成都市中考20题 圆的综合

合集下载

中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.在平面直角坐标系xOy中以点(3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离2.如图,在平面直角坐标系xOy中以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10√5D.12√33.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DCB等于()A.90°B.100°C.130°D.140°4.如图,在正五边形ABCDE中连接AD,则∠DAE的度数为()A.46°B.56°C.36°D.26°5.如图,PA、PB为∠O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交∠O 于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线6.如图,四边形ABCD内接于半径为6的∠O中连接AC,若AB=CD,∠ACB=45°,∠ACD=12∠BAC,则BC的长度为()A.6 √3B.6 √2C.9 √3D.9 √27.如图,点A,B,D,C是∠O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为()A.30°B.35°C.45°D.55°8.∠ABC中∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则AE的长为()A.95B.125C.185D.3659.如图,AB为∠O的直径,点C在∠O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°10.两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是() A.外离B.内切C.相交D.外切11.已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.B.C.D.12.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π二、填空题13.在Rt∠ABC中∠C=90°,AB=5,BC=4,求内切圆半径14.如图,∠C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则∠C的半径为.15.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为.16.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为cm.17.如图,在直角坐标系中以点P为圆心的圆弧与x轴交于A,B两点,已知P(4,2)和A(2,0),则点B的坐标是.18.下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作法:如图①作射线AB;②在射线AB取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;③以C为圆心,OC C为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.请回答:该尺规作图的依据是.三、综合题19.如图,在△ABC中AC=BC=BD,点O在AC边上,OC为⊙O的半径,AB是⊙O 的切线,切点为点D,OC=2,OA=2√2.(1)求证:BC是⊙O的切线;(2)求阴影部分的面积.20.如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD=54,求EFAC的值.21.如图,四边形ABCD 内接于∠O,BD是∠O的直径,过点A作∠O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE∠CD;(2)已知AE=4cm,CD=6cm,求∠O的半径.22.如图,∠O是∠ABC的外接圆,BC为∠O的直径,点E为∠ABC的内心,连接AE并延长交∠O 于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为∠O的切线.23.公元前5世纪,古希腊哲学家阿那克萨哥拉因“亵渎神灵罪”而被投人监狱,在狱中他对方铁窗和圆月亮产生了兴趣.他不断变换观察的位置,一会儿看见圆比正方形大,一会儿看见正方形比圆大,于是伟大的古希腊尺规作图几何三大问题之--的化圆为方问题诞生了:作一个正方形,使它的面积等于已知圆的面积(1)设有一个半径为√3的圆,则这个圆的周长为,面积为,作化圆为方得到的正方形的边长为(计算结果保留π)(2)由于对尺规作图的限制(只能有限次地使用没有刻度的直尺和圆规进行作图),包括化圆为方在内的几何三大问题都已被证明是不可能的.但若不受标尺的限制,化圆为方并非难事。

2024成都中考数学一轮复习专题 圆的有关位置关系 (含解析)

2024成都中考数学一轮复习专题 圆的有关位置关系 (含解析)

2024成都中考数学一轮复习专题圆的有关位置关系一、单选题A.25︒B.2.(2023·重庆·统考中考真题)BC=,则OC的长度是(3A.3B.3.(2023·重庆·统考中考真题)∠的度数为()则BACA.30︒B.A .23B 5.(2023·四川泸州·统考中考真题)如图,在半圆O 与BC 相切于点E A .4109B .8二、填空题6.(2023·浙江嘉兴·统考中考真题)如图,点A 是O 外一点,AB ,AC 分别与O 相切于点B ,C ,点D 在 BDC上,已知50A ∠=︒,则D ∠的度数是___________.7.(2023·黑龙江·统考中考真题)如图,AB 是O 的直径,PA 切O 于点A ,PO 交O 于点C ,连接BC ,若28B ∠=︒,则P ∠=__________︒.8.(2023·湖南·统考中考真题)如图,AD 是O 的直径,AB 是O 的弦,BC 与O 相切于点B ,连接OB ,若65ABC ∠=︒,则BOD ∠的大小为__________.9.(2023·山东滨州上异于点,A B的一点,则10.(2023·浙江宁波·半圆O与BC相切于点AP的长为_____________11.(2023·河南·统考中考真题)OA=,125PA=,则12.(2023·湖北·统考中考真题)如图,在,切于点D,E,连接DE AO13.(2023·湖南·统考中考真题)如图,在半径作圆,当所作的圆与斜边14.(2023·山东烟台在函数(0,ky k x x=>15.(2023·四川·统考中考真题)如图,一点,过点P 向角的两边作垂线,垂足分别为16.(2023·湖南岳阳·统考中考真题)如图,在切点的切线与AB 的延长线交于点(1)若30,A AB ∠=︒=(2)若13CF AF =,则CE AE 17.(2023·上海·统考中考真题)在上,且CD DE =,如果B三、解答题(1)若25EAC ∠=︒,求ACD ∠(2)若2,1OB BD ==,求CE (1)求证:CF 是O 的切线;(2)若直径310,cos 5AD B ==,求FD 的长.20.(2023·江西·统考中考真题)如图,在ABC 中,464AB C =∠=︒,,以AB 为直径的O 与AC 相交于点D ,E 为 ABD 上一点,且40ADE ∠=︒.(1)求 BE的长;(2)若76EAD ∠=︒,求证:CB 为O 的切线.21.(2023·江苏连云港·统考中考真题)如图,在ABC 中,AB AC =,以AB 为直径的O 交边AC 于点D ,连接BD ,过点C 作CE AB ∥.(1)请用无刻度的直尺和圆规作图:过点B 作O 的切线,交CE 于点F ;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:BD BF =.(1)求证:EF 与O 相切;(2)若1sin BF AFE =∠,(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求(1)求证:CF 是O 切线;(2)若10AF =,2sin 3F =,求(1)求证:CE 是O 的切线;(2)若6BC =,8AC =,求CE(1)求证:ACD DCB ∽;(2)求证:CD 是O 的切线;(3)若3tan ,105E AC ==,求O 的半径.①过点A 作切线AC ,且4AC =(点C 在A ②连接OC ,交O 于点D ;③连接BD ,与AC 交于点E .(1)求证:BD 为O 的切线;(2)求AE 的长度.(1)尺规作图:如图,过点P 作出O 的两条切线求写作法和证明)(2)在(1)的条件下,若点D 在O 上(点(1)求证:BC 是O 的切线;(2)若5BD =,tan ADB ∠=30.(2023·福建·统考中考真题)如图,已知ABC 内接于,O CO 的延长线交AB 于点D ,交O 于点E ,交O 的切线AF 于点F ,且AF BC ∥.(1)求证:AO BE ∥;(2)求证:AO 平分BAC ∠.31.(2023·湖北荆州·统考中考真题)如图,在菱形ABCD 中,DH AB ⊥于H ,以DH 为直径的O 分别交AD ,BD 于点E ,F ,连接EF .(1)求证:①CD 是O 的切线;②DEF DBA ∽;(2)若5AB =,6DB =,求sin DFE ∠.32.(2023·广西·统考中考真题)如图,PO 平分APD ∠,PA 与O 相切于点A ,延长AO 交PD 于点C ,过点O 作OB PD ⊥,垂足为B .(1)求证:PB 是O 的切线;(2)若O 的半径为4,5OC =,求PA 的长.33.(2023·湖北黄冈·统考中考真题)如图,ABC 中,以AB 为直径的O 交BC 于点D ,DE 是O 的切线,且DE AC ⊥,垂足为E ,延长CA 交O 于点F .(1)求证:AB AC =;(2)若3,6AE D E ==,求AF 的长.(1)求证:直线CD 是O 的切线;(2)若120ACD ∠=︒,CD =(1)求证:BC 是O 的切线;(2)若2CE =,求图中阴影部分的面积(结果保留(1)求证:直线DE是O的切线;(2)当30F∠=︒时,判断ABM(3)在(2)的条件下,ME= (1)求证:DC是O的切线;(2)若2AE=,1sin3AFD∠=,①求38.(2023·山东枣庄·统考中考真题)如图,AB 为O 的直径,点C 是 AD 的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是O 切线;(2)若34BE AB ==,,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).39.(2023·山东临沂·统考中考真题)如图,O 是ABC 的外接圆,BD 是O 的直径,,AB AC AE BC =∥,E 为BD 的延长线与AE 的交点.(1)求证:AE 是O 的切线;(2)若75,2ABC BC ∠=︒=,求 CD的长.的切线;(1)求证:ED是O(2)若,65,AC BD AC CD==>,求BC⋅=⋅,求证:BM (3)若DE AM AC AD的切线;(1)求证:AB是O的半径与菱形的边长之比为(2)已知O(1)试判断直线AB与O的位置关系,并说明理由;(2)若3sin,5B O= 的半径为3,求AC(1)求证:直线AE是O是的切线;(2)若2sin3E=,O的半径为344.(2023·甘肃兰州·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径, BCBD =,DE AC ⊥于点E ,DE 交BF 于点F ,交AB 于点G ,2BOD F ∠=∠,连接BD .(1)求证:BF 是O 的切线;(2)判断DGB 的形状,并说明理由;(3)当2BD =时,求FG 的长.45.(2023·湖北·统考中考真题)如图,等腰ABC 内接于O ,AB AC =,BD 是边AC 上的中线,过点C 作AB 的平行线交BD 的延长线于点E ,BE 交O 于点F ,连接,AE FC .(1)求证:AE 为O 的切线;(2)若O 的半径为5,6BC =,求FC 的长.参考答案一、单选题∵AB 切O 于点B ,∴90∠=︒ABO ,∵BD OA ∥,OCD ∠=∴25CDB ∠=︒,【点拨】本题考查了切线的性质,锐角三角函数,勾股定理,掌握切线的性质是解题的关键.3.【答案】B 【分析】连接OC ,先根据圆的切线的性质可得90OCD ∠=︒,从而可得40OCA ∠=︒,再根据等腰三角形的性质即可得.【详解】解:如图,连接OC ,直线CD 与O 相切,OC CD ∴⊥,90OCD ∴∠=︒,50ACD ∠=︒ ,40OCA ∴∠=︒,OA OC = ,40BAC OCA ∴∠=∠=︒,故选:B .【点拨】本题考查了圆的切线的性质、等腰三角形的性质,熟练掌握圆的切线的性质是解题关键.4.【答案】B 【分析】作CF AB ⊥延长线于F 点,连接DE ,根据圆的基本性质以及切线的性质,分别利用勾股定理求解在Rt DEC △和Rt BFC △,最终得到DE ,即可根据正弦函数的定义求解.【详解】解:如图所示,作CF AB ⊥延长线于F 点,连接DE ,∵AD AB ⊥,AB CD ∥,∴90FAD ADC F ∠=∠=∠=∴四边形ADCF 为矩形,AF ∴AB 为D 的切线,∵90C ∠=︒,8AC =,BC ∴2210AB AC BC =+=∵以AD 为直径的半圆O 与二、填空题∵AB ,AC 分别与O 相切于点∴90ACO ABO ∠=∠=︒,∵50A ∠=︒,∴360909050COB ∠=︒-︒-︒-︒∵ BCBC =,∵PA 切O 于点A ,∴90OAP ∠=︒,∴18034P OAP AOP ∠=︒-∠-∠=︒.故答案为:34.【点拨】此题考查了切线的性质和三角形的外角的性质,三角形内角和定理等知识,解题的关键是熟练掌握以上知识点.8.【答案】50︒【分析】证明90OBC ∠=︒,可得906525OBD ∠=︒-︒=︒,结合OB OA =,证明25A OBA ∠=∠=︒,再利用三角形的外角的性质可得答案.【详解】解:∵BC 与O 相切于点B ,∴90OBC ∠=︒,∵65ABC ∠=︒,∴906525OBD ∠=︒-︒=︒,∵OB OA =,∴25A OBA ∠=∠=︒,∴22550BOD ∠=⨯︒=︒,故答案为:50︒【点拨】本题考查的是圆的切线的性质,等腰三角形的性质,三角形的外角的性质,熟记基本图形的性质是解本题的关键.9.【答案】62︒或118︒【分析】根据切线的性质得到90∠=∠=︒PAO PBO ,根据四边形内角和为360︒,得出AOB ∠,然后根据圆周角定理即可求解.【详解】解:如图所示,连接,AC BC ,当点C 在优弧 AB 上时,∵,PA PB 分别与O 相切于,A B 两点∴90∠=∠=︒PAO PBO ,∵56APB ∠=︒.∵以AE 为直径的半圆O ∴OD BC ⊥,OA OE =∴90ODB ∠=︒设OA OE OD r ===,则=的情况;不存在PD AD综上:AP的长为230或故答案为:230或6.【点拨】本题考查切线的性质,平行线分线段成比例,勾股定理,等腰三角形的定义.熟练掌握切线的性∵OA OB CA CB OC OC =⎧⎪=⎨⎪=⎩,∴OAC OBC ≌,∴90OAC OBC ∠=∠=︒,【点拨】本题主要考查了三角形内切圆,切线长定理,三角形内角和定理,线段垂直平分线的判定,三角形外角的性质,正确作出辅助线是解题的关键.13.【答案】24 5【分析】根据勾股定理,得由90OGC ODC OGH ∠=∠=∠=︒∵45ACB ∠=︒,∴45OHC ∠=︒,∴222OH OG ==,∴222CD DH ==+,同理2PQ PF =,∵2t PE PF =+,∴t PE PQ EQ =+=,当EQ 与O 相切时,EQ 有最大或最小值,同理,t 的最小值为EQ CE CD DE ==-综上,t 的取值范围是22224t ≤≤+故答案为:22224t ≤≤+.【点拨】本题考查了切线的性质,等腰直角三角形的性质,勾股定理,求得∵点C 为 BD的中点,∴ BCCD =,又∵30A ∠=︒,∴2BOC COD A ∠=∠=∠=∵点C 为 BD的中点,∴ BCCD =,∴OC BD ⊥,∵EC 是O 的切线,B过点A,且7AB=,∴e的半径为7,BE过点D,它的半径为r,且CE CD DE r∴=+=,2,=∠=︒BC C3,9022294∴=+=+,BE BC CE r在边AC上,点E在CA延长线上,D由函数图象可知,当即不等式①的解集为同理可得:不等式②则不等式组的解集为又10210 ,<≤r半径r的取值范围是故答案为:10r<≤三、解答题(2)∵CD 是O 的切线,OC 是 ∴90OCD ∠=︒.在Rt OCD △中,∵2,3OC OB OD OB BD ===+=,∴225CD OD OC =-=.∵90OCD AEC ∠=∠=︒,(2)解:∵3,cos 5B ADC B ∠=∠=,∴3cos 5ADC ∠=,∵在Rt ACD 中,3cos 5CD ADC AD∠==∴3cos 106,5CD AD ADC =⋅∠=⨯=(2)证明:如图所示,连接∵76EAD ∠=︒,40ADE ∠=∴180AED EAD =︒--∠∠∴64ABD AED ==︒∠∠,∴BC 是O 的切线.【点拨】本题主要考查了切线的判定,求弧长,圆周角定理,三角形内角和定理等等,正确作出辅助线是解题的关键.21.【答案】(1)见解析(2)见解析【分析】(1)根据尺规作图,过点B 作AB 的垂线,交CE 于点F ,即可求解;(2)根据题意切线的性质以及直径所对的圆周角是直角,证明BDC BFC ∠=∠,根据平行线的性质以及等腰三角形的性质得出BCD BCF =∠,进而证明()AAS BCD BCF ≌ ,即可得证.【详解】(1)解:方法不唯一,如图所示.(2)∵AB AC =,∴A ABC CB =∠∠.又∵CE AB ∥,∴ABC BCF ∠=∠,∴BCF ACB =∠∠.∵点D 在以AB 为直径的圆上,∴90ADB ∠=︒,∴=90BDC ∠︒.又∵BF 为O 的切线,∴90ABF ∠=︒.∵CE AB ∥,∴180BFC ABF ∠+∠=︒,∠∵=BE BE,∴EOB ∵2CAB EAB∠=∠,∴CAB EOB∠=∠,的直径,CD AB,AB为O⊥∴=,BC BDCOB BOD∴∠=∠,∠=∠,BOD DAF2⊥,由(1)得,OC CF,⊥CE AB∴∠=∠=︒,90OCF CEF∵C 为 BD的中点,∴CD BC = ,∴12∠=∠,又∵OA OC =,∴23∠∠=,∵AB 为O 的直径,∴90ADB ∠=︒,∴90∠+∠=︒A ABD ,∵OB OD =,∴ABD ODB ∠=∠,∵AC 是O 的切线,∴OA AC ⊥,∵3OA =,4AC =,∴225OC OA AC =+=,①连接PO,分别以点,P O为圆心,点A,②以点A为圆心,OA为半径画圆,与PE PF即为所求;则直线,上(点(2)如图所示,点D在OPE PF,的半径,∵OA,OD是O=,∴OA OD∠=∠,∴OAD ODA∠,∵AD平分BAC【点拨】本题考查角平分线的定义、平行线的判定与性质、切线的判定、直角三角形的性质、圆周角定理、等边三角形的判定与性质、垂直平分线的判定与性质及扇形的面积公式,熟练掌握相关知识是解题的关键.30.【答案】(1)见解析(2)见解析。

最新成都中考数学专题:A卷20题圆、B卷核心题

最新成都中考数学专题:A卷20题圆、B卷核心题

A20圆 +B 卷综合专练一20.(2021·成都金牛·九年级期末)已知:如图1,AB 是⊙O 的直径,DB 是⊙O 的切线,C 是⊙O 上的点,连接OD ,AC ∥OD . (1)求证:DC 是⊙O 的切线; (2)求证:AB 2=2AC •OD ;(3)如图2,ABtan ∠ABC =13,连接AD 交⊙O 于点E ,连接BC 交OD 于点F ,求EF 的长.B 卷(50分)一、填空题(每小题4分,共20分)21.(2021·成都武侯·中考二模)若实数a ,b 满足1a b -=,则代数式2225a b b --+的值为_______________.22.(2021·成都市七中育才九年级月考)若关于x 的一元一次不等式组()213212x x x a ⎧-≤-⎪⎨-≥⎪⎩的解集为x ≥5,且关于y 的分式方程122+=---y a y y 有非负整数解,则符合条件的所有整数a 的和为 ___. 23.(2021·山东龙口·九年级期中)如图,在直角坐标系中,正方形OABC 的顶点A ,B 在第一象限内的反比例函数y =kx(k ≠0)的图象上,点C 在第四象限内.若点A 的纵坐标为2,则k 的值为_________.24.(2021·辽宁锦州·中考真题)如图,∠MON =30°,点A 1在射线OM 上,过点A 1作A 1B 1⊥OM 交射线ON 于点B 1,将△A 1OB 1沿A 1B 1折叠得到△A 1A 2B 1,点A 2落在射线OM 上;过点A 2作A 2B 2⊥OM 交射线ON 于点B 2,将△A 2OB 2沿A 2B 2折叠得到△A 2A 3B 2,点A 2落在射线OM 上;…按此作法进行下去,在∠MON 内部作射线OH ,分别与A 1B 1,A 2B 2,A 3B 3,…,A n B n 交于点P 1,P 2,P 3,…P n ,又分别与A 2B 1,A 3B 2,A 4B 3,…,A n +1B n ,交于点Q 1,Q 2,Q 3,…,Q n .若点P 1为线段A 1B 1的中点,OA 1边形A n P n Q n A n +1的面积为___________________(用含有n 的式子表示).第23题图第24题图25.(2021—2022辽宁沈阳市九年级期中)如图,在菱形ABCD中,∠DAB=60°,对角线交于O,AP=2,BP=1,则随着菱形边长的变化,OP最小值是___,当OP取最小值时,AB的值为___.三、解答题(共30分)26.(2021·湖北蔡甸·中考二模)空气净化器越来越被人们认可,某商场购进A、B两种型号的空气净化器,如果销售5台A型和10台B型空气净化器的销售总价为20000元,销售10台A型和5台B型空气净化器的销售总价为17500元.(1)求每台A型空气净化器和B型空气净化器的销售单价;(2)该商场计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不超过A型空气净化器的2倍,设购进A型空气净化器m台,这100台空气净化器的销售总价最大时,该公司购进A 型、B型空气净化器各多少台?(3)在(2)的条件下,若A型空气净化器每台的进价为800元,B型空气净化器每台的进价z(元)满足=-+的关系式,则销售完这批空气净化器能获取的最大利润是多少元?10700z m27.(2021—2022成都嘉祥九年级期中)正方形ABCD中,点E、F在BC、CD上,且BE=CF,AE与BF 交于点G.(1)如图1,求证AE⊥BF;(2)如图2,在GF上截取GM=GB,∠MAD的平分线交CD于点H,交BF于点N,连接CN,求证:AN+CNBN;(3)在(2)的条件下,若tan∠AEB=3,S△CHN=95,求AB的长28.(2021·重庆南开中学九年级期中)如图,在平面直角坐标系中,抛物线y=﹣14x2+bx+c与x轴交于A(﹣2,0),B(6,0)两点,与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求抛物线的解析式;(2)过点A作AD∥BC交抛物线于D,点E为直线AD上一动点,连接CP,CE,BP,BE,求四边形BPCE 面积的最大值及此时点P的坐标;(3)将抛物线沿射线CB个单位,M为平移后的抛物线的对称轴上一动点,在平面直角坐标系中是否存在点N,使以点B,C,M,N为顶点的四边形为菱形?若存在,请直接写出所有符合条件的点N的坐标,若不存在,请说明理由.A20圆+B 卷综合专练二20.(2021·四川成都·中考真题)如图,AB 为O 的直径,C 为O 上一点,连接,AC BC ,D 为AB 延长线上一点,连接CD ,且BCD A ∠=∠. (1)求证:CD 是O 的切线;(2)若O 的半径为5,ABC 的面积为25,求CD 的长; (3)在(2)的条件下,E 为O 上一点,连接CE 交线段OA 于点F ,若12EF CF =,求BF 的长.B 卷(50分)一、填空题(每小题4分,共20分)21.(2021—2022四川省隆昌市九年级月考)已知a 是方程2202110x x -+=的根,则222021240411a a a -+=+ ___ 22.(2021—2022成都嘉祥九年级月考)关于x 的一元二次方程x 2﹣(2k +1)x +k 2+2k =0,有两个实数根为x 1,x 2,使得x 1x 2–x 12﹣x 22=﹣16成立,则k 的值___.23.(2021·四川成都·中考二模)有一边是另一边的3倍的三角形叫做幸运三角形,这两边中较长边称为幸运边,这两边的夹角叫做幸运角.如图,ABC 是幸运三角形,BC 为幸运边,B 为幸运角,()3,0A ,点B ,C 在反比例函数(0)ky x x=>的图象上,点C 在点B 的上方,且点B 的纵坐标为3.当ABC 是直角三角形且90B ∠=︒时,则k 的值为_______.24.(2021·四川省成都市七中育才中考一模)在正方形ABCD 的边长为4,F 是AD 上的动点,将FCD 沿着CF 折叠得到△FCE ,连接AE 、ED ,当AEF 是等腰三角形,DF =________________.第24题图第25题图25.(2021·四川成都·中考真题)如图,在矩形ABCD 中,4,8AB AD ==,点E ,F 分别在边,AD BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点'A 恰好落在对角线AC 上,点B 的对应点为'B ,则线段BF 的长为_______;第二步,分别在,'EF A B 上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为_______.三、解答题(共30分)26.(2021·成都实外九年级开学考试)春节前夕,某花店采购了一批鲜花礼盒,成本价为30元/件,物价局要求,销售该鲜花礼盒获得的利润率不得高于120%.分析往年同期的鲜花礼盒销售情况,发现每天的销售量y (件)与销售单价x (元/件)近似的满足一次函数关系,数据如下表: 销售单价x (元/件) ⋅⋅⋅ 4050 60⋅⋅⋅ 每天销售量y (件)⋅⋅⋅300250200⋅⋅⋅(1)直接写出y 与x 的函数关系式:________________;(2)试确定销售单价取何值时,花店销售该鲜花礼盒每天获得的利润最大?并求出最大利润;(3)为了确保今年每天销售此鲜花礼盒获得的利润不低于5000元,请预测今年销售单价的范围是多少? (4)花店承诺:今年每销售一件鲜花礼盒就捐赠n 元(5n <)给“爱心基金”.若扣除捐赠后的日利润随着日销量的减小而增大,则n 的取值范围是多少?27.(2021·四川·达州中学九年级期中)某数学兴趣小组在数学课外活动,对多边形内两条互相垂直的线段做了如下探究: (观察与猜想)(1)如图1,在正方形ABCD 中,点E ,F 分别是AB ,AD 上的两点,连接DE ,CF ,DE CF ⊥,则DECF的值为______;(2)如图2,在矩形ABCD 中,7AD =,4CD =,点E 是AD 上的一点,连接CE ,BD ,且CE BD ⊥,则CEBD的值为______;(类比探究)(3)如图3,在四边形ABCD 中,90A B ∠=∠=︒,点E 为AB 上一点,连接DE ,过点C 作DE 的垂线交ED 的延长线于点G ,交AD 的延长线于点F ,求证:DE AB CF AD ⋅=⋅; (拓展延伸)(4)如图4,在Rt ABD △中,90BAD ∠=︒,3AB =,9AD =,将ABD △沿BD 翻折,点A 落在点C 处得CBD ,点E ,F 分别在边AB ,AD 上,连接DE ,CF ,DE CF ⊥.①求DECF的值; ②连接BF ,若1AE =,直接写出BF 的长度.28.(2021·四川锦江·九年级期末)抛物线y =ax 2+bx ﹣3(a ≠0)的图象与x 轴交于点B (﹣3,0),C (1,0),与y 轴交于点A .(1)求抛物线的表达式和顶点坐标;(2)抛物线上是否存在一点D (不与点A ,B ,C 重合),使得直线DA 将四边形DBAC 的面积分为3:5两部分,若存在,求出点D 的坐标;若不存在,请说明理由;(3)点P 是抛物线对称轴上一点,在抛物线上是否存在一点Q ,使以点P ,Q ,A ,B 为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.A20圆 +B 卷综合专练三20.(2021·四川成都·中考二模)如图,在Rt ABC 中,90C ∠=︒,ABC ∠的角平分线交AC 于点D ,点E 是AB 上一点,以BE 为直径的O 分别交AC 、BC 于点D 、F . (1)求证:CD 是O 的切线; (2)13CF BF =,求cos CDB ∠; (3)在(2)问的条件下,点G 为OE 上一点,过点G 作AB 的垂线,交BD 延长线于点M ,交AC 于点N ,25EG AE =.若O 的半径为5,求MN 的长.B 卷(50分)一、填空题(每小题4分,共20分)21.(2021—2022成都市盐道街中学九年级月考)已知(x 2+y 2)(x 2+y 2﹣1)﹣12=0,则x 2+y 2的值是 ___. 22.(2021—2022成都嘉祥九年级期中)已知x 2﹣(m +3)x +m 2+1=0的实数根为α、β,且α+β=α•β,则m 的值为___.23.(2021—2022成都实外九年级月考)关于x 的不等式组3132x x x a -⎧≤+⎪⎨⎪≤⎩的解集为x ≤a ,且关于y 的分式方程34122y a y y y --+=--有正整数解,则满足条件的所有整数a 之和是__. 24.(2021·四川省内江市中考三模)如图,点A 是函数1y x=的图象上的点,点B 、C 的坐标分别为B ()、C.试利用性质:点“函数1y x=的图象上任意一点A都满足||AB AC -=求解下面问题:作∠BAC 的内角平分线AE ,过B 作AE 的垂线交AE 于F .已知当A 在函数1y x=的图象上运动时,OF 的长度总等于________.第24题图第25题图25.(2021—2022成都师大一中九年级月考)如图,矩形ABCD中,AB=2,BC=3,点E,F分别在边AB,边BC上运动,点G在矩形内,且DG⊥CG,EF⊥FG,FG:EF=1:2,则线段GF的最小值为_______.二、解答题(共30分)26.(2021·浙江·九年级期末)某公司为了宣传一种新产品,在某地先后举行40场产品促销会,已知该产品每台成本为10万元,设第x场产品的销售量为y(台),第一场销售产品49台,然后每增加一场,产品就少卖出1台.(1)第5场销售多少台产品?并求出y与x之间的函数关系式.(2)产品的每场销售单价P(万元)由基本价和浮动价两部分组成,其中基本价为10万元,第1场~第20场浮动价与销售场次x成正比,第21场~第40场浮动价与销售场次x成反比,经过统计,得到如表数据:①求P与x之间满足的函数关系式.②当产品销售单价为13.6万元时,求销售场次是第几场?③在这40场产品促销会中,哪一场获得的利润最大,最大利润是多少?27.(2021—2022成都嘉祥九年级期中)如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,点P为边AD上一动点.(1)如图1,当PC⊥BD时,求tan∠POD;(2)如图2,连接CP交对角线BD于点E,作线段CP的中垂线MN分别交线段DC,DB,CP,AB于点N,G,F,M,当DP=DE时,求EFPE;(3)如图2,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F,若△PDF为直角三角形,求DP的长.28.(2021·四川金牛·九年级期末)已知:如图1,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点D(0,﹣6),直线y=﹣13x+2交x轴于点B,与y轴交于点C.(1)求抛物线的函数解析式;(2)抛物线上点E位于第四象限,且在抛物线的对称轴的右侧,当△BCE的面积为32时,过点E作平行于y轴的直线交x轴于Q,交BC于点F,在y轴上是否存在点K,使得以K、E、F三点为顶点的三角形是直角三角形,若存在,求出点K的坐标,若不存在,请说明理由;(3)如图2,在线段OB上有一动点P DP+BP的最小值和此时点P的坐标.。

四川省成都市九年级数学2020年中考复习-20题-圆综合

四川省成都市九年级数学2020年中考复习-20题-圆综合

(2019 成都新都区·20 题·10 分)【求比值】
如图,已知 A0 为 Rt△ABC 的角平分线,∠ACB=90°,以 O 为圆心,OC 为半径的圆分别交 A0,BC 于点 D,E,连接 ED 并延长交 AC 于点 F
(1)求证:AB 是⊙O 的切线;
AC 4
BE
(2)当
时,求 的值;
BC 3
(2019 陕西中考·23 题·8 分) 如图,AC 是⊙O 的直径,AB 是⊙O 的一条弦,AP 是⊙O 的切线,作 BM=AB,并与 AP 交于点 M,延长 MB 交 AC 于点 E,交⊙O 于点 D,连接 AD. (1)求证:AB=BE; (2)若⊙O 的半径 R=5,AB=6,求 AD 的长。
CE
CF
(3)在(2)的条件下,若⊙O 的半径为 4,求 的值。
AD
题型六、相似、勾股求线段长
(2019 绵阳中考·22 题·11 分) 如图,AB 是⊙O 的直径,点 C 为 BD 的中点,CF 为⊙O 的弦,且 CF⊥AB,垂足为 E,连接 BD 交 CF 于点 G,连接 CD,AD,BF。 (1)求证:△BFG≌△CDG; (2)若 AD=BE=2,求 BF 的长.
4
2 )若 tan∠ADB= ,DE=6,求 BF 的长.
3
(2019·成都温江区二诊·20 题·10 分) 如图,AB 是⊙O 的直径,弦 CD⊥AB,垂足为 H,连接 AC,过弧 BD 上一点 E 作 EG∥AC 交 CD 的延长线于点 G,连接 AE 交 CD 于点 F,且 EG=FG,连接 CE. (1)求证:△ECF~△GCE; (2)求证:EG 是⊙O 的切线;
E,交⊙O 于点 F,角 A=60°,AE、BD 的长是 x2 kx 2 3 0 的两根。 ① 求证:PA·BD=PB·AE; ② 求证:⊙O 直径 AB=k; ③ 求 tan FPA。

中考数学圆综合题专题训练

中考数学圆综合题专题训练

中考数学圆综合题专题训练(第11天)1.如图,以△ABC 的BC 边为直径作⊙O ,分别交AC 、AB 于E 、F 两点,过A 作⊙O 的切线,切点为D ,且点E 、F 为劣弧CD ︵的三等分点.(1)求证:AD ∥BC ;(2)求∠DAC 的大小.2.(成都某校自主招生)如图,在直角坐标系中,点B (-1-3,0),C (1+3,0),△ABC 的内切圆的圆心是I (-1,1),求△ABC 的面积.3.(四川德阳)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O 的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB 的延长线于G.(1)求证:FC=FB;(2)求证:CG是⊙O的切线;(3)若FB=FE=2,求⊙O的半径.4.(四川广安)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=25,sin∠BCP=55,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.CP5.(四川泸州)如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,C 是AD ︵的中点,弦CE ⊥AB 于点H ,连接AD ,分别交CE 、BC 于点P 、Q ,连接BD . (1)求证:P 是线段AQ 的中点;(2)若⊙O 的半径为5,AQ =152,求弦CE 的长.B中考数学圆综合题专题训练(第12天)6.(四川宜宾)如图,⊙O1、⊙O2相交于P、Q两点,其中⊙O1的半径r1=2,⊙O2的半径r2=2.过点Q作CD⊥PQ,分别交⊙O1和⊙O2于点C、D,连接CP、DP,过点Q任作一直线AB交⊙O1和⊙O2于点A、B,连接AP、BP、AC、DB,且AC与DB的延长线交于点E.(1)求证:P APB=2;(2)若PQ=2,试求∠E度数.7.(四川资阳)如图,在△ABC 中,AB =AC ,∠A =30°,以AB 为直径的⊙O 交BC 于点D ,交AC 于点E ,连接DE ,过点B 作BP ∥DE ,交⊙O 于点P ,连接EP 、CP 、OP .(1)求证:BD =DC ; (2)求∠BOP 的度数;(3)求证:CP 是⊙O 的切线.AC BD OE P8.(四川某校自主招生)如图,等腰Rt△ABC的直角边AB、AC分别与⊙O相切于点E、D,AD=3,DC=5,直线FG与AC、BC分别交于点F、G,且∠CFG=60°.(1)求阴影部分的面积;FG与⊙O的位置关系,并说明理由.9.如图,在平面直角坐标系中,半径分别为m、n(0<m<n)的两圆⊙O1和⊙O2相交于P,Q两点,且点P(4,1),两圆同时与两坐标轴相切,⊙O1与x轴、y轴分别切于点M、N,⊙O2与x轴、y轴分别切于点R、H.(1)求两圆的圆心O1、O2所在直线的解析式;(2)求两圆的圆心O1、O2之间的距离d;(3)令四边形PO1QO2的面积为S1,四边形RMO1O2的面积为S2.试探究:是否存在一条经过P、Q两点、开口向下,且在x轴上截得的线段长为|S1-S2|2d的抛物线?若存在,请求出此抛物线的解析式;若不存在,请说明理由.中考数学圆综合题专题训练(第13天)10.(湖南怀化)如图,已知AB 是⊙O 的弦,OB =4,∠OBC =30°,点C 是弦AB 上任意一点(不与点A 、B 重合),连接CO 并延长CO 交⊙O 于点D ,连接AD 、DB .(1)当∠ADC =18°时,求∠DOB 的度数;(2)若AC =23,求证△ACD ∽△OCB .ACBDO11.(湖南湘潭)如图,在⊙O 上位于直径AB 的异侧有定点C 和动点P ,AC =12AB ,点P在半圆弧AB 上运动(不与A 、B 两点重合),过点C 作直线PB 的垂线CD 交PB 于D 点. (1)如图1,求证:△PCD ∽△ABC ;(2)当点P 运动到什么位置时,△PCD ≌△ABC ?请在图2中画出△PCD 并说明理由; (3)如图3,当点P 运动到CP ⊥AB 时,求∠BCD 的度数.B 图2D图1B图312.(湖南张家界)如图,⊙O 的直径AB =4,C 为圆周上一点,AC =2,过点C 作⊙O 的切线DC ,点P 为优弧CBA ︵上一动点(不与A 、C 重合).(1)求∠APC 与∠ACD 的度数;(2)当点P 移动到CB ︵的中点时,证明:四边形ACPO 是菱形; (3)P 点移动到什么位置时,由点A 、P 、C 三点构成的三角形与△ABC 全等,请说明理由.B13.(湖北鄂州)如图,梯形ABCD是等腰梯形,且AD∥BC,O是腰CD的中点,以CD长为直径作圆,交BC于E,过E作EH⊥AB于H.(1)求证:OE∥AB;(2)若EH=12CD,求证:AB是⊙O的切线;(3)若BE=4BH,求BHCE的值.中考数学圆综合题专题训练(第14天)14.(湖北恩施)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果CD=15,BE=10,sin A=513,求⊙O的半径.C15.(湖北十堰)如图1,⊙O 是△ABC 的外接圆,AB 是直径,OD ∥AC ,且∠CBD =∠BAC ,OD 交⊙O 于点E .(1)求证:BD 是⊙O 的切线.(2)若点E 为线段OD 的中点,证明:以O 、A 、C 、E 为顶点的四边形是菱形; (3)作CF ⊥AB 于点F ,连接AD 交CF 于点G (如图2).求FGFC的值.ACB ODE图1A CB ODE图2F G16.(湖北襄阳)如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E,F,过点B作PO 的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF,OD,OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=12,求cos∠ACB的值和线段PE的长.AC BO D EPF17.(湖北某校自主招生)已知扇形AOB 的半径为6,圆心角为90°,E 是半径OA 上一点,F 是AB ︵上一点.将扇形AOB 沿EF 对折,使得折叠后的图形恰好与半径OB 相切于点G .(1)若OE =4,求折痕EF 的长;(2)若G 是OB 中点,求OE 和折痕EF 的长; (3)点E 可移动的最大距离是多少?B中考数学圆综合题专题训练(第15天)18.(湖北某校自主招生)如图,在平面直角坐标系中,点A的坐标为(2,0),以点A为圆心,2为半径的⊙A与x轴交于O、B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,直线CP交⊙A于点Q,连接OQ、AQ.Array(1)当△OCQ是等腰三角形时,求点P的坐标;(2)当△APQ是等腰三角形时,求∠OCQ的度数.19.(湖北模拟)如图,在△ABC中,AB=AC,且⊙O内切于△ABC,D、E、F是切点,CF 交⊙O于G,EG延长线交BC于M,AG交⊙O于K.(1)求证:△MCG∽△MEC;(2)若EM⊥BC,求cos∠FAK的值.20.(湖北模拟)已知矩形ABCD中,半径为r的两个等圆⊙O1、⊙O2外切,且⊙O1与边AB、BC相切,⊙O2与边BC相切.点E是边CD上一点,将△ADE沿AE翻折得△AD′E,AD′恰好与⊙O2相切于点D′.若AD=3,折痕AE的长为10.(1)求r的值;(2)求证:矩形ABCD为正方形.D E。

2024成都中考数学第一轮专题复习 圆的有关概念及性质 知识精练(含答案)

2024成都中考数学第一轮专题复习 圆的有关概念及性质 知识精练(含答案)

2024成都中考数学第一轮专题复习圆的有关概念及性质知识精练基础题1. (2023江西)如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为()A. 3B. 4C. 5D. 6第1题图2. (2023广东省卷)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()第2题图A. 20°B. 40°C. 50°D. 80°3. (2023广元)如图,AB是⊙O的直径,点C,D在⊙O上,连接CD,OD,A C.若∠BOD=124°,则∠ACD的度数是()A. 56°B. 33°C. 28°D. 23°第3题图4. (2023山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC =40°,则∠DBC的度数为()第4题图A. 40°B. 50°C. 60°D. 70°5. (2023安徽)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A. 60°B. 54°C. 48°D. 36°第5题图6. (2023赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC =2∠COD,则∠CBD的度数是()第6题图A. 25°B. 30°C. 35°D. 40°7. [新考法—数学文化](2023岳阳)我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合下图,其大意是:今有圆形材质,直径BD为25寸,要做成方形板材,使其厚度CD达到7寸,则BC的长是() A. 674寸 B. 25寸C. 24寸D. 7寸第7题图8. (2023杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC=()第8题图A. 23°B. 24°C. 25°D. 26°9. (2023广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37 m,拱高约为7 m,则赵州桥主桥拱半径R约为()第9题图A. 20 mB. 28 mC. 35 mD. 40 m10. (2023凉山州)如图,在⊙O中,OA⊥BC,∠ADB=30°,BC=23,则OC=()A. 1B. 2C. 2 3D. 4第10题图11. 如图,点A,B,D在⊙O上,CD垂直平分AB于点C.现测得AB=CD=16,则圆形宣传图标的半径为()第11题图A. 12B. 10C. 8D. 612. 如图,在平面直角坐标系中,⊙O的半径为4,弦AB的长为3,过O作OC⊥AB于点C,则OC的长度是________;⊙O内一点D的坐标为(-2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是________.第12题图13. (2023武汉)如图,OA,OB,OC都是⊙O的半径,∠ACB=2∠BA C.(1)求证:∠AOB=2∠BOC;(2)若AB=4,BC=5,求⊙O的半径.第13题图拔高题14. (2023吉林省卷)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A. 70°B. 105°C. 125°D. 155°第14题图15. 如图,正方形ABCD 内接于⊙O ,点E 为弧AB 的中点,连接DE 与AB 交于点F .若AB=1,记△ADF 的面积为S 1,△AEF 的面积为S 2,则S 1S 2的值为________.第15题图16. 如图,以原点O 为圆心的圆交x 轴于A ,B 两点,交y 轴的正半轴于点C ,且点A 的坐标为(-2,0),D 为第一象限内⊙O 上的一点,若∠OCD =75°,则AD 的长为________.第16题图参考答案与解析1. D 【解析】本题考查了确定圆的条件及圆的有关定义及性质.∵过不在同一直线上的三个点一定能作一个圆,∴要经过题中所给的3个点画圆,除选定直线l 外的点P 外,再在直线l 上的A ,B ,C ,D 四个点中任选其中2个即可画圆.∵从A ,B ,C ,D 四个点中任选其中2个点的方法可以是AB ,AC ,AD ,BC ,BD ,CD ,共6种,∴最多可以画出圆的个数为6.2. B 【解析】∵AB 是⊙O 的直径,∠BAC =50°,∴∠ACB =90°,∠B =180°-50°-90°=40°.∵AC =AC ,∴∠D =∠B =40°.3. C 【解析】∵∠BOD =124°,∴∠AOD =180°-124°=56°,∴∠ACD =12∠AOD =28°. 4. B 【解析】∵BD 经过圆心O ,∴∠BCD =90°.∵∠BDC =∠BAC =40°,∴∠DBC =90°-∠BDC =50°.5. D 【解析】∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°5=108°,∠COD =360°5=72°,∴∠BAE -∠COD =108°-72°=36°. 6. A 【解析】∵∠BCD =105°,∴∠BAD =180°-105°=75°,∴∠BOD =150°.∵∠BOC=2∠COD ,∴∠COD =13 ∠BOD =50°,∴∠CBD =12∠COD =25°. 7. C 【解析】∵BD 是圆的直径,∴∠BCD =90°.∵BD =25,CD =7,∴在Rt △BCD 中,由勾股定理得,BC =252-72 =24(寸).8. D 【解析】如解图,连接OC ,∵∠ABC =19°,∴∠AOC =2∠ABC =38°.∵半径OA ,OB 互相垂直,∴∠AOB =90°,∴∠BOC =90°-38°=52°,∴∠BAC =12∠BOC =26°.第8题解图9. B 【解析】如解图,在Rt △OAB 中,由勾股定理,得AO 2+AB 2=OB 2,即(R -7)2+(372)2=R 2,解得R ≈28(m).第9题解图10. B 【解析】如解图,连接OB ,设OA 交BC 于点E ,∵∠ADB =30°,∴∠AOB =60°.∵OA ⊥BC ,BC =23 ,∴BE =12 BC =3 .在Rt △BOE 中,sin ∠AOB =BE OB,∴sin 60°=3OB =32,∴OB =2,∴OC =2.第10题解图11. B 【解析】如解图,连接OA ,设圆形宣传图标的半径为R ,∵CD 垂直平分AB ,AB=CD =16,∴CD 过点O ,AC =BC =12 AB =12×16=8,∠DCA =90°.∵AO =OD =R ,∴在Rt △AOC 中,由勾股定理,得OC 2+AC 2=OA 2,即(16-R )2+82=R 2,解得R =10,即圆形宣传图标的半径为10.第11题解图 12. 552 ;552 -5 【解析】如解图,连接OB ,∵OC ⊥AB ,∴BC =12 AB =32.由勾股定理,得OC =OB 2-BC 2 =552.当OD ⊥AB 时,点D 到AB 的距离最小,由勾股定理,得OD =22+12 =5 ,∴点D 到AB 的距离的最小值为552 -5 .第12题解图13. (1)证明:由圆周角定理,得∠ACB =12 ∠AOB ,∠BAC =12∠BOC . ∵∠ACB =2∠BAC ,∴∠AOB =2∠BOC ;(2)解:如解图,过点O 作半径OD ⊥AB 于点E ,连接BD .则∠DOB =12∠AOB ,AE =BE . ∵∠AOB =2∠BOC ,∴∠DOB =∠BOC .∴BD =BC .∵AB =4,BC =5 ,∴BE =2,DB =5 .在Rt △BDE 中,∵∠DEB =90°,∴DE =BD 2-BE 2 =1.在Rt △BOE 中,∵∠OEB =90°,∴OB 2=(OB -1)2+22,∴OB =52, 即⊙O 的半径是 52.第13题解图14. D 【解析】如解图,连接BC ,∵∠BAC =70°,∴∠BOC =2∠BAC =140°.∵OB =OC ,∴∠OBC =∠OCB =180°-140°2=20°.∵点P 为OB 上任意一点(点P 不与点B 重合),∴0°<∠OCP <20°.∵∠BPC =∠BOC +∠OCP =140°+∠OCP ,∴140°<∠BPC <160°,故选D.第14题解图15. 2(2 +1) 【解析】如解图,连接OE 交AB 于点G ,连接AC .根据垂径定理的推论,得OE ⊥AB ,AG =BG .由题意可得,AC 为⊙O 的直径,AC =2 ,则圆的半径是22.根据正方形的性质,得∠OAF =45°,∴OG =12 ,EG =2-12.∵OE ∥AD ,∴△ADF ∽△GEF ,∴FE FD =EG DA =2-12 .∵△ADF 与△AEF 等高,∴S 1S 2 =S △ADF S △AEF=DF EF =2(2 +1).第15题解图16. 23 【解析】如解图,连接OD ,BD .∵A (-2,0),∴OA =OB =2,∴AB =4.∵OC =OD ,∴∠OCD =∠ODC =75°,∴∠DOC =180°-2×75°=30°,∴∠DOB =90°-30°=60°,∴∠DAB =12∠DOB =30°.∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD =AB ·cos 30°=23 .第16题解图。

中考数学《圆的综合》专题训练(含有答案)

中考数学《圆的综合》专题训练(含有答案)

中考数学《圆的综合》专题训练(含有答案)1.如图,:AB 是O 的直径:BC 是O 弦,OD CB ⊥于点E ,交BC 于点D .(1)请写出三个不同类型的正确结论(2)连结CD ,设BCD α∠= ABC β∠= 试找出α与β之间的一种关系式并给予证明.2.如图,,在ABC 中 AB AC = 以AB 为直径的O 交BC 于点D 交CA 的延长线于点E .(1)求证点D 为线段BC 的中点.(2)若63BC = 3AE = 求O 的半径及阴影部分的面积.3.如图,AB 为O 的直径 点C 在O 上 延长BC 至点D 使DC CB =.延长DA 与O 的另一个交点为E 连结AC CE ,.(1)求证D E ∠=∠(2)若42AB BC AC =-=, 求CE 的长.4.请仅用无刻度的直尺完成下列作图 不写作法 保留作图痕迹(1)如图1, ABC 与ADE 是圆内接三角形 AB AD = AE AC = 画出圆的一条直径.(2)如图2 , AB CD 是圆的两条弦 AB CD =且不相互平行 画出圆的一条直径. 5.如图,AB 是O 的直径 点D 在AB 的延长线上 点C 在O 上 ,30CA CD CDA =∠=︒.(1)求证CD 是O 的切线(2)若O 的半径为6 求点A 到CD 所在直线的距离.6.如图, 点C 在以AB 为直径的O 上 过C 作O 的切线交AB 的延长线于E AD CE ⊥于D 连接AC .(1)求证ACD ABC ∠=∠(2)若3tan 4CAD ∠= 8AD = 求O 直径AB 的长.7.如图, 已知以Rt ABC 的直角边AC 为直径作O 交斜边AB 于点E 连接EO 并延长交BC 的延长线于点D 连接AD 点F 为BC 的中点 连接EF .(1)求证EF 是O 的切线(2)若O 的半径为6 8CD = 求AB 的长.8.如图, AB 是半圆O 的直径 D 为半圆O 上的点(不与A B 重合) 连接AD 点C 为BD 的中点 过点C 作CF AD ⊥ 交AD 的延长线于点F 连接BF AC 交于点E .(1)求证FC 是半圆O 的切线(2)若3AF = 23AC = 求半圆O 的半径及AE 的长.9.如图, AB 为O 的直径 C 为BA 延长线上一点 CD 是O 的切线 D 为切点 OF AD ⊥于点E 交CD 于点F .(1)求证ADC AOF ∠=∠ (2)若53OC OB = 24BD = 求EF 的长. 10.如图,所示 AB 是O 的直径 点D 在AB 上 点C 在O 上 AD AC =CD 的延长线交O 于点E .(1)在CD 的延长线上取一点F 使BF BC = 求证BF 是O 的切线 (2)若2AB = 2CE 求图中阴影部分的面积.11.如图, ABC 内接于O AB 为O 的直径 D 为BA 延长线上一点 连接CD 过O 作OF BC ∥交AC 于点E 交CD 于点F ACD AOF ∠=∠.(1)求证CD 为圆O 的切线 (2)若1sin 4D =10BC = 求EF 的长. 12.如图, 四边形ABCD 是O 的内接四边形 AD CD = 70BAC ∠=︒ 50∠=°ACB .(1)求ABD ∠的度数 (2)求BAD ∠的度数.13.如图, 四边形ABCD 是O 的内接四边形 且对角线BD 为O 的直径 过点A 作AE CD ⊥ 与CD 的延长线交于点E 且DA 平分BDE ∠.(1)求证AE 是O 的切线(2)若O 的半径为5 6CD = 求DA 的长.14.如图, 在正方形ABCD 中有一点P 连接AP BP 旋转APB △到CEB 的位置.(1)若正方形的边长是8 4BP =.求阴影部分面积 (2)若4BP = 7AP = 135APB ∠=︒ 求PC 的长.15.如图, AB 是O 的直径 OD 垂直于弦AC 于点E 且交O 于点D F 是BA 延长线上一点 若CDB BFD ∠=∠.(1)求证 FD 是O 的一条切线(2)若15AB = 9BC = 求DF 的长. 16.如图,O 是ABC ∆的外接圆 AE 切O 于点A AE 与直径BD 的延长线相交于点E .(1)如图,① 若70C ∠=︒ 求E ∠的大小 (2)如图,① 若AE AB = 求E ∠的大小.17.已知 如图, 直线MN 交O 于A B 两点 AC 是直径 AD 平分CAM ∠交O 于D 过D 作DE MN ⊥于E .(1)求证DE 是O 的切线(2)若8cm DE = 4cm AE = 求O 的半径.18.已知四边形ABCD 内接于O C 是DBA 的中点 FC AC ⊥于C 与O 及AD 的延长线分别交于点,E F 且DE BC =.(1)求证~CBA FDC(2)如果9,4AC AB == 求tan ACB ∠的值.参考答案与解析1.(1)见解析(2)关系式为2=90αβ+︒ 证明见解析【分析】(1)AB 是O 的直径 BC 是弦 OD BC ⊥于E 本题满足垂径定理. (2)连接,CD DB 根据四边形ACDB 为圆内接四边形 可以得到290αβ+=︒. 【解析】(1)解不同类型的正确结论有 ①BE CE = ①BD CD = ①90BED ∠=︒ ①BOD A ∠=∠ ①AC OD ∥ ①AC BC ⊥ ①222OE BE OB += ①ABC S BC OE =⋅△ ①BOD 是等腰三角形 ①BOE BAC △∽△等等. (2)如图, 连接,CD DBα与β之间的关系式为290αβ+=︒证明AB 为圆O 的直径90A ABC ∴∠+∠=︒①又四边形ACDB 为圆内接四边形180A CDB ∠∠∴+=︒①∴①-①得90CDB ABC ∠∠-=︒①18021802CDB BCD α∠=︒-∠=︒- 即180290αβ︒--=︒ ①2=90αβ+︒.【点评】本题考查了圆的一些基本性质 且有一定的开放性 垂径定理 圆内接四边形的性质掌握圆的相关知识. 2.(1)见解析 (2)半径为3 39π324S =阴【分析】(1)连结AD 可得90ADB ∠=︒ 已知AB AC = 根据等腰三角形三线合一的性质即可得证点D 为线段BC 的中点(2)根据已知条件可证ABC DEC ∽△△ 得到ED ECAB BC= 22BD AB EC =⋅ 且EDC △是等腰三角形 进而得到ED DC BD == 设AB x = 则(()22333x x =+ 解方程即可求得O 的半径连接OE 可证AOE △是等边三角形 再根据AOEAOE S S S =-阴扇形即可求出阴影部分的面积【解析】(1)连结AD①AB 为O 的直径 ①90ADB ∠=︒ ①AB AC = ①BD CD =即点D 为线段BC 的中点. (2)①B E ∠=∠ C C ∠=∠ ①ABC DEC ∽△△ ①ED ECAB BC= ①AB AC = ①B C ∠=∠ ①C E ∠=∠ ①ED DC BD == ①22BD AB EC =⋅ 设AB x = 则 (()22333x x =+解得19x =-(舍去) 26x = ①O 的半径为3 连接OE ①60AOE =︒∠ ①AOE △是等边三角形 ①AE 33①AOEAOE S S S=-阴扇形260313333602π⨯⨯=-⨯ 39π324=【点评】本题主要考查等腰三角形的性质 相似三角形的判定和性质 不规则图形面积的计算 熟练掌握相关知识点是解题的关键. 3.(1)见解析 (2)CE 的长为17【分析】(1)由AB 为O 的直径得90ACB ∠=︒ 通过证明()ACD ACB ≌SAS 得到D B ∠=∠ 又由B E ∠=∠ 从而得到D E ∠=∠(2)设BC x = 则2AC x =- 在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+= 解一元二次方程得到BC 的长 由(1)知D E ∠=∠ 从而得到CD CE = 又由DC CB = 得到17CE CB ==【解析】(1)证明AB 为O 的直径90ACB ∴∠=︒180ACD ACB ∠+∠=︒90ACD ∴∠=︒在ACD 和ACB △中AC AC ACD ACB DC BC =⎧⎪∠=∠⎨⎪=⎩()ACD ACB ∴≌SASD B ∴∠=∠ BE ∠=∠D E ∴∠=∠(2)解设BC x =2BC AC -=∴2AC x =-在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+=解得117x = 217x = 17BC ∴=由(1)得D E ∠=∠ CD CE ∴= DC CB =17CE CB ∴==∴ CE 的长为17【点评】本题主要考查了圆周角定理 三角形全等的判定与性质 等腰三角形的性质 勾股定理解直角三角形 熟练掌握圆周角定理 三角形全等的判定与性质 等腰三角形的性质是解题的关键. 4.(1)见解析 (2)见解析【分析】(1)设BC DE 交于点G 连接AG 交圆于点F 即可作答(2)连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N 即可作答.【解析】(1)如图, 设BC DE 交于点G 连接AG 并延长 交圆于点F线段AF 即为所求证明如图, BC AE 交于点Q DE AC 交于点P 连接DB 交AF 于点H①AB AD = AE AC = ①C E ∠=∠ ADE ABC =∠∠ ①DAE BAC ∠=∠①DAE BAC ≌ ①BC DE = ①DAE BAC ∠=∠ ①BAE DAC ∠=∠①AB AD = ADE ABC =∠∠ ①DAP BAQ ≌ ①AQ AP = ①AE AC = ①QE PC =①QGE PGC ∠=∠ C E ∠=∠ ①QGE PGC ≌ ①QG PG =①AG AG = AQ AP = ①QAG PAG ≌ ①QAG PAG ∠=∠ ①BAE DAC ∠=∠ ①BAG DAG ∠=∠ ①AH AH = AB AD = ①BAH DAH ≌①BH DH = 90AHB AHD ∠=∠=° ①AF 垂直平分弦DB ①AF 是圆的直径(2)如图, 连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N线段MN 即为所求. 证明方法同(1).【点评】本题主要考查了垂径定理 圆周角定理以及全等三角形的判定与性质等知识 掌握圆周角定理以及垂径定理是解答本题的关键. 5.(1)见解析 (2)9【分析】(1)已知点C 在O 上 先连接OC 由已知CA CD = 30CDA ∠=︒ 得30CAO ∠=︒ 30ACO ∠=︒ 所以得到60COD ∠=︒ 根据三角形内角和定理得90DCO ∠=︒ 即能判断直线CD 与O 的位置关系.(2)要求点A 到CD 所在直线的距离 先作AE CD ⊥ 垂足为E 由30CDA ∠=︒ 得12AE AD = 在Rt OCD △中 半径6OD = 所以212OD OC == 18AD OA OD =+= 从而求出AE .【解析】(1)①ACD 是等腰三角形 30D ∠=︒①30CAD CDA ∠=∠=︒.连接OC①AO CO =①AOC 是等腰三角形①30CAO ACO ∠=∠=︒①60COD ∠=︒在COD △中 又①30CDO ∠=︒①90DCO ∠=︒①CD 是O 的切线 即直线CD 与O 相切.(2)过点A 作AE CD ⊥ 垂足为E .在Rt OCD △中 ①30CDO ∠=︒①212OD OC ==61218AD AO OD =+=+=在Rt ADE △中①30EDA ∠=︒①点A 到CD 边的距离为92AD AE ==. 【点评】此题考查的知识点是切线的判定与性质 解题的关键是运用直角三角形的性质及30°角所对直角边的性质.6.(1)见解析 (2)252AB =.【分析】(1)连接OC 由DE 为O 的切线 得到OC DE ⊥ 再由AD CE ⊥ 得到AD OC ∥ 得到OCA CAD ∠=∠ 根据OA OC = 利用等边对等角得到OCA CAB ∠=∠ 等量代换得到CAD CAB ∠=∠ 由AB 为O 的直径 可知90ACB ∠=︒ 最后根据等角的余角相等可得结论 (2)在Rt CAD △中 利用锐角三角函数定义求出CD 的长 根据勾股定理求出AD 的长 由(1)易证ADC ACB 得到AD AC AC AB= 即可求出AB 的长. 【解析】(1)解连接OC由题意可知DE 与O 的相切于COC DE ∴⊥AD CE ⊥AD OC ∴∥OCA CAD ∴∠=∠OA OC =OCA CAB ∴∠=∠CAD CAB ∴∠=∠ AB 为O 的直径90ACB ∴∠=︒90CAD ACD CAB ABC ∴∠+∠=∠+∠=︒ACD ABC ∴∠=∠(2)在Rt CAD △中3tan 4CDCAD AD ∠== 8AD =364CD AD ∴==22226810AC CD AD ∴+=+=由(1)可知CAD CAB ∠=∠90D ACB ∠=∠=︒ADC ACB ∴ADACAC AB ∴=81010AB∴= 252AB ∴=【点评】此题考查了切线的性质 以及解直角三角形 熟练掌握切线的判定与性质是解本题的关键. 7.(1)证明见解析 (2)125AB =【分析】(1)连接FO 可根据三角形中位线的性质可判断OF AB ∥ 然后根据直径所对的圆周角是直角 可得CE AE ⊥ 进而知OF CE ⊥ 然后根据垂径定理可得FEC FCE ∠=∠OEC OCE ∠=∠ 再通过Rt ABC 可知90OEC FEC ∠+∠=︒ 因此可证EF 为O 的切线(2)根据题意可先在Rt OCD △中求出OD 然后在Rt EFD 中求出FC 最终在Rt ABC 中求解AB 即可.【解析】(1)证连接FO 则由题意OF 为Rt ABC 的中位线①OF AB ∥①AC 是O 的直径①CE AE ⊥①OF AB ∥①OF CE ⊥①由垂径定理知 OF 所在直线垂直平分CE①FC FE = OE OC =①FEC FCE ∠=∠ OEC OCE ∠=∠①90ACB ∠=︒即90OCE FCE ∠+∠=︒①90OEC FEC ∠+∠=︒即90FEO ∠=︒①EF 是O 的切线(2)解①O 的半径为6 8CD = 90ACB ∠=︒①OCD 为直角三角形 6OC OE == 8CD = ①2210OD OC CD += 10616ED OD OE =+=+=由(1)知 EFD △为直角三角形 且FC FE =①设FC FE x == 则8FD FC CD x =+=+①由勾股定理 222EF ED FD +=即()222168x x +=+ 解得12x =即12FC FE ==①点F 为BC 的中点①224BC FC ==①212AC OC ==①在Rt ABC 中 22125AB BC AC +①125AB =【点评】本题考查切线的证明 圆的基本性质 以及勾股定理解三角形等 掌握切线的证明方法 熟练运用圆中的基本性质是解题关键.8.(1)见解析(2)半径为2 123AE =【分析】(1)根据点C 为弧BD 的中点 得出FAC CAB ∠∠= 然后得出FAC ACO ∠∠= 根据平行线的性质得出CF OC ⊥ 进而即可求解(2)连接BC 设OC 与BF 相交于点P 证明AFC ACB ∽ 得出4AB = 证明BOP BAF ∽得出1322OP AF == 进而证明ECP EAF ∽ 根据相似三角形的性质列出比例式 进而即可求解. 【解析】(1)证明连接OC 如图,点C 为弧BD 的中点∴CD CB =FAC CAB ∠∠∴=又OA OC =CAB ACO ∠∠∴=FAC ACO ∠∠∴=∴OC AF ∥又CF AD ⊥CF OC ∴⊥FC ∴是半圆O 的切线.(2)解连接BC 如图,AB 是半圆O 的直径90ACB ∠∴=︒90AFC ACB ∠∠∴==︒又FAC CAB ∠∠=AFC ACB ∴∽ ∴AFACAC AB = 23234AB ∴=∴半圆O 的半径为2.设OC 与BF 相交于点POC AF ∥BOP BAF ∴∽ ∴12OPOB AF AB == ∴1322OP AF == ∴12PC OC OP =-=OC AF ∥ECP EAF ∴∽ ∴EC PCAE AF = 即123AC AEAE -= 2316AE-=∴123AE = 【点评】本题考查了切线的性质与判定 相似三角形的性质与判定 掌握切线的判定以及相似三角形的性质与判定是解题的关键.9.(1)见解析(2)3【分析】(1)连接DO 根据CD 是O 的切线 OF AD ⊥ 证明ADC DOF ∠∠= 利用等腰三角形三线合一性质 证明ADC AOF ∠∠=.(2) 利用平行线分线段成比例定理 计算OE 证明CFO CDB △∽△ 计算OF两线段作差即可求解.【解析】(1)如图, 连接DO CD 是O 的切线OD DF ∴⊥90ADC ADO ∠∠∴+=︒OF AD ⊥ OA OD =90DOF ADO ∠∠∴+=︒ DOF AOF ∠∠=ADC DOF ∠∠∴=ADC AOF ∠∠∴=.(2)如图, 连接DO CD 是O 的切线OD DF ∴⊥90CDO ∠∴=︒53OC OB =设5(0)CO k k => 则3DO OB AO k ===4CD k ∴=538CB CO OB k k k ∴=+=+= AB 是O 的直径 24BD =AD DB ∴⊥OF AD ⊥∴OF BD ∥ ∴AO AE OB ED = CFO CDB △∽△ ∴OF CO BD CB= AE ED ∴=5524538OF k k k ==+ ∴1122OE BD == 15OF = 3EF OF OE ∴=-=.【点评】本题考查了切线的性质 等腰三角形的三线合一性质 平行线分线段成比例定理 相似三角形的性质与判定 熟练掌握切线的性质 相似三角形的性质与判定是解题的关键.10.(1)证明过程见解析 (2)142π-【分析】(1)AB 是O 的直径 AC AD = BF BC = 可求出90FBD ∠=︒ AB BF ⊥ 由此即可求证(2)如图,所示(见解析)连接,CO EO 可得1OC OE == 可证222CO O CE += 90COE ∠=︒ 根据扇形面积的计算方法即可求解.【解析】(1)证明①AB 是O 的直径①90ACB ∠=︒①90ACD BCD ∠+∠=︒①AC AD =①ACD ADC ∠=∠①ADC BDF ∠=∠①ACD BDF ∠=∠①BC BF =①BCD F ∠=∠①90BDF F ∠+∠=︒①180()90FBD FDB F ∠=︒-∠+∠=︒①AB BF ⊥ 且OB 是O 的半径①BF 是O 的切线.(2)解如图,所示 连接,CO EO①2AB =①1OC OE == ①2CE ①222CO EO += 2222CE == ①222CO O CE +=①90COE ∠=︒ ①29011111360242ππS ⨯=-⨯⨯=-阴影 ①图中阴影部分的面积为142π-. 【点评】本题主要考查圆的基础知识 掌握圆的切线的证明方法 扇形面积的计算方法是解题的关键.11.(1)见解析(2)3【分析】(1)连接CO 根据OF BC ∥可得B AOF ∠=∠ 根据直径所对的圆周角为直角可得90B CAB ∠+∠=︒ 再根据AO CO =得出CAB ACO ∠=∠ 最后证明90ACD ACO ∠+∠=︒即可 (2)根据中位线定理得出152OE BC == 证明DBC DOF ∽ 根据相似三角形对应边成比例 即可求解.【解析】(1)证明连接CO①OF BC ∥①B AOF ∠=∠①AB 为O 的直径①90ACB ∠=︒ 则90B CAB ∠+∠=︒①90AOF CAB ∠+∠=︒①AO CO =①CAB ACO ∠=∠①ACD AOF ∠=∠①90ACD ACO ∠+∠=︒ 即OC CD ⊥①CD 为圆O 的切线(2)①AB 为O 的直径①点O 为AB 中点①OF BC ∥①OE 为ABC 中位线 ①152OE BC == ①1sin 4D = OC CD ⊥ ①4OD OC = 则5BD OD OB OC =+=①OF BC ∥①DBC DOF ∽ ①OF OF BC BD = 即4510OC OF OC = 解得8OF =①853EF OF OE =-=-=.【点评】本题主要考查了切线的判定和性质 圆周角定理 相似三角形的判定和性质以及解直角三角形 解题的关键是掌握切线的判定和性质以及相似三角形的判定和性质.12.(1)30︒(2)100︒【分析】(1)根据三角形内角和定理可得60ABC ∠=︒ 再由AD CD = 可得ABD CBD ∠=∠ 即可求解(2)根据圆周角定理可得30ABD ACD ∠∠==︒ 从而得到80BCD ∠=︒ 再由圆内接四边形的性质 即可求解.【解析】(1)解①70,50BAC ACB ∠=︒∠=︒①18060ABC BAC ACB ∠=︒-∠-∠=︒①AD CD = ①1302ABD CBD ABC ∠=∠=∠=︒ (2)解由圆周角定理得30ABD ACD ∠∠==︒①80BCD ACB ACD ∠=∠+∠=︒①四边形ABCD 是O 的内接四边形①180100BAD BCD ∠=︒-∠=︒.【点评】本题主要考查了圆内接四边形的性质 圆周角定理等知识 熟练掌握圆内接四边形的性质 圆周角定理是解题的关键.13.(1)见解析(2)AD 的长是25【分析】(1)连接OA 根据已知条件证明OA AE ⊥即可解决问题(2)作OF CD ⊥ 则四边形OAEF 是矩形 且132DF CD ==由此可求得DE 的长 在Rt OFD △中 勾股定理求出OF 即AE 的长 在Rt AED △中利用勾股定理求DA . 【解析】(1)证明如图, 连接OA①AE CD ⊥①90DAE ADE ∠+∠=︒.①DA 平分BDE ∠①ADE ADO ∠=∠又①OA OD =①OAD ADO ∠=∠①90DAE OAD ∠+∠=︒①OA AE ⊥①AE 是O 的切线(2)解过点O 作OF CD ⊥于F .①90OAE AEF OFE ∠︒=∠=∠=①四边形OAEF 是矩形①5EF OA AE OF ===,.①OF CD ⊥ ①132DF FC CD ===①532DE EF DF =-=-=在Rt OFD △中 2222534OF OD DF --=①4AE OF ==在Rt AED △中 22224225AD AE DE ++=①AD 的长是25【点评】本题考查了切线的判定与性质 垂径定理 圆周角定理 勾股定理 解决本题的关键是掌握切线的判定与性质.14.(1)12π(2)9【分析】(1) 根据题意 CEB APB ABC PBE S S S S S =+--阴影扇形扇形 根据公式计算即可.(2) 连接PE 根据题意 45,135,90PEB CEP PEC ∠=︒∠=︒∠=︒ 根据勾股定理计算即可.【解析】(1)如图, ①正方形ABCD 旋转APB △到CEB 的位置①APB CEB ≌ 90ABC PBE ∠=∠=︒ =CEB APB S S ①CEB APB ABC PBE S S S S S =+--阴影扇形扇形①ABC PBE S S S =-阴影扇形扇形①48BP AB ==, ①9064901612360360S πππ︒⨯⨯︒⨯⨯=-=︒︒阴影. (2)连接PE根据题意 45,135PEB APB CEP ∠=︒∠=∠=︒ AP CE =①90PEC ∠=︒①4BP = 7AP =①2227,4432CE PE ==+=①222273281PC CE PE =+=+=解得9PC =.【点评】本题考查了正方形的性质 旋转的性质 阴影面积的计算 扇形面积公式 勾股定理 熟练掌握旋转的性质 阴影面积的计算 扇形面积公式 勾股定理是解题的关键.15.(1)证明见解析(2)10DF =【分析】(1)因为CDB CAB ∠=∠ CDB BFD ∠=∠ 所以CAB BFD ∠=∠ 即可得出FD ①AC 可得得出OD FD ⊥ 进而得出结论(2)利用勾股定理先求解AC 再利用垂径定理得出AE 的长 可得OE 的长 证明AEO FDO ∽ 再利用相似三角形的判定与性质得出DF 的长.【解析】(1)①CDB CAB ∠=∠ CDB BFD ∠=∠①CAB BFD ∠=∠①FD AC ∥①OD 垂直于弦AC 于点E①OD FD ⊥①FD 是O 的一条切线(2)①AB 为O 的直径①90ACB ∠=︒①15AB = 9BC = ①2215912AC -= 7.5AO OB OD ===①DO AC ⊥①6AE CE == ①227.56 4.5OE -①AC FD ∥①AEO FDO ∽ ①AE EO FD DO = ①4.567.5FD= 解得10DF =.经检验符合题意.【点评】本题主要考查了相似三角形的判定与性质 垂径定理 圆周角定理 切线的判定 以及平行线的判定 掌握相似三角形的判定与性质 垂径定理 圆周角定理以及平行线的判定是解题的关键.16.(1)50︒(2)30︒【分析】(1)连接OA 先由切线的性质得OAE ∠的度数 求出2142AOB C ∠=∠=︒ 进而得AOE ∠ 则可求出答案(2)连接OA 根据等腰三角形的性质及切线的性质列方程求解即可.【解析】(1)连接OA .如图,①AE 切O 于点AOA AE ∴⊥90OAE ∴∠=︒70C ∠=︒2270140AOB C ∴∠=∠=⨯︒=︒又180AOB AOE ∠+∠=︒40AOE ∴∠=︒90AOE E ∠+∠=︒904050E ∴∠=︒-︒=︒.(2)连接OA 如图,①设E x ∠=.AB AE =ABE E x ∴∠=∠=OA OB =OAB ABO x ∴∠=∠=2AOE ABO BAO x ∴∠=∠+∠=. AE 是O 的切线OA AE ∴⊥ 即90OAE ∠=︒在OAE ∆中 90AOE E ∠+∠=︒即290x x +=︒解得30x =︒30E ∴∠=︒.【点评】本题主要考查了切线的性质 等腰三角形的性质 圆周角的性质 三角形内角和的性质 用方程思想解决几何问题 关键是熟悉掌握这些性质.17.(1)见解析(2)10cm【分析】(1)连接OD 根据平行线的判定与性质可得90ODE DEM ∠=∠=︒ 又点D 在O 上 即可证得DE 是O 的切线(2)首先根据勾股定理可得AD 的长 再由ACD ADE ∽ 根据相似三角形的性质列出比例式 代入数据即可求得圆的半径.【解析】(1)证明如图,连接ODOA OD =OAD ODA ∠=∠∴ AD 平分CAM ∠OAD DAE ∴∠=∠ODA DAE ∴∠=∠DO MN ∴∥DE MN ⊥90ODE DEM ∴∠=∠=︒ 即OD DE ⊥ 又点D 在O 上 OD 为O 的半径DE ∴是O 的切线(2)解90AED ∠=︒ 8cm DE = 4cm AE =22228445AD DE AE ∴++如图,连接CDAC 是直径90ADC AED ∴∠=∠=︒CAD DAE ∠=∠ACD ADE ∴△∽△AD AC AE AD ∴= 4545=解得20AC =O ∴的半径为10cm .【点评】本题考查圆了切线的判定;等边对等角 平行线的判定与性质 圆周角定理 勾股定理 相似三角形的判定和性质等知识 在圆中学会正确添加辅助线是解决问题的关键.18.(1)见解析 (2)49【分析】(1)欲证~CBA FDC ,只要证明两个角对应相等就可以.可以转化为证明DE BC =就可以 (2)由~CBA FDC 可得814CF = ACB F ∠=∠ 进而即可得到答案. 【解析】(1)证明①四边形ABCD 内接于O①CBA CDF ∠=∠.①DE BC =①BCA DCE ∠=∠.①~CBA FDC(2)解①C 是DBA 的中点①9CD AC ==①~CBA FDC 4AB = ①AB AC CD CF = 即499CF= ①814CF = ①~CBA FDC ①94tan tan 8194AC ACB F CF ∠=∠===.【点评】本题考查的是圆的综合题;涉及弧、弦的关系;等腰三角形的性质;相似三角形的判定与性质;锐角三角函数;掌握相似三角形的判定和性质是解答此题的关键.。

2024成都中考数学第一轮专题复习之第六章 微专题 圆的综合题 练习课件

2024成都中考数学第一轮专题复习之第六章 微专题 圆的综合题 练习课件

第2题图
微专题 圆的综合题
(2)若AC=4,EF= 8 3 ,求CE的长.
3
(2)解:∵AC=4,EF= 8 3 ,∴BD=AC=4,DH=EH= 4 3 .
3
3
∵∠BDH=90°,
∴tan ∠DBH= DH 3 ,∴∠DBH=30°,
BD 3
∴∠DHE=60°,∴△DHE是等边三角形,
∴∠HDE=60°,DE=DH= 4 3 ,
∴∠CBO=∠BCD+∠D=4α. ∵OB=OC, ∴∠CBO=∠OCB=4α, ∴∠CBO+∠OCB+∠COB=4α+4α+2α=10α=180°, ∴α=18°, ∴∠ACD=∠ACB+∠BCD=90°+2α
=90°+36°=126°;
第6题图
微专题 圆的综合题
(3)求
OD AD
的值.
(3)解:设⊙O的半径为r,BD=a,则CD=r.
第6题图
微专题 圆的综合题
(2)求∠ACD的度数; (2)解:如图,连接CB. 设∠CAO=α. 根据(1)可知∠EAC=∠CAO=∠ACO=α, ∠EAO=∠EAC+∠CAO=2α, ∴∠COB=∠CAO+∠ACO=2α. ∵CD=OA, ∴CD=OC. ∴∠COB=∠D=2α.
第6题图
微专题 圆的综合题
第5题图
微专题 圆的综合题
(2)若OA=5,tan
D=
1 2
,求CE的长.
(2)解:如图,连接AC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴tan B=tan D= AC 1 ,
BC 2
∴BC=2AC.
∵AB=2OA=10,
在Rt△ABC中,AC2+BC2=AB2,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都市中考20题---圆的综合
都江堰塔子坝中学 卢正谊
成都市中考20题---圆的综合,是成都中考的必考题,难度较大,分值也较大,要想在中考中取得较高的分数,必须强化这类题目的训练,尤其是前两问更是我们能否在中考中取得理想成绩的一个重要突破口.
重点例题
例1、(2015•成都)如图,在Rt ABC ∆中,90ABC
∠=︒,
AC 的垂直平分线分别与AC ,BC 及AB 的延长线相交于点D ,E ,F ,且BF BC =.⊙O 是BEF ∆的外接圆,EBF ∠的平分线交EF 于点G ,交⊙O 于点H ,连接BD ,FH .
(1)求证:ABC EBF ∆≅∆;
(2)试判断BD 与⊙O 的位置关系,并说明理由; (3)若1AB =,求HG HB ⋅的值.
例2、(2010•成都)已知:如图,ABC ∆内接于⊙O,AB 为直径,弦CE
AB ⊥于F ,C 是弧AD 的中点,
连结BD 并延长交EC 的延长线于点G ,连结AD ,分别交CE 、
BC 于点P 、Q .
(1)求证:P 是ACQ ∆的外心;
(2)若3
tan ,84
ABC
CF ∠==,求CQ 的长; (3)求证:2
()FP PQ FP FG +=.(课后思考)
中考圆的命题方向:
随着直线与圆位置关系的弱化,圆与圆、弦切角、切线长定理、相交弦定理、切割线定理以及割线定理等一系列知识的退出,新教材中圆的知识结构发生了重大的改变。

在中考卷中,这种变化体现为考核的重心前移,视角更新。

1、重心前移
教材中讲述的比较重要的定理,经过调整,现在仅剩下垂径定理、弧、弦、圆心角关系定理、圆周角和圆心角关系
定理。

这些定理都是圆中极其基础的知识,自身并不具有很强的纵深能力,因为内容删减之后仅余这三个“象样”点的知识,于是在中考试卷中逐渐地活跃起来,成为主导圆与其它知识综合的核心载体,典型手法是以选择、填空等客观性试题设计展现。

2、切线的证明不及以前
切线在原教材中作为圆的核心知识,具有很出色的连横纵深能力,前有圆的垂径定理,圆周角度数定理等等知识作为铺垫,后有弦切角、切线长定理、切割线定理等等作延伸。

成都市中考中由于20题已具有选拨性质,所以切线证明仍然是重中之重。

3、与相似形综合成为热点
圆的内容大幅度删减,导致圆与相似形综合的问题开始逐渐地活跃起来,并一跃成为主导圆与其它知识综合的热点。

.
练习:
(2015•常德)已知如图,以Rt △ABC 的AC 边为直径作⊙O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点F 为BC 的中点,连接EF
(1)求证:EF 是⊙O 的切线;
(2)若⊙O 的半径为3,∠EAC =60°,求AD 的长。

怎样提高:
1、夯实基础,熟悉定理。

2、多钻研、多分析、多总结基本图形、基本解题思路。

3、常见辅助线。

4、主动、积极性的思维。

小结:
1、中考分值10分左右。

2、(1)、(2)问争取拿全分。

3、(3)问争取能拿分,不纠结。

A
D
F
A B
课后练习
(2015•北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.
(1)求证:PE是⊙O的切线;
(2)求证:ED平分∠BEP;
(3)若⊙O的半径为5,CF=2EF,求PD的长.
(2015•鄂州)如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线 BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交 AB于点F.
(1)求证:AE为⊙O的切线.
(2)当BC=8,AC=12时,求⊙O的半径.
(3)在(2)的条件下,求线段BG的长.(2015•南宁)如图,AB是⊙O的直径,C、G是⊙O上两点,且AC = CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.
(1)求证:CD是⊙O的切线.
(2)若
3
2
=
FD
OF
,求∠E的度数.
(3)连接AD,在(2)的条件下,若CD=3,求AD的长
.
(2015•襄阳)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,
连接AC,BC,PB∶PC=1∶2.
(1)求证:AC平分∠BAD;
(2)探究线段PB,AB之间的数量关系,并说明理由;
(3)若AD=3,求△ABC的面积.
A
成都中考圆综合题专练
(2014•成都)如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为
E.设P 是上异于A,C的一个动点,射线AP交l于点
F,连接PC与PD,PD交AB于点G.
(1)求证:△PAC∽△PDF;
(2)若AB=5,=,求PD的长;
(3)在点P 运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)
(2013•成都)如图,⊙O的半径25
r=,四边形ABCD 内接圆⊙O,AC BD
⊥于点H,P为CA延长线上的一点,且PDA ABD
∠=∠.
(1)试判断PD与⊙O的位置关系,并说明理由:
(2)若
3
t a n
4
A D B
∠=
,PA AH
=,求BD
的长;
(3)在(2)的条件下,求四边形ABCD的面积(2012•成都)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若2
KG=KD·GE,试判断AC与EF的位置关系,并说明理由;
(3)在(2)的条件下,若sinE=
3
5

AK=
FG的长.
(2011•成都)已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥ A C,垂足为K。

过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.
(1)求证:AE=CK;
(2)如果AB=a,AD=
1
3
a (a为大于零的常数),求
BK的长:
(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长.
B
(2009•成都)如图,Rt△ABC 内接于⊙O,AC=BC ,∠BAC 的平分线AD 与⊙0交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连结CD ,G 是CD 的中点,连结0G . (1)判断0G 与CD 的位置关系,写出你的结论并证明; (2)求证:AE=BF
; (3)若3(2OG DE ⋅=-,求⊙O 的面积。

(2008•成都)如图,已知⊙O 的半径为2,以⊙O 的弦AB 为直径作⊙M ,点C 是⊙O 优弧
AB 上的一个动点(不与
点A 、点B 重合).连结AC 、BC ,分别与⊙M 相交于点D 、
点E ,连结DE.若(1)求∠C 的度数; (2)求DE 的长; (3)如果记tan ∠ABC=y ,
AD
DC
=x
(0<x<3),那么在点C 的运动过程中,试用含x 的代数式表示y.
(2007•成都)如图,
A 是以BC 为直径的O 上一点,
AD BC ⊥于点D ,过点B 作O 的切线,与CA 的延
长线相交于点E G ,是
AD 的中点,连结CG 并延长与
BE 相交于点F ,延长AF 与CB 的延长线相交于点P .
(1)求证:BF EF =;
(2)求证:PA 是
O 的切线;
(3)若F G B F
=,且
O 的半径长为
求BD 和
FG 的长度.
(2006•成都)已知:如图,⊙O 与⊙A 相交于C 、D 两点,A 、O 分别是两圆的圆心,△ABC 内接于⊙O ,弦CD 交AB 于点G ,交⊙O 的直径AE 于点F ,连结BD 。

(1) 求证:△ACG ∽△DBG ; (2) 求证:2
AC
AG AB =⋅;
(3)
若⊙A 、⊙O 的直径分别为15,且CG :
CD =1:4,求AB 和BD 的长。

E。

相关文档
最新文档