .(106%×108.2%×109.3%×108%×110.5%)/5-1C .(6%×8.2%×9.3%×8%×10.5%)1/5D .(106%×108.2%×109.3%×108%×110.5%)1/5-1【答案】D【解析】平均增长速度也称平均增长率,它是时间序列中逐期环比值(也称环比发展速度)的几何平均数减1后的结果,其计算公式为:111n n YG Y -=⨯⨯-=-所以该商品价格的年平均增长率为:1v =-2.如果时间数列逐期增长量大体相等,则宜拟合( )。
[浙江工商大学2017研]A .直线模型B.抛物线模型C.曲线模型D.众数指数曲线模型【答案】A【解析】A项,逐期增长量大体相等,说明关于时间t的曲线的斜率大体相等,应拟合直线模型;B项,抛物线模型适合于变化率逐渐减小再逐渐增大的时间序列;C项,指数曲线模型适合于呈指数增长的时间序列;D项,除直线模型意外的其他模型都属于曲线模型,包括抛物线模型和指数曲线模型。
3.定基发展速度和环比发展速度的关系是()。
[浙江工商大学2017研]A.相邻两个定基发展速度之商=其相应的环比发展速度B.相邻两个定基发展速度之积=其相应的环比发展速度C.相邻两个定基发展速度之差=其相应的环比发展速度D.相邻两个定基发展速度之和=其相应的环比发展速度【答案】A【解析】定基发展速度是以固定一个时期为基点计算发展速度,环比增长速度是以上一个时期为基点计算发展速度,因此A项正确。
第10章时间序列3季节指数法

21.6 21.2 107.1% 21.4%
21.5 21.9 108.6 21.7%
25.5
100
25.04
100
127.8
25.6%
21
二、实际预测 1、情形一:已知年度预测值,预测其它各季度值。
计算公式:某季度预测值=年度预测值×该季的季节比重 例题:已知2006年度预测值为7385吨,要求利用季节变差预测各值。
一、数据模式的分析法
1、叠加法
y
H
k
t 水平型: Y=H+S 或
y
k t
Y=H+S+C+I T
S +0
S
s>0 t
s<0
t1
t
+
t1
t
t1
趋势型: Y=T+S
Y=T+S+C+I
t
2
第一节 季节变动数据模式分析法及预测步骤
2、乘积法
y
H
S
k
k
t
t
水平季节型: Y=H×S 或 Y=H×S×C×I
y
T
S
85.8 87.3 86.3 84.7 428.3 85.7%
86.3 87.8 86.0 87.6 434.5 86.9%
102.6 103.0 102.0 100.2 511.0 102.2%
表中第一个数据来源:2150/1710.75=1.257=125.7% 其它数据同上。
12
第二节 季节指数预测法
年份
第一季度
2001
2150
2002
2192
2003
2089
第10章-时间序列分析

67885
•1991~1996年平均国内生产总值:
•时期数列
•2023/5/3
•【例】
年份
•19941998年中 国能源生产 总量
1994 1995 1996 1997 1998
能源生产总量(万吨标 准煤) 118729 129034 132616 132410 124000
•2023/5/3
❖2.绝对指标时点数列的序时平均数
如:1991—1996年间,我国逐年的GDP,构
成一个时间序列。
记:a1 , a2 , … , an ( n项 ) 或:a0 , a1 , a2 , … , an ( n+1项 )
•2023/5/3
•
时间数列的构成要素:
1. 现象所属的时间;
2. 不同时间的具体指标数值。
•2023/5/3
例如
年底人数
(万 人)
8350 9949 11828 14071 16851 18375
间隔年数 3 2 3 2 2
•间断时点数列(间隔不等)
•2023/5/3
•我国第三产业平均从业人数:
•2023/5/3
•【例】 •某地区1999年社会劳动者人数资料如下
:
•单位:万人
时间 1月1日 5月31日 8月31日 12月31日
•2023/5/3
•定基和环比发展速度相互关系
•2023/5/3
【例】
❖ 某产品外贸进出口量各年环比发展速度资料如下: ❖ 1996年为103.9%,1997年为100.9%, ❖ 1998年为95.5%,1999年为101.6%,2000年为
108%,试计算2000年以1995年为基期的定基发 展速度。 ❖ (109.57%)
第十章 时间序列分析

这类检验可分别用两个t检验进行:
t ˆ 1 S ˆ
或
t
ˆ
Sˆ
( 3)
问题是,(3)式计算的t值不服从t分布,而是服从一 个非标准的甚至是非对称的分布。因而不能使用t分布表, 需要用另外的分布表。 迪基( Dickey ) 和富勒( Fuller)以蒙特卡罗模拟为 基础,编制了(3)中tδ统计量的临界值表,表中所列已非 传统的t统计值,他们称之为源自统计量,即DF分布。(见附表 5)
3、自相关函数
设{Xt,t=1,2,┅}是一个时间序列,称:
(t , s)
r (t , s ) r (t , t )r ( s, s)
为时间序列{Xt,t=1,2,┅}的自相关函数。它反映 了时间序列{Xt,t=1,2,┅}在两个不同时刻取值的 线性相关程度。
三、平稳和非平稳时间序列
ADF检验是通过下面三个模型完成的:
X t X t 1
X t X t 1
X u X u
j j 1 p t j t
p
①
j
t j
t
第二节 时间序列的 平稳性检验
一、利用散点图进行平稳性检验
一个平稳的时间序列在图形上往往表现出一种
围绕其均值不断波动的过程; 而非平稳序列则往往表现出在不同的时间段具 有不同的均值(如持续上升或持续下降)。
二、利用样本自相关函数进行平稳性判断
一个时间序列的样本自相关函数定义为:
T k
ˆk
其中X0是Xt的初始值,可假定为任何常数或取初值为0,则:
Var ( X t ) Var ( X 0 t 2
u ) Var(u )
第十章时间序列预测法-季节指数法

时间序列 预测法
四、 季节指数预测法
❖ 本法适用于有季节变动特征的经济现象数量预测
销量
200
150
销售量(万元)
100
销量
季度
50
1998年 1999年 2000年 2001年
0
0
4
8
12
16
20
第一季度 148 138 150 145 第二季度 62 64 58 66
第三季度 76 80 72 78
年份 一季度 二季度 三季度 四季度
1995 120 1996 124 1997 138 1998 142
165 182 197 218
282 312 354 370
114 123 140 148
年份
一季度
1995
120
1996
124
1997
138
1998
142
各年同季平 均数
131
季节指数度 四季度
165
282
114
182
312
123
197
354
140
218
370
148
190.5 329.5 131.25
97.41% 168.49% 67.11% 213.82 369.83 147.32
同年各季 平均数 170.25 185.25 207.25 219.50
2 、季节指数预测法的步骤
第1步 第2步
n
计算各年同季(或同月)的平均值
yi
yi
i 1
n
n
计算所有年所有季(或月)的总平均值
y
yi
i 1
n
第3步 计算各季(或月)的季节比率(即季节指数)
统计学的时间数列习地的题目及答案详解

第十章时间数列分析和预测一、填空题1.同一现象在不同时间的相继____________排列而成的序列称为_______________。
2.时间序列在__________重复出现的____________称为季节波动。
3.时间序列在___________呈现出来的某种持续_______________称长期趋势。
4.增长率是时间序列中_________观察值与基期观察值______减1 后的结果。
5.由于比较的基期不同,增长率可分为_____________和______________。
6.复合型序列是指含有___________季节性和___________的序列。
7.某企业2005年的利润额比2000年增长45%,2004年2000年增长30%,则2005年比2004年增长_______;2004年至2000年平均增长率__________。
8.指数平滑法是对过去的观察值__________进行预测的一种方法。
9.如果时间序列中各期的逐期增减量大致相等,则趋势近似于_____________;各期环比值大体相等,则趋势近似于___________。
10.测定季节波动的方法主要有____________和_____________。
二、单项选择题1.用图形描述时间序列,其时间一般绘制在()A. 纵轴上B. 横轴上C. 左端D. 右端2.求解()趋势参数方法是先做对数变换,将其化为直线模型,然后用最小二乘法求出模型参数A. 三次曲线B. 指数曲线C. 一次直线D. 二次曲线3.对运用几个模型分别对时间序列进行拟合后,()最小的模型即位最好的拟合曲线模型A. 判定系数B. 相关系数C. 标准误差D.D—W值4.当数据的随机波动较大时,选用的移动间隔长度K应该()A. 较大B. 较小C. 随机D. 等于n5.在进行预测时,最新观察值包含更多信息,可考虑权重应()A. 更大B. 更小C. 无所谓D. 任意6. 按季度资料计算的季节指数S的取值范围是()A. 0≤ S ≤4B. 0 ≤S≤ 1C. 1 ≤S ≤4D. 1≤ S≤ 2三、多项选择题1. 时间序列可以分解为下列因素的影响 ( )A. 长期趋势B. 季节变动C. 周期波动D. 不规则变动E. 随机误差因素2. 某地区国民收入2000年为140亿元,2005年比2000年增长45%,则()A. 国民收入2005年比2000年增加了63亿元B. 2000年每增长1%的绝对值为1.4亿元C. 五年间平均增长率是9%D. 国民收入2005年达到210亿元E. 国民收入2005年达到203亿元3.测定季节变动A. 可以依据年度资料B. 可以依据月度资料C. 可以依据季度资料D. 需要三年以上资料E. 可以依据任何资料4. 时间序列分解较常用的模型有()A. 加法模型B. 乘法模型C. 直线模型D. 指数模型E. 多项式模型5.一次指数平滑法的初值的确定可以()A. 取第一期的实际值B. 取最初三期的加权平均值C. 取最初几期的平均值D. 取初值=1E. 取任意值四、简答题1. 简述时间序列的构成要素2. 利用增长率分析时间序列时应注意哪些问题3. 简述用平均趋势剔除法求季节指数的步骤4. 简述用剩余法求循环波动的基本步骤5. 试比较移动平均法与一次指数平滑法五、计算题1.某企业利润额资料如下:要求:(1) 求出直线趋势方程(2)预测2006年的利润额2.已知某煤矿(1)求五期移动平均;(2)取α= 0.9,求一次指数平滑3.某地财政收入资料如下试用指数曲线拟合变动趋势4.某商场销售资料如下:(单位:百万元)试就其进行季节变动分析5.某企业职工人数逐年增加,有1992—2004年的资料,求得∑t = 0,∑ty=9100,∑y = 15600;试求出直线趋势方程,并估计2006年职工人数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节、单位根检验 (unit root test)
单位根检验是运用统计检验时间序列是否平 稳的一种普遍应用的方法。
一、DF检验(Dicky-Fuller Test)
yt yt 1 et
对该式回归,如果确实 发现ρ =1,则称随机变 量y有一个单位根。
yt yt 1 et
弱相关序列
一个独立序列无疑是弱相关序列,因此独立同分布序 列是弱相关时间序列。弱相关序列的一个例子是:
xt et 1e t 1 , t 1, 2,
这个过程被称为一阶移动平均过程,表示 为MA(1) MA(1)是平稳的弱相关序列。
弱相关序列
弱相关序列的另一个更为常见的例子是:
yt 1 yt 1 et , t 1, 2,
平稳性关系到一个过程在时间推移过程中的联 合分布,弱相关则是与平稳性完全不同的概念, xt h 随着随机变量 和xt 之间时间距离 h的变大, 弱相关对二者的相关程度施加限定。
对于一个平稳时间序列过程 {xt : t 1, 2, } 若随着h无限增大,
xt 和 xt h “近乎独立”,则称之为弱相关。
如果ρ=0,β≠0, y成为一带时间趋势的随机变化过程。根据β的正
负, y表现出明显的上升或下降趋势。这种趋势称为确定性趋势 (deterministic trend)。
如果ρ=1,β≠0 ,则y包含有确定性与随机性两种趋势。
判断一个非平稳时间序列的趋势是随机性的还是确定性 的,可通过ADF检验中所用的第3个模型进行。
I(0)代表一平稳时间序列。
现实经济生活中只有少数经济指标的时间序列 表现为平稳的,如利率等; 大多数指标的时间序列是非平稳的, 大多数非 平稳的时间序列一般可通过一次或多次差分的 形式变为平稳的。 但也有一些时间序列,无论经过多少次差分, 都不能变为平稳的。这种序列被称为非单整的 (non-integrated)。
平稳性的定义
{xt : t 1, 2, } 如果对于每一个时间指标集 1 t1 t2
对于随机过程 和任意整数
h 1
tm
( xt1 , xt 2 ,
( xt1h , xt 2h ,
xtm )
的联合分布都与
xtmh ) 的联合分布相同,
那么这个随机过程就是(严格)平稳的。
弱相关
这个过程被称为一阶自回归过程,表示为AR(1) AR(1)过程弱相关的一个关键假定是稳定性 条件
1 1
不平稳的随机过程则称为非平稳过程(nonstationary process) 一个随机时间序列如果具有时间趋势,那么 它显然是非平稳的,因为它的均值随时间在 变化,但是时间趋势序列也可能是弱相关的。
计量经济学
—理论· 方法· EViews应用
郭存芝 杜延军 李春吉 编著
电子教案
第十章 时间序列分析
◆ 学习目的
了解平稳和非平稳序列、单位根和协整的概念,掌握单位根 检验、协整检验和误差修正模型的估计方法。
◆ 基本要求
了解平稳和非平稳序列、弱相关序列、随机游走、虚假回归的概念 掌握单位根的概念,掌握单位根DF检验和ADF检验的方法; 掌握协整关系检验方法、误差修正模型的建模方法及应用。
检验过程
实际检验时从模型3开始,然后模型2、模型1。
何时检验拒绝零假设,即原序列不存在单位根,为
平稳序列,何时停止检验。 否则,就要继续检验,直到检验完模型1为止。
检验原理与DF检验相同,只是对模型1、2、3 进行检验时,有各自相应的临界值表。
检验模型滞后项阶数的确定:以随机项不存在 序列相关为准则。
随机游走(random walk)过程也是非平稳的。
随机游走的定义
yt yt 1 et , t 1, 2,
假定扰动项是零均值、同方差为的独立 同分布序列
随机游走的期望值不取决于时间 但是,随机游走的方差却是随着时间而变化。
随机游走的方差是时间的线性函数,随着时间而递增, 是一个非平稳过程。通常随机游走过程也包含了明显 的趋势,如带漂移的随机游走(random walk with drift):
数据非平稳,往往导致出现“虚假回归”问 题。
表现为两个本来没有任何因果关系的变量,却
有很高的相关性。
平稳时间序列过程意味着,如果我们从这个序列中任 取一个随机变量集,并把这个序列向前移动h个时期, 那么其联合概率分布仍然保持不变。在实践操作层面 上,如果我们想通过回归分析考察两个或者多个变量 之间的关系,就需要假定某种跨时期的平稳性。
一、协整关系
1、问题的提出
将一个随机游走变量对另一个随机游走变量进行 回归可能导致荒谬的结果,因为传统的显著性检 验说明变量之间的关系事实上是不存在的,这就 是为什么要检验一个变量是否是随机游走的一个 原因。 那有没有对两个即使都是随机游走的变量进行回 归,而不会造成荒谬结果的情形呢?我们的回答 是肯定的,因为有时虽然两个变量都是随机游走, 但它们的某个线性组合却可能是平稳的。
该模型中已引入了表示确定性趋势的时间变量,即分
离出了确定性趋势的影响。
如果检验结果表明所给时间序列有单位根,且时间变
量前的参数显著为零,则该序列显示出随机性趋势;
如果没有单位根,且时间变量前的参数显著地异于零,
则该序列显示出确定性趋势。
差分平稳过程和趋势平稳过程
具有随机性趋势的时间序列通过差分的方法消除随机
从中国统计年鉴中获取名义GDP和GDP指数数据, 然后计算得到1979-2011年真实GDP数据,对真 实GDP做ADF单位根检验。
Eviews 中提供的检验方法
Eviews 中提供的滞后阶数选择
四、单整、趋势平稳与差分平稳
1、单整 如果一个时间序列经过一次差分变成平 稳的,就称原序列是一阶单整序列,记 为I(1)。 一般地,如果一个时间序列经过d次差分 后变成平稳序列,则称原序列是d 阶单 整序列,记为I(d)。
=0,认为时 如果t<临界值,则拒绝零假设H0: 间序列不存在单位根,是平稳的。
单尾检验
二、ADF检验(Augment Dickey-Fuller test)
为什么将DF检验扩展为ADF检验? DF检验假定时间序列是由具有白噪声随机误差 项的一阶自回归过程AR(1)生成的。但在实际检 验中,时间序列可能由更高阶的自回归过程生 成,或者随机误差项并非是白噪声,用 OLS 法 进行估计均会表现出随机误差项出现自相关, 导致DF检验无效。 如果时间序列含有明显的随时间变化的某种趋 势(如上升或下降),也容易导致DF检验中的 自相关随机误差项问题。
样 本 容 量 显著性水平 0.01 0.05 0.10 25 50 100 -3.51 -2.89 -2.58 500 -3.44 -2.87 -2.57 ∝ -3.43 -2.86 -2.57 t分布临界值 (n=∝) -2.33 -1.65 -1.28
-3.75 -3.58 -3.00 -2.93 -2.63 -2.60
2、趋势平稳与差分平稳随机过程
yt t yt 1 et , t 1, 2,
含有一阶自回归的随机过程:
如果ρ=1,β=0,y成为一带位移的随机游走过程。根据α的正负,
y表现出明显的上升或下降趋势。这种趋势称为随机性趋势 (stochastic trend)。
弱相关平稳随机过程满足下列条件: (1)均值 E(xt ) 是与时间t无关的常数; (2)方差 Var(xt ) 2 是与时间t无关的常数; (3)协方差 是只与时间间 Cov(x 隔h有关,与时间 t无关的常数。 t , xt h ) h
在多元回归分析中使用平稳的弱相关序列 最为理想。不是弱相关的时间序列,往往 会导致多元回归分析中的虚假回归问题。
t Yt 0 1 X t
一个简单的检验过程:
同时估计出上述三个模型的适当形式,然后通过
=0。 ADF临界值表检验原假设H0:
可以认为时间序列是平稳的;
只要其中有一个模型的检验结果拒绝了原假设,就 当三个模型的检验结果都不能拒绝原假设时,则认
为时间序列是非平稳的。
三、ADF单位根检验在Eviews中的实现
时间序列数据是最常见,也是最常用到的数据。 经典回归分析暗含着一个重要假设:数据是平稳的。
一、静态模型和动态模型
假设有两个变量Y、X,一个静态模型为:
Yt 0 1 X t t , t 1, 2,
例如,静态的菲利普斯曲线表示为:
,n
inft 0 1unemt t
在以后的讨论中,关于平稳性的概念通常是指 弱相关平稳。
白噪声(white noise)。
最简单的随机时间序列是一个具有零均值 同方差的独立同分布序列: xt t , t N (0, 2 ) 该序列常常为称为是一个白噪声。白噪声 序列具有相同的均值和方差,且协方差为 零,因此,白噪声序列是平稳的。
1) 2) 3)
第十章 时间序列分析
时间序列数据分析概述 单位根检验 协整和误差修正模型
第一节 时间序列分析概述
经典计量经济模型常用到的数据有:
时间序列数据(time-series data); 截面数据(cross-sectional data) 平行/面板数据(panel data/time-series cross-section data)
yt 0 yt 1 et , t 1, 2,
其期望值具有一种线性时间趋势,方差则与 不带漂移项的纯粹随机游走过程的方差完全 相同。
类似随机游走(带或不带漂移项)这样的过程, 一旦用于回归分析,则可能导致误导性的结果, 幸运的是,只要做一些简单变换,就可以使它 们变成弱相关平稳的过程。