人教版七年级数学上册第一章有理数综合测试题(含答案)
人教版数学七年级上册第一章有理数综合测试(含答案)

人教版数学七年级上学期 第一章有理数测试一、选择题(每小题3分,共30分)1.若a+b <0,ab <0,则( ) A. a >0,b >0 B. a <0,b <0C. a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D. a ,b 两数一正一负,且负数的绝对值大于正数的绝对值 2.a,b,c 在数轴上的位置如图所示,则( )A. abc<0B. ab-ac>0C. (a-b)c>0D. (a-c)b>03.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( ) A. 0.1636×B. 1.636×C. 16.36×D. 163.6×104.-23+(-2×3)的结果是( ) A. 0B. -12C. -14D. -25.的相反数是( ) AB. 2C.12D. 12-6. 某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( ) A. ﹣10℃B. 10℃C. 14℃D. ﹣14℃7.下列说法正确的是( ) A. 零是正数不是负数 B. 零既不是正数也不是负数 C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数 8.既是分数又是正数的是( ) A. 2+B. 143- C.D. 2.39.观察下图,寻找规律,在“?”处填上的数字是( ).A. 128B. 136C. 162D. 188二、填空题10. 若x=4,则|x﹣5|=_________.11.设a是最小正整数,b是最大的负整数,c是绝对值最小的有理数,则a + b + c等于____________.12.一组按规律排列数:2,0,4,0,6,0,…,其中第7个数是,第n个数是(n为正整数).13.数轴上到原点的距离等于4的数是.14.绝对值不大于2的所有整数为__________.15.-3倒数是,-3的绝对值是.三、解答题(共66分)16.用计算器计算并填空:152=________;252=________;352=________;452=________.(1)你发现了什么?(2)不用计算器你能直接算出852,952吗?17.手工拉面是我国的传统面食.制作时,拉面师傅取一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条截成了许多细细的面条,如下图所示.请问这样第几次捏合后可拉出128根面条18. 某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元)星期一二三四五(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5%的手续费,卖出股票时需付卖出成交额1.5%的手续费和卖出成交额1%的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?19.阅读下列材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其他碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台功率为500 W的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为0.50元/度.问题:(1)在未购买饮水机之前,全年平均每个学生要花费多少钱来购买纯净水饮用?(2)在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?(3)这项便利学生的措施实施后,东坡中学当年全体学生共节约多少钱?20.在求1+2+22+23+24+25+26值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.答案与解析一、选择题(每小题3分,共30分)1.若a+b<0,ab<0,则( )A a>0,b>0B. a<0,b<0C. a,b两数一正一负,且正数的绝对值大于负数的绝对值D. a,b两数一正一负,且负数的绝对值大于正数的绝对值【答案】D【解析】【详解】解:∵ab<0,∴a、b必定是异号,∵a+b<0,∴a,b两数一正一负,且负数的绝对值大于正数的绝对值.故选D.2.a,b,c在数轴上的位置如图所示,则( )A. abc<0B. ab-ac>0C. (a-b)c>0D. (a-c)b>0【答案】C【解析】【分析】由图可知a<c<0<b,据此可判断【详解】解:由图可知a<c<0<b,则abc>0,A错误;ab-ac=a(b-c)<0,B错误;(a-b)c>0,C正确;(a-c)b<0,D 错误;故选择C.【点睛】本题考查了数轴的概念,熟记数轴上右边的数大于左边的数是关键.3.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( )A. 0.1636×B. 1.636×C. 16.36×D. 163.6×10【答案】B【解析】试题分析:科学计数法是指a×,且,n为原数的整数位数减一.考点:科学计数法4.-23+(-2×3)的结果是( )A. 0B. -12C. -14D. -2 【答案】C【解析】【分析】按照有理数的运算法则计算即可.【详解】解:原式=-8-6=-14,故选择C.【点睛】本题考查了有理数的混合运算.5.的相反数是( )A. B. 2 C. 12D.12【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .6. 某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( )A. ﹣10℃B. 10℃C. 14℃D. ﹣14℃【答案】B【解析】【详解】12-2=10℃.故选B.7.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数【答案】B【解析】本题考查的是正、负数的意义根据正、负数的定义即可解答,零既不是正数也不是负数,故A、C错误,B正确,而不是正数的数是0和负数,不是负数的数是0和正数,故D错误,故选B.8.既是分数又是正数的是()A. 2+B.143- C. D. 2.3【答案】D【解析】本题考查的是有理数的分类大于0的数是正数.小数是分数的一种形式,所以既是分数、又是正数的数是,故选D.9.观察下图,寻找规律,在“?”处填上的数字是( ).A. 128B. 136C. 162D. 188【答案】C【解析】分析:由图中看出,从2开始,每相邻3个数的和等于第4个数,那么所求的数是26+48+88=162.详解:26+48+88=162.故选C.点睛:解决本题的关键的根据所给的数得到四个数之间的规律(从2开始,每相邻3个数的和等于第4个数).二、填空题10. 若x=4,则|x﹣5|=_________.【答案】1.【解析】试题分析:∵x=4,∴x ﹣5=﹣1<0,故|x ﹣5|=|﹣1|=1. 考点:绝对值.11.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a + b + c 等于____________. 【答案】0 【解析】 【分析】根据a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,得出a ,b ,c 的值,代入即可得出结论. 【详解】依题意得:a =1,b =﹣1,c =0,∴a +b +c =1+(﹣1)+0=0. 故答案为0.【点睛】本题考查了正整数、负整数的概念和绝对值的性质.熟练掌握有关概念是解答本题的关键. 12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 (n 为正整数).【答案】8,11(1)(1)2n n ++-+【解析】试题分析:观察数据可得:偶数项为0;奇数项为(n+1);故其中第7个数是(7+1)=8;第n 个数是11(1)(1)2n n ++-+. 考点:规律型:数字的变化类13.数轴上到原点的距离等于4的数是 . 【答案】±4. 【解析】试题分析:数轴上到原点的距离等于4的数有两个,是±4. 考点:1.相反数;2.绝对值.14.绝对值不大于2的所有整数为__________. 【答案】0,±1,±2 【解析】试题分析:绝对值等于2的整数是2,-2;在数轴上位于2和-2之间的整数有1,0,-1三个,它们都符合要求,所以绝对值不大于2的所有的整数是-2,-1,0,1,2. 考点:绝对值.15.-3的倒数是 ,-3的绝对值是 .【答案】-13,3.【解析】试题分析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据负数的绝对值是它的相反数,可得答案.试题解析:-3的倒数是-13,-3的绝对值是3.考点:1.倒数;2.绝对值.三、解答题(共66分)16.用计算器计算并填空:152=________;252=________;352=________;452=________.(1)你发现了什么?(2)不用计算器你能直接算出852,952吗?【答案】225 625 1 225 2 025(1)发现后两位均为25,前面的数等于原数中十位数乘比它大1的数.(2) 7 225, 9 025.【解析】试题分析:(1)通过用计算器进行计算可以发现:后两位均为25,前面的数等于原数中十位数乘比它大1的数.(2)根据(1)发现的规律可求出结果.试题解析:152=225;252=625;352=1225;452=2025(1)通过用计算器进行计算可以发现:后两位均为25,前面的数等于原数中十位数乘比它大1的数.(2)852=7225,952=9025.17.手工拉面是我国的传统面食.制作时,拉面师傅取一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条截成了许多细细的面条,如下图所示.请问这样第几次捏合后可拉出128根面条?【答案】第七次捏合后可拉出128根面条.【解析】【分析】第一次捏合后得到2根面条,第二次捏合后得到4根,第三次捏合后得到8根,据此寻找规律即可.【详解】第一次……2根面条;第二次……22根面条;第三次……23根面条;…第x次……2x根面条.于是由2x=128=27,得x=7.答:第七次捏合后可拉出128根面条.【点睛】本题考查了规律的探索.18.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元)(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5%的手续费,卖出股票时需付卖出成交额1.5%的手续费和卖出成交额1%的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【答案】(1)9.9元;(2)亏了497.5元.【解析】试题分析:(1)用上周买入股票每股的金额加上本周股票五天的涨跌额,即可得本周星期五收盘时每股股票的金额;(2)用本周五卖出股票金额减去上周买入股票金额,减去买入成交额的手续费,减去卖出成交额的手续费,再减去卖出成交额的交易费可得收益情况.试题解析:解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5%﹣1000×9.9×1.5%﹣1000×9.9×1%=9900﹣150﹣148.5﹣99﹣10000=﹣497.5(元).答:该股民的收益情况是亏了497.5元.考点:正负数的意义;有理数的混合运算.19.阅读下列材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其他碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台功率为500 W的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为0.50元/度.问题:(1)在未购买饮水机之前,全年平均每个学生要花费多少钱来购买纯净水饮用?(2)在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?(3)这项便利学生的措施实施后,东坡中学当年全体学生共节约多少钱?【答案】(1)450元;(2)4830元;(3)424080元.【解析】【分析】(1)通过每个学生每天的用水量计算出每个季节的用水量,从而计算出全年用水量;(2)购买饮水机解决学生饮水问题后,每班学生全年的花费为“水费+电费+饮水机费用”;(3)原水费-现在水费=能节约的水费.【详解】(1)因为每个学生春、秋、冬季每天购买1瓶矿泉水,夏季每天购买2瓶,所以一个学生在春、秋、冬季共要购买180瓶矿泉水,夏季要购买120瓶矿泉水,所以一年中一个学生共要购买300瓶矿泉水,所以一个学生全年共花费1.5×300=450(元).(2)购买饮水机后,一年每个班所需纯净水的桶数为:春秋两季,每1.5天4桶,则120天共要4×2 1203⎛⎫⨯⎪⎝⎭=320(桶).夏季每天5桶,共要60×5=300(桶),冬季每天1桶,共60桶,所以全年共要纯净水(320+300+60)=680(桶), 故购买矿泉水费用为680×6=4 080(元),使用电费为240×10×5001000×0.5=600(元),故每班学生全年共花费为4 080+600+150=4 830(元).(3)因为一个学生节省450-=353.4(元),所以全体学生共节省353.4×24×50=424 080(元).【点睛】本题一道实际问题,考查了通过阅读来分析题目条件,进而答题.20.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【答案】(1)1093.5(2)2014a1 a1--【解析】【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【详解】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=2014a1a1--.【点睛】本题考查数字类的规律探索,有理数的混合运算,分式的运算,正确理解题意正确计算是本题的解题关键.。
人教版七年级数学上册第一章《有理数》综合测试卷(含答案)

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)一、选择题(共11小题;共55分)1. 5的倒数是( )A. 5B. 15C. −5 D. −152. 如图所示,体育课上,小丽的铅球成绩为6.4m,她投出的铅球落在( )A. 区域①B. 区域②C. 区域③D. 区域④3. 一个数的平方一定是( )A. 正数B. 负数C. 非正数D. 非负数4. 在数轴上,原点及原点右边的点表示( )A. 正数B. 整数C. 非负数D. 有理数5. 去年11月份我市某一天的最高气温是10∘C,最低气温是−1∘C,那么这一天的最高气温比最低气温高( )A. −9∘CB. −11∘CC. 9∘CD. 11∘C6. 绝对值小于3的整数有( )A. 2个B. 3个C. 5个D. 6个7. −3的相反数是( )A. −3B. 13C. −13D. 38. 下列说法:①−14是相反数;②−a一定是负数;③互为相反数的两个数的符号必相反;④0.5与2互为相反数;⑤任何一个有理数都有相反数.其中正确的有( )A. 1个B. 2个C. 3个D. 4个9. 某仓库有粮500吨,某天上午运出30吨,下午又运进20吨,则仓库现有粮( )A. 490吨B. 510吨C. 450吨D. 550吨10. 若数轴上点A,B表示的数分别为8和−15,则点A,B之间的距离可以表示为( )A. 8+(−15)B. 8−(−15)C. (−8)+15D. (−8)−1511. 如果两个有理数的积为零,即ab=0,那么下列说法中必定正确的是( )A. a一定是零B. b一定是零C. a和b一定都是零D. a和b中至少有一个是零二、填空题(共5小题;共25分)12. 如果∣−x∣=412,那么x=.13. −423的绝对值是,相反数是,倒数是.14. 比较大小:−2−312.(填“<”或“>”)15. 计算:−2×3=,(−2)÷(−4)=,(−4)2=.16. 若有理数a的倒数等于它本身,则a2020=.三、解答题(共5小题;共70分)17. 若a、b互为相反数,c、d互为倒数,m是最大的负整数,求a+b−cd−m的值.18. 计算:(1)45×12÷13;(2)1516÷32−14;(3)2.5×(25−13)+2.1;(4)215÷(1.1−34)+15×35.19. 如图所示,在数轴上有三个点A,B,C,请回答下列问题.(1)将点B向左移动3个单位长度后,三个点所表示的数谁最小?是多少?(2)将点A向右移动4个单位长度后,三个点所表示的数谁最小?是多少?(3)将点C向左移动6个单位长度后,点B与点C表示的数谁大?(4)要使三个点表示相同的数,如何移动其中两点?有几种移法?20. 观察下列各式的规律:①1×3−22=3−4=−1;②2×4−32=8−9=−1;③3×5−42=15−16=−1.请按以上规律写了出第4个算式,用含有字母的式子表示第n个算式为,并证明21. 某检修小组乘汽车自A地出发,检修南北走向的供电线路.南记为正,北记为负.一天所走路程(单位:千米)为:+10,−3,+4,−2,−8,+16,−2,+12,+8,−5.问:(1)最后他们是否回到A地?若没有,则在A地的什么方向?距离A地多远?(2)若每千米耗油0.08升,则今天共耗油多少升?参考答案1. B【解析】根据倒数的概念.答案B . 2. D3. D4. C5. D6. C 【解析】绝对值小于 3 的整数有 ±1,±2,0,一共 5 个.7. D 【解析】−3 的相反数是 3.8. A9. A10. B11. D12. ±41213. 423,423,−31414. >【解析】因为 ∣−2∣<∣∣−312∣∣,所以 −2>−312.故答案为:>.15. −6,12,16【解析】−2×3=−6;(−2)÷(−4)=12;(−4)2=16.16. 1【解析】由题意,得 a =1 或 a =−1.当 a =1 时,a 2020=1;当 a =−1 时,a 2020=1.综上所述,a 2020=1.17. 根据题意得: a +b =0 , cd =1 , m =−1 ,则原式 =0−1+1=0 .18. (1) 115.(2) 38.(3) 2415.(4)263525.19. (1)从数轴上可以看出,将点B向左移动3个单位长度后,至−5处,此时点B表示的数为−5,因为点A表示的数为−4,点C表示的数为3,所以点B表示的数最小,是−5.(2)从数轴上可以看出,将点A向右移动4个单位长度后,至0处,此时点A表示的数为0,因为点B表示的数为−2,点C表示的数为3,所以点B表示的数最小,是−2.(3)从数轴上可以看出,将点C向左移动6个单位长度后,至−3处,此时点C表示的数为−3,因为点B表示的数为−2,所以点B表示的数大.(4)把点A向右移动2个单位长度,点C向左移动5个单位长度;或把点B、点C分别向左移动2个单位长度、7个单位长度;或把点A、点B分别向右移动7个单位长度、5个单位长度,都可以使三个点表示的数相同,因此共有三种移法.20. 4×6−52=24−25=−1;n(n+2)−(n+1)2=−1.证明如下:左边=n(n+2)−(n+1)2=n2+2n−n2−2n−1=−1,右边=−1.∴左边=右边21. (1)(+10)+(−3)+(+4)+(−2)+(−8)+(+16)+(−2)+(+12)+(+8)+(−5) =10−3+4−2−8+16−2+12+8−5=10+4+16+12+8−3−2−8−2−5=50−20=30.所以没有回到A地,在A地南方30千米处.(2)∣+10∣+∣−3∣+∣+4∣+∣−2∣+∣−8∣+∣+16∣+∣−2∣+∣+12∣+∣+8∣+∣−5∣=10+3+4+2+8+16+2+12+8+5=70(千米).70×0.08=5.6升.所以今天共耗油5.6升.。
七年级数学上册第一章《有理数》综合测试卷-人教版(含答案)

七年级数学上册第一章《有理数》综合测试卷-人教版(含答案)时间:90分钟,满分:120分一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在相应位置上)1.(本题3分)点A在数轴上表示的数为-3,若一个点从点A向左移动4个单位长度,此时终点所表示的数是()A.-7B.1C.7D.-12.(本题3分)一个两位小数精确到十分位是5.0,这个数最小是()A.4.99B.5.1C.4.94D.4.953.(本题3分)下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的正数C.一个有理数不是整数就是分数D.0的绝对值是04.(本题3分)2021年4月底,印度爆发式的疫情冲击,全球面临新冠病毒变异危机,我国将再出手拯救全球疫情.据卫生局4月26日公布,在过去的一天内,印度新增确诊病例超过353000例,至此,印度已经连续五天新增病例超过30万例,并多次突破全球每日新增病例的最高记录.数据353000用科学记数法表示为()A.3.53×104B.3.53×105C.0.353×106D.353×1035.(本题3分)2021年4月底,印度爆发式的疫情冲击,全球面临新冠病毒变异危机,我国将再出手拯救全球疫情.据卫生局4月26日公布,在过去的一天内,印度新增确诊病例超过353000例,至此,印度已经连续五天新增病例超过30万例,并多次突破全球每日新增病例的最高记录.数据353000用科学记数法表示为()A.3.53×104B.3.53×105C.0.353×106D.353×1036.(本题3分)下列各对数中,互为相反数的是()A.﹣(+4)与+(﹣4)B.﹣(﹣4)与|﹣4|C.﹣22与(﹣2)2D.﹣23与(﹣2)37.(本题3分)如图,在数轴上有A、B、C、D四个点,分别表示不同的四个数,使得其余三点表示的数中有两个负数和一个正数,则这个点是()A.点A B.点B C.点C D.点D8.(本题3分)实数a在数轴上的对应点的位置如图所示,若实数b满足0+>,则b的值可以是()a bA .1-B .0C .1D .29.(本题3分)实数a ,b 在数轴上对应的点的位置如图所示,下列结论正确的是( )A .a b >B .a b -<C .a b >-D .a b >10.(本题3分)在423(4),|2|,1,(,3)(2)------这五个数中,正数的个数是( )A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在相应位置上)11.(本题3分)如果水库的水位高于正常水位2m 时,记作+2m ,那么低于正常水位3m 时,应记作____m 12.(本题3分)已知|a |=6,|b |=4,且ab <0,则a +b 的值为 ___.13.(本题3分)数轴上到表示数-413点距离为312的点所表示的数为_________ 14.(本题3分)绝对值小于2021的所有的整数的和是___.15.(本题3分)计算:()()291223⎛⎫-⨯-+-÷= ⎪⎝⎭__________. 16.(本题3分)如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是___.17.(本题3分)母亲节来临之际,小凡同学打算用自己平时节省出来的50元钱给母亲买束鲜花,已知花店里鲜花价格如表:小凡想用妈妈喜欢的百合、玫瑰、康乃馨这三种花组成一个花束,若三种花都要购买且50元全部花净,请给出一种你喜欢的组成方式,百合、玫瑰、康乃馨的支数分别为_______.18.(本题3分)如图,每个图形中的三个数之间均具有相同的规律.根据此规律,若图形中11m =,12n =,则M的值为________.19.(本题3分)小云计划户外徒步锻炼,每天有“低强度”“高强度”“休息”三种方案,下表对应了每天不同方案的徒步距离(单位:km).若选择“高强度”要求前一天必须“休息”(第一天可选择“高强度”).则小云5天户外徒步锻炼的最远距离为_______km.20.(本题3分)小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是8时,输出的数据是_______;当输入数据是n时,输出的数据是_____三、解答题(本大题共8小题,共60分,请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)21.(本题12分)计算:(1)185(0.25)4⎛⎫+----⎪⎝⎭(2)554(10)845⎛⎫⎛⎫-⨯-+-⨯⎪ ⎪⎝⎭⎝⎭(3)2313369412⎛⎫-⨯-+⎪⎝⎭(4)1|3 4.5|9342-+-+--22.(本题4分)在数轴上点A表示的数为﹣1,点B和点A的距离为3,点B、C表示的两数和为0,求点C在数轴上表示的数.23.(本题8分)如图,(1)写出各点表示的数:A________,B________,C________,D________,E________;(2)用“<”将A.B、C、D、E表示的数连接起来.24.(本题10分)把下列各数填在相应的括号内:-16,26,-12,-0.92,35,0,314,0.100 8,-4.9正数集合:{ ⋯};负数集合:{ ⋯};整数集合:{ ⋯};正分数集合:{ ⋯};负分数集合:{ ⋯};25.(本题9分)国庆放假时,小明一家三口开车去探望爷爷、奶奶和外公、外婆,早上从家里出发,向东行了5千米到超市买东西,然后又向东行了2千米到爷爷家,下午从爷爷家出发向西行了10千米到外公家,晚上开车返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;(2)超市和外公家相距多少千米?(3)若该汽车每千米耗油0.08升,求小明一家从出发到返回家,汽车的耗油量.26.(本题9分)出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-4,+9,-10,+10,-5,-12.问:(1)将最后一位乘客送到目的地时,小李在什么位置?(2)若汽车耗油量为0.08L/km,这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米1.5元,则小李这天上午共得车费多少元?27.(本题8分)阅读下列材料:计算:1111 243412⎛⎫÷-+⎪⎝⎭解法一:原式= 111111111113412 243244241224242424÷-÷+÷=⨯-⨯+⨯=解法二:原式= 111112116 2434122412244⎛⎫÷-+=÷=⨯=⎪⎝⎭解法三:原式的倒数=1111111111242424244 34122434123412⎛⎫⎛⎫-+÷=-+⨯=⨯-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭所以,原式= 14.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:113224261437⎛⎫⎛⎫-÷--+⎪ ⎪⎝⎭⎝⎭参考答案1.A【解析】解:根据题意得:-3-4=-7,此时终点所表示的数是-7,故选:A .2.D【解析】解:一个两位小数精确到十分位是5.0,这个数最小是4.95.故选:D .3.B【解析】解:A 、0既不是正数,也不是负数,正确,不符合题意;B 、1是绝对值最小的正数,错误,符合题意;C 、一个有理数不是整数就是分数,正确,不符合题意;D 、0的绝对值是0,正确,不符合题意.故选:B .4.B【解析】解析:353000=3.53×105.故选:B5.B【解析】解析:353000=3.53×105.故选:B6.C【解析】解:A 、﹣(+4)=﹣4,+(﹣4)=﹣4,故A 选项不符合题意;B 、﹣(﹣4)=4,|﹣4|=4,故B 选项不符合题意;C 、﹣22=﹣4,(﹣2)2=4,故C 选项符合题意;D 、﹣23=﹣8,(﹣2)3=﹣8,故D 选项不符合题意,故选:C .7.C【解析】解:A .当A 为原点,则剩余三个点表示的数均是正数,故A 不合题意. B .当B 为原点,则A 表示负数,C 与D 表示正数,故B 不符合题意.C .当C 为原点,则A 与B 表示负数,D 表示正数,故C 符合题意.D .当D 为原点,A 、B 与C 表示负数,故D 不符合题意.故选:C .8.D【解析】解:⋯0a b +>,21a -<<-,⋯0b >,而且1b a >>,⋯1>->,b a符合条件是D,b=2.故选:D.9.D【解析】解:如图所示,⋯数a在原点的左边,数b在原点的右边,⋯a<-1,1>b>0,且|a|>1,|b|<1,>,a<b,⋯a b⋯A不符合题意;⋯D符合题意;⋯|a|>1,⋯-a>1,⋯-a>b,⋯B不符合题意;⋯1>b>0,⋯-1<b<0,⋯a<-b,⋯C不符合题意;故选D.10.C--=,是正数;【解析】()44-=,是正数;224-=-,是负数;11()239-=,是正数;()328-=-,是负数;⋯正数又3个;故选C.11.3-【解析】解:根据题意可得,高于正常水位记作“+”,则低于正常水位记作“-”,-m,则低于正常水位3m时,应记作3-故答案为:312.2-或2【解析】解:⋯64a b ==,⋯6,4a b =±=±又⋯0ab <⋯64a b =⎧⎨=-⎩或64a b =-⎧⎨=⎩ ⋯2a b +=或2a b +=-故答案为2-或213.−476或−56 【解析】解:距离点数−413为312个单位长度的点有两个,它们分别是−413+312=−56,−413−312=−476, 故答案为−476或−56. 14.0 【解析】绝对值小于2021是所有正数为0,1,22020±±⋯±,, ∴()()202010120200-+⋯+-+++⋯+= 故答案为:015.0 【解析】解:()()291223⎛⎫-⨯-+-÷ ⎪⎝⎭=66-=0.故答案为:0.16.-1、0、1、2【解析】解:由数轴可知:被污染的部分的数为-1.3<x <2.9的整数,⋯被污染的整数为:-1、0、1、2,故答案为:-1、0、1、2.17.1,4,6(答案不唯一)【解析】⋯12×1+5×4+3×6=50,⋯可买百合1支、玫瑰4支、康乃馨6支,故答案为:1,4,6.(本题答案不唯一,符合要求即可)18.143【解析】解:⋯1×(2+1)=3,3×(4+1)=15,5×(6+1)=35,⋯右下圆圈内的数=上方圆圈内的数×(左下圆圈内的数+1),⋯M =m (n +1),⋯M =11×(12+1)=143.故答案为:143.19.36【解析】解:如果第二天和第三天选择低强度,则距离为6+6=12(km ),如果第三天选择高强度,则第二天休息,则距离为15km ,⋯12<15,⋯第二天休息,第三天选择高强度,如果第四天和第五天选择低强度,则距离为5+4=9(km ),如果第五天选择高强度,则第四天休息,则距离为8km ,⋯9>8,⋯第四天和第五天选择低强度,为保持最远距离,则第一天为高强度,⋯最远距离为12+0+15+5+4=36(km )故答案为36.20.256 ()2n -【解析】解:设输入数据为a ,输出数据为b ,则由题意可得:()2a b =-,所以:当输入数据是8时,输出的数据是()82256-=;当输入数据是n时,输出的数据是 ()2n-. 故答案为256;()2n -. 21.(1)3;(2)154;(3)19;(4)0;(5)18-;(6)-198 【解析】解:(1)原式()3750.254=---()320.254=-- 3=;(2)原式2554=445⎛⎫+-⨯ ⎪⎝⎭ ()2514=+- 154=; (3)原式8271336363612⎛⎫=-⨯-+⎪⎝⎭ 1913363612-⎛⎫=-⨯+ ⎪⎝⎭ 1933363636-⎛⎫=-⨯+ ⎪⎝⎭ 1633636-=-⨯ ()316=--19;(4)原式=1.5-9+7.5=0;22.4或-2【解析】解:⋯点A在数轴上表示的数为﹣1,且点B和点A的距离为3,⋯点B在数轴上表示的数为-4或2,又点B、C表示的两数和为0⋯点C在数轴上表示的数为4或-223.(1)5,﹣2.5,1,2.5,﹣4;(2)﹣4<﹣2.5<1<2.5<5【解析】解:(1)点A.B、C、D、E表示的数分别为5,-2.5,1,2.5,﹣4;故答案为5,-2.5,1,2.5,﹣4;(2)﹣4<﹣2.5<1<2.5<5.24.正数集合:{ 26,35,134,0.1008};负数集合:{-16,-12,-0.92,-4.9};整数集合:{-16,26,-12,0};正分数集合:{35,134,0.1008};负分数集合:{-0.92,-4.9}.【解析】解:根据有理数分为:正数、0、负数;有理数也可以分为:整数和分数.⋯正数有:26,35,134,0.1008;负数有:-16,-12,-0.92,-4.9;整数有:-16,26,-12,0;正分数有:3 5,134,0.1008;负分数有:-0.92,-4.9.⋯正数集合:{26,35,134,0.1008⋯};负数集合:{-16,-12,-0.92,-4.9⋯};整数集合:{-16,26,-12,0⋯};正分数集合:{35,134,0.1008⋯};负分数集合:{-0.92,-4.9 ⋯};25.(1)见解析;(2)8(千米);(3)1.6(升)【解析】解:(1)A、B、C的位置如图所示:(2)因为5−(−3)=8(千米)故答案为:8;(3)小明一家走的路程:5+2+10+3=20(千米),共耗油:0.08×20=1.6(升)答:小明一家从出发到返回家所经历路程小车的耗油量为1.6升.26.(1)西12km;(2)4L;(3)108元【解析】(1)491010512+-+---, 410512910=----++,3119=-+,12=-,答:小李在西12km 处.(2)491010512-+++-+++-+-, 491010512=+++++,50=,500.084)L ⨯=(,答:共耗油4L .(3)第一次车费:()1043 1.511.5+-⨯=(元), 第二次车费:()1093 1.519+-⨯=(元), 第三次车费:()10103 1.520.5+-⨯=(元), 第四次车费:()10103 1.520.5+-⨯=(元), 第五次车费:()1053 1.513+-⨯=(元), 第六次车费:()10123 1.523.5+-⨯=(元), 11.51920.520.51323.5108+++++=, 答:小李这天上午共得车费108元. 27.(1)一;(2)118【解析】解:(1)⋯除法无分配律⋯解法一是错误的故答案为:一;(2)方法一:原式1143442661414⎛⎫⎛⎫=-÷--+ ⎪ ⎪⎝⎭⎝⎭ 11142214⎛⎫⎛⎫=-÷-+ ⎪ ⎪⎝⎭⎝⎭ 13427⎛⎫⎛⎫=-÷- ⎪ ⎪⎝⎭⎝⎭ 118= 方法二:原式的倒数= 132216143742⎛⎫⎛⎫=--+÷- ⎪ ⎪⎝⎭⎝⎭ ()132********⎛⎫=--+⨯- ⎪⎝⎭()()()()13224242424261437=⨯--⨯--⨯-+⨯- 792812=-++-18=⋯原式=118。
人教版数学七年级上册第一章有理数综合检测题(附答案)

人教版数学七年级上学期 第一章有理数测试时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作( ) A. 7℃ B. -7℃C. 2℃D. -12℃2.-12017的相反数的倒数是( ) A 1B. -1C. 2017D. -20173.下列各式中,正确的是( ) A -|-4|>0B. |0.08|>|-0.08|C. |-23|<0 D. -13>-124.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是( ) A. 0.1(精确到0.1) B. 0.05(精确到百分位) C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)5.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b.对于以下结论:甲:b−a<0;乙:a+b>0;丙:|a|<|b|;丁:ba>0;其中正确的是( ) A. 甲乙B. 丙丁C. 甲丙D. 乙丁6.下列各式计算正确的是( ) A. 7-2×(-15)=5×(-15)=-1 B. -3÷7×17=-3÷1=-3 C -32-(-3)2=-9-9=-18D. 3×23-2×9=3×6-18=0 7.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点的位置应该在( )A. 点的左边B. 点与点之间C. 点与点之间D. 点的右边8.地球平均半径约为6371000米,该数字用科学记数法可表示为( ) A. 0.6371×107B. 6.371×106C. 6.371×107D. 6.371×1039.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后,细胞存活的个数是( )A. 31B. 33C. 35D. 3710.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则10098!!的值为( )A. 5049B. 99!C. 9900D. 2!二、填空题(每小题3分,共24分)11.化简:-|-2|=____,-(-3)=____.12近似数2.30万精确到_____位.13.绝对值不大于3.14的所有有理数之和等于____;不小于-4而不大于3的所有整数之和等于____.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是____.15.若|a-4|+|b+1|=0,则b a=____.16.根据下图所示的流程图计算,若输入x的值为1,则输出y的值为__________.17.现有4个有理数3,4,-6,10(每个数用且只用一次)进行加、减、乘、除运算,使其结果等于24,算式为____.18.观察下面一列数:-12 -3 4-5 6 -7 8 -910 -11 12 -13 14 -15 16……按照上述规律排下去,那么第10行从左边数第9个数是____.三、解答题(共66分)19.把下列各数分别填入相应的大括号里:-3.1, 3.14159, -3, +31, -0.5, 0.618, -227, 0, -0.2020, |-1.56|.正数集合{}; 非负数集合{};整数集合{ }; 负分数集合{ }.20.把下列各数表示在数轴上,再按从大到小的顺序用“>”号把这些数连接起来.|-3|, -5, 412, -212, -22, -(-1), 0.21.计算:(1)-21+(-14)-(-18)-15; (2)-3.5÷78×|-34|;(3)-14-(23-16)×13×[2-(-3)2]2.22.已知|x|=3,(y+1)2=4,且xy<0,求x+y的值.23.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动6个单位后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.24.某服装店老板以32元的价格购进30件衣服,针对不同的的顾客,30件衣服的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的记为负,记录结果如下表:售出件数7 6 3 5 4 5售价(元) +3 +2 +1 0 -1 -2请问该服装店售完这30件衣服后,赚了多少钱?25.观察下列三行数:2 6 18 54 162…①-1 3 15 51 159…②-1 -3 -9 -27 -81…③(1)第①行数按什么规律排列?(2)第②③行数与第①行数有什么关系?(3)每行取第6个数计算它们的和.26.某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:(1)收工时检修小组在A地的哪一边,距A地多远?(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?答案与解析时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作( ) A. 7℃ B. -7℃C. 2℃D. -12℃【答案】B 【解析】试题分析:∵冰箱冷藏室的温度零上5℃,记作+5℃, ∴保鲜室的温度零下7℃,记作-7℃. 故选B .【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 2.-12017的相反数的倒数是( ) A. 1 B. -1C. 2017D. -2017【答案】C 【解析】12017-的相反数是12017, 12017的倒数是2017. 所以有理数12017-的相反数的倒数是2017.故选B.3.下列各式中,正确的是( ) A. -|-4|>0 B. |0.08|>|-0.08|C. |-23|<0 D. -13>-12【答案】D 【解析】分析:根据有理数的大小的方法是:负数<0<正数;两个负数,绝对值大的反而小,即可得出答案. 详解:A 、-|-4|=-4<0,故本选项错误;B 、∵|008|=0.08,|-0.08|=0.08,∴|0.08|=|-0.08|,故本选项错误;C 、|-23|=23>0,故本选项错误;D、∵13<12,∴-13>-12,故本选项正确.故选D.点睛:此题考查了有理数的大小比较,比较有理数的大小的方法是:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.4.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A 0.1(精确到0.1) B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A:0.05019精确到0.1是0.1,正确;B:0.05019精确到百分位是0.05,正确;C:0.05019精确到千分位是0.050,错误;D:0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.5.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b−a<0;乙:a+b>0;丙:|a|<|b|;丁:ba>0;其中正确的是( )A. 甲乙B. 丙丁C. 甲丙D. 乙丁【答案】C【解析】【分析】根据有理数的加法法则判断两数的和、差及积的符号,用两个负数比较大小的方法判断.详解】甲:由数轴有,0<a<3,b<−3,∴b−a<0,甲的说法正确, 乙:∵0<a<3,b<−3, ∴a+b<0 乙的说法错误, 丙:∵0<a<3,b<−3, ∴|a|<|b|, 丙的说法正确, 丁:∵0<a<3,b<−3, ∴ba<0, 丁的说法错误; 故选C.【点睛】此题考查绝对值,数轴,解题关键在于结合数轴进行解答. 6.下列各式计算正确的是( ) A. 7-2×(-15)=5×(-15)=-1 B. -3÷7×17=-3÷1=-3 C. -32-(-3)2=-9-9=-18 D. 3×23-2×9=3×6-18=0【答案】C 【解析】分析:A 、原式先计算乘法运算,再计算减法运算得到结果,即可作出判断; B 、原式先计算除法,再计算乘法算得到结果,即可作出判断; C 、原式先算乘方,再算减法得到结果,即可作出判断;D 、原式先计算乘方,再计算乘法运算,最后计算加减运算得到结果,即可作出判断.详解:A. 7-2×(-15)=227+=755,故该选项错误; B 、-3÷7×17=11337749-⨯⨯=-,故该选项错误;C 、-32-(-3)2=-9-9=-18,故该选项正确;D 、3×23-2×9=3×8-18=24-18=6,故该选项错误. 故选C .点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点的位置应该在( )A. 点的左边B. 点与点之间C. 点与点之间D. 点的右边【答案】C【解析】【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【详解】∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.8.地球的平均半径约为6371000米,该数字用科学记数法可表示为()A. 0.6371×107B. 6.371×106C. 6.371×107D. 6.371×103【答案】B【解析】根据科学记数法的表示形式可得,6371000=6.371×106.故选B.9.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后,细胞存活的个数是( )A. 31B. 33C. 35D. 37【答案】B【解析】试题解析:根据题意可知,1小时后分裂成4个并死去1个,剩3个,3=2+1;2小时后分裂成6个并死去1个,剩5个,5=22+1;3小时后分裂成10个并死去1个,剩9个,9=23+1;…故5小时后细胞存活的个数是25+1=33个.故选B.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则10098!!的值为( )A. 5049B. 99!C. 9900D. 2!【答案】C【解析】【详解】根据题意可得:100!=100×99×98×97×...×1,98!=98×97× (1)∴100!1009998198!98971⨯⨯⨯⨯=⨯⨯⨯=100×99=9900,故选C.二、填空题(每小题3分,共24分)11.化简:-|-2|=____,-(-3)=____.【答案】(1). -2,(2). 3【解析】分析:由绝对值的性质及相反数的性质解答即可.详解:-|-2|=2;-(-3)=3点睛:主要考查了绝对值的概念及性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;12.近似数2.30万精确到_____位.【答案】百【解析】根据近似数的精确度,近似数2.30万精确到百位,故答案为百13.绝对值不大于3.14的所有有理数之和等于____;不小于-4而不大于3的所有整数之和等于____.【答案】(1). 0,(2). -4【解析】【分析】根据绝对值不大于3.14的有理数互为相反数,根据互为相反数的和为零,可得答案;根据不小于-4而不大于3的所有整数,可得加数,根据有理数的加法,可得答案.【详解】绝对值不大于3.14的所有有理数之和等于0;不小于-4而不大于3的所有整数之和(-4)+(-3)+(-2)+(-1)+0+1+2+3=-4,故答案为0,-4.【点睛】本题考查了有理数大小比较,有理数的加法,利用不小于-5而不大于4的所有整数得出加数是解题关键,注意互为相反数的和为零.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是____.【答案】-1或5【解析】【详解】试题分析:2-3=-1,2+3=5,所以到点A的距离等于3个单位长度的点所表示的数是-1或5.考点:1.数轴;2.有理数的加法;3.两点间的距离.15.若|a-4|+|b+1|=0,则b a=____.【答案】1【解析】分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.详解:由题意得,a-4=0,b+1=0,解得a=4,b=-1,所以,b a=(-1)4=1.故答案为1.点睛:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.根据下图所示的流程图计算,若输入x的值为1,则输出y的值为__________.【答案】7【解析】【分析】观察图形我们可以得出x和y的关系式为:y=3x2-5,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.【详解】解:依据题中的计算程序列出算式:12×3-5.由于12×3-5=-2,-2<0,∴应该按照计算程序继续计算,(-2)2×3-5=7,∴y=7.故本题答案为:7.17.现有4个有理数3,4,-6,10(每个数用且只用一次)进行加、减、乘、除运算,使其结果等于24,算式为____.【答案】10-(-6)×3-4=24(答案不唯一)【解析】分析:利用“24点”游戏规则列出算式,使其结果为24即可.详解:根据题意得:10-(-6)×3-4=24;(10-4)-3×(-6)=24;4-(-6)÷3×10=24;3×[4+10+(-6)]=24等.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.观察下面一列数:按照上述规律排下去,那么第10行从左边数第9个数是____.【答案】90【解析】分析:先从排列中总结规律,再利用规律代入求解.详解:根据题意,每一行最末的数字的绝对值是行数的平方,且奇数前带有负号,偶数前是正号;如第四行最末的数字是42=16,第9行最后的数字是-81,∴第10行从左边数第9个数是81+9=90.故答案为90.点睛:主要考查了学生的综合数学素质,要求能从所给数据中找到规律并总结规律,会利用所找到的规律进行解题三、解答题(共66分)19.把下列各数分别填入相应的大括号里:-3.1, 3.14159, -3, +31, -0.5, 0.618, -227, 0, -0.2020, |-1.56|.正数集合{}; 非负数集合{};整数集合{ }; 负分数集合{ }.【答案】见解析【解析】分析:根据整数,正数,非负数,负分数的定义可得出答案.详解:正数集合{3.14159,+31,0.618,|-1.56|};非负数集合{3.14159,+31,0.618,|-1.56|,0};整数集合{-3,+31,0};负分数集合{-3.1,-0.5,-227,-0.2020}.点睛:本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.20.把下列各数表示在数轴上,再按从大到小的顺序用“>”号把这些数连接起来.|-3|, -5, 412, -212, -22, -(-1), 0.【答案】见解析【解析】【分析】数轴上的点与实数是一一对应的关系,画数轴要注意正方向,单位长度和原点,要注意数轴上的点比较大小的方法是左边的数总是小于右边的数.【详解】∵|-3|=3,-22=-4,-(-1)=1,∴以上各数在数轴上的位置如图所示:故412>|-3|>-(-1)>0>-2.12>-22>-5.【点睛】主要考查了数轴,数轴上的点与实数是一一对应的关系,要注意数轴上的点比较大小的方法是左边的数总是小于右边的数.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.21.计算:(1)-21+(-14)-(-18)-15; (2)-3.5÷78×|-34|;(3)-14-(23-16)×13×[2-(-3)2]2.【答案】(1)-32;(2)-3;(3)556 -.【解析】分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算绝对值运算,再从左到右依次计算即可得到结果;(3)先乘方,再算括号里面的,最后得结果.详解:(1)原式=-21-14+18-15=-32;(2)原式=783274-⨯⨯=-3;(3)原式=-1-114923⨯⨯=-556.点睛:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.22.已知|x|=3,(y+1)2=4,且xy<0,求x+y的值.【答案】0或-2【解析】分析:利用绝对值及平方根定义求出x与y的值,代入计算即可求出x+y的值.详解:根据题意得:x=±3,y+1=±2,即y=1或-3,∵xy<0,∴x=3,y=-3;x=-3,y=1,则x+y=0或-2.点睛:此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.23.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动6个单位后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.【答案】(1)-1; (2)0.5 ;(3)-9【解析】分析:(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D是线段AC的中点;(3)在点B左侧找一点E,点E到点A的距离是到点B的距离的2倍,依此即可求解.详解:(1)点B表示的数为-5+6=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D表示的数为(-1+2)÷2=1÷2=0.5;(3)点E在点B的左侧时,根据题意可知点B是AE的中点,则点E表示的数是-5-(-1+5)=-9.点睛:本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.24.某服装店老板以32元的价格购进30件衣服,针对不同的的顾客,30件衣服的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的记为负,记录结果如下表:请问该服装店售完这30件衣服后,赚了多少钱?【答案】472【解析】试题分析:首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.试题解析:解:售价=7×3+6×2+3×1+5×0+4×(-1)+5×(-2)=21+12+3+0-4-10=22;所以总售价=22+47×30=1432元;赚的钱=1432-30×32=1432-960=472元;点睛:本题主要考查有理数的混合运算,关键在于根据表格计算出一共卖了多少钱.25观察下列三行数:(1)第①行数按什么规律排列?(2)第②③行数与第①行数有什么关系?(3)每行取第6个数计算它们的和.【答案】(1)每个数都等于它前面相邻的数的3倍(2)见解析;(3)726.【解析】分析:(1)观察不难发现,后一个数是前一个数字的3倍解答即可;(2)观察不难发现,第②行为第①行对应的数小3,第③行为第②行相应的数字除以-2;(3)根据各行的第n个数的表达式找出第6个数然后计算它们的和即可.详解:(1)每个数都等于它前面相邻的数的3倍(2)第②行数比第①行对应的数小3,第③行数是由第①行对应的数除以-2得到的.(3)第一行第6个数为:5;23=486第二行第6个数为:486-3=483;第三行第6个数为:486÷(-2)=-243;故每行第6个数的和为:486+483+(-243)=726.点睛:本题是对数字变化规律的考查,比较简单,观察出第①行后一个数字是前一个数字的3倍是解题的关键,也是本题的突破口.26.某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:(1)收工时检修小组在A地的哪一边,距A地多远?(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?【答案】(1)收工时在A地的正东方向,距A地39km;(2)需加15升.【解析】【分析】(1)首先审清题意,明确“正”和“负”所表示的意义,计算结果是正数,说明收工时该检修小组位于A地向东多少千米,计算结果为负数,说明收工时该检修小组位于A地向西多少千米;(2)关键是计算出实际行走的路程所耗的油量,而耗油量应该是记录的所有数字的绝对值之和乘以3,相信你一定可以得到正确答案.【详解】(1)根据题意可得:向东走为“+”,向西走为“−”;则收工时距离等于(+15)+(−2)+(+5)+(−1)+(+10)+(−3)+(−2)+(+12)+(+4)+(−5)+(+6)=+39.故收工时在A地的正东方向,距A地39km.(2)从A地出发到收工时,汽车共走了|+15|+|−2|+|+5|+|−1|+|+10|+|−3|+|−2|+|+12|+|+4|+|−5|+|+6|=65km;从A地出发到收工时耗油量为65×3=195(升).故到收工时中途需要加油,加油量为195−180=15升.【点睛】此题考查正数和负数,有理数的加法,解题关键在于掌握其定义和运算法则.。
人教版七年级上册数学第一章有理数《单元综合检测题》带答案

第一章有理数测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.每年5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A. -2吨B. +2吨C. -5吨D. +5吨2.下列四个数中,与-5的和为0的数是()A. -5B. 5C. 0D. -3.大于-0.5而小于4的整数共有()A. 6个B. 5个C. 4个D. 3个4.-|-2017|的相反数是()A. 2017B.C. -2017D. -5.在下列数:+3、+(-2.1)、-、-π、0、-、中,正数有()A. 1个B. 2个C. 3个D. 4个6.下列算式正确的是()A. (-14)-5=-9B. 0 -(-3)=3C. (-3)-(-3)=-6D. ∣5-3∣=-(5-3)7.2016年春节黄金周海南旅游大幅增长,据统计,2月7至13日,全省共接待游客约3710000人次,将3710000用科学记数法表示为()A. 3.71×107B. 0.371×107C. 3.71×106D. 37.1×1068.下列各对数中,互为相反数的一组是()A. -32与-23B. (-3)2与-32C. -23与(-2)3D. (-3×2)3与-3×239.13世纪数学家斐波那契的《计算书》中有这样一个问题:”在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A. 42B. 49C. 76D. 7710.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O 的位置应该在()A. 点A的左边B. 点A与点B之间C. 点B与点C之间D. 点C的右边二、填空题(本大题共6小题,每小题3分,共18分)11.计算的结果为__.12.已知,数轴上表示点A、B、C、D的四个数分别是-1,2,3,-4,离原点距离最远的点是_______.13.用四舍五入法得到的近似数5.10×104精确到________位.14.已知有理数-7,8,-12,通过有理数的加减混合运算,若使运算结果最大,则可列式为__________.15.已知n为正整数,计算:=__________.16.已知31=3,32=9,33=27, 34=81,35=243,36=729,….推测32017的个位数字是__.三、解答题(本大题共6小题,共52分)17.计算:(1)2×(-5)+22-3÷;(2)48×().18.用数轴上的点表示下列各有理数:-1.5,-22,-(-),+5,-|-3|,并把它们按从大到小的顺序用”>”号连接起来.19.北京航天研究院所属工厂制造飞船上的一种螺母,要求螺母内径可以有±0.02 mm的误差,抽查5个螺母,超过规定内径的毫米数记作正数,检查结果(单位:mm)如下:+0.01,-0.018,+0.026,-0.025,+0.015. (1)指出哪些产品符合要求.(2)指出符合要求的产品中哪个质量较好一些.20.根据如图所示的数轴,解答下面问题.(1)写出点A表示的数的绝对值;(2)对A,B点进行如下操作:先把点A,B表示的数乘﹣,再把所得数对应的点向右平移1个单位长度,得到对应点A′,B′,在数轴上表示出点A′,B′.21.我国约有9 600 000平方千米的土地,平均1平方千米的土地一年从太阳得到的能量相当于燃烧150 000吨煤所产生的能量.(1)一年内我国土地从太阳得到的能量相当于燃烧多少吨煤所产生的能量?(2)若1吨煤大约可以发出8000度电,那么(1)中的煤大约发出多少度电?(结果用科学记数法表示)22.某公司6天内货品进出仓库的吨数如下,其中正数表示进库的吨数:+31,-32,-16,+35,-38,-20.(1)经过这6天,仓库里的货品是_________(填”增多了”或”减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?附加题(共20分,不计入总分)23.已知a是有理数,下列各式:(-a)2=a2;-a2=(-a)2;(-a)3=a3;|-a3|=a3.其中一定成立的有()A. 1个B. 2个C. 3个D. 4个24.符号”f”表示一种运算,它对一些数的运算如下:f(1)=1+,f(2)=1+,f(3)=1+,f(4)=1+…(1)利用以上运算规律,写出f(2017)=__________;(2)计算:f(1)•f(2)•f(3)•…•f(100)的值.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.每年5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A. -2吨B. +2吨C. -5吨D. +5吨【答案】C【解析】【分析】根据正负号表示相反意义的量解答.【详解】解:依据题意,”+”表示”运入”,则运出为”-”,运出5吨为-5,故选择C.【点睛】本题考查了正负号的实际意义.2.下列四个数中,与-5的和为0的数是()A. -5B. 5C. 0D. -【答案】B【解析】【分析】互为相反数的两数和为0.【详解】解:由题意可知两数互为相反数,则与-5的和为0的数是5,故选择B.【点睛】本题考查了相反数的性质.3.大于-0.5而小于4的整数共有()A. 6个B. 5个C. 4个D. 3个【答案】C【解析】【分析】由实数的大小关系逐一写出即可.【详解】解:有实数的大小关系可知,大于-0.5而小于4的整数为0,1,2,3,共4个,故选择C.【点睛】本题考查了实数的大小及整数的概念.4.-|-2017|的相反数是()A. 2017B.C. -2017D. -【答案】A【解析】【分析】-|-2017|去绝对值后得-2017,再求该数的相反数即可.【详解】解:-|-2017|去绝对值后得-2017,-2017的相反数为2017,故选择A.【点睛】本题考查了相反数.5.在下列数:+3、+(-2.1)、-、-π、0、-、中,正数有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】试题分析:因为+(-2.1)=-2.1,-=-9,所以在数:+3、+(-2.1)、-、-π、0、-、中,正数只有+3一个,故选:A.考点:正负数.6.下列算式正确的是()A. (-14)-5=-9B. 0 -(-3)=3C. (-3)-(-3)=-6D. ∣5-3∣=-(5-3)【答案】B【解析】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(-14)-(+5)=(-14)+(-5)=-19;0-(-3)=0+(+3)=3;(-3)-(-3)=(-3)+3=0;︱5-3︱=5-3=2.故选:B.7.2016年春节黄金周海南旅游大幅增长,据统计,2月7至13日,全省共接待游客约3710000人次,将3710000用科学记数法表示为()A. 3.71×107B. 0.371×107C. 3.71×106D. 37.1×106【答案】C【解析】试题分析:科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.3710000=3.71×.故选:C.考点:科学记数法——表示较大的数.8.下列各对数中,互为相反数的一组是()A. -32与-23B. (-3)2与-32C. -23与(-2)3D. (-3×2)3与-3×23【答案】B【解析】【分析】只有符号不同的两个数互为相反数,对各选项进行整理对比即可.【详解】解:A选项,-32=-9,-23=-8,故不是相反数;B选项,(-3)2=9,-32=9,故是相反数;C选项,-23=-8,(-2)3=-8,故不是相反数;D选项,(-3×2)3=-216,-3×23=-216,故不是相反数;故选择B.【点睛】本题考查了相反数的定义.9.13世纪数学家斐波那契的《计算书》中有这样一个问题:”在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( ) A. 42 B. 49 C. 76 D. 77【答案】C【解析】试题分析:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.依此即可求解.依题意有,刀鞘数为76.考点:有理数的乘方10. 如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A. 点A的左边B. 点A与点B之间C. 点B与点C之间D. 点C的右边【答案】C【解析】试题分析:当原点在A时,则最大;当原点在点C的右边,则,当原点在点A和点B之间,则最大,则只有当原点在点B和点C之间才符合条件.考点:(1)、数轴;(2)、绝对值二、填空题(本大题共6小题,每小题3分,共18分)11.计算的结果为__.【答案】2【解析】=+(5-3)=2;故答案是2。
人教版初中数学七年级上册第一章《有理数》综合测试题含答案

人教版初中数学七年级上册第一章《有理数》综合测试题一、正本清源,做出选择(每题3分,共30分)1.检测下列4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数. 从轻重的角度看,最接近标准的是( ).2.德润楼的高度为28米,地下室的高度为-3米,那么该楼的最高点比最低点(包括地下)高( ).A .25米B .-25米C .-31米D .31米3.据CCTV 新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为( )A .0.1044×106辆B .1.044×106辆C .1.044×105辆D .10.44×104辆4.若两个有理数在数轴上的对应点分别位于原点的两侧,那么这两个数的( ).A .和是正数B .积是正数C .商是正数D .平方和是正数5.若a ,b 互为相反数,则下列各组中,不互为相反数的是( ).A .-a 和-bB .2a 和2bC .a 2和b 2D .a 3和b 36.若a=3,∣b ∣=4,且在数轴上表示有理数b 的点在原点的左边,则a -b 的值为( ).A .1B .-1C .7D .-1或77.若a +b >0,且b <0,则a 、b 、―a 、―b 的大小关系为( ).A .―a <b <―b <aB .―a <―b <b <aC .―a <b <a <―bD .b <―a <―b <a8.下列计算正确的是( ).A .17÷4÷4=17÷4×14=17÷1=17 B .-22+(-1)2=-3 C . 2×32=(2×3)2= 62=36 D .6-6÷(2×3)=0÷2×3=09.如果x 是最大的负整数,y 是最小的正整数,那么x 16-y 13+3xy 的值是( ).A .-3B .3C .-5D .510.计算:21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,26-1=63,…,归纳各计算结果中的个位数字规律,猜测22020-1的个位数字是( ).A .1B .3C .5D .7二、有的放矢,圆满填空(每题3分,共24分) 11.某方便面厂生产的100g 袋装方便面外包装印有(100±5) g 的字样.小芳购买了一袋这 样的方便面后,称了一下发现只有96g ,你认为该厂在重量上______欺诈行为.(填“有”或“没有”)12.数轴上A 、B 、C 三点所对应的有理数分别为23-、45-、34,则此三点到原点的距离最近的点为___________.13.在-(-2)、∣-1∣、-∣0∣、-(+2)、-23、(-3)4中,非负数有__________个.14.敏敏手中的纸条上写着a 2,慧慧手中的纸条上写着(-2)2,若这两个数相等,那么a 的值为__________.15.两个数的积为-20,其中一个数比15-的倒数大3,则另一个数为________. 16.定义新运算“⊗”,规定:a ⊗b =13a -4b 2,则12⊗(-1)=_________. 17.下图是一个数值转换机,若输入数为3,则输出数是_________.18.根据指令机器人在数轴上能完成以下动作,(+,a )表示向右移a 个单位,(-,a )表示向左移a 个单位,现在机器人在-5处,接到指令(+,7)机器人应到_________处,此时请你接着给它一个指令___________,使其移到-2处.三、细心解答,运用自如(共66分)19.(每小题3分,共9分)计算下列各题:(1)13311(0.05)244-÷⨯÷- (2)-2×32-(-2×3)2(3)-19-5×(-2)+(-4)2÷(-8)20.(6分)已知A 为-4的相反数与-12的绝对值的差,B 是比-6大5的数.(1)求A -B 的值;(2)求B -A 的值;(3)从(1)和(2)的计算结果,你能知道A -B 与B -A 之间有什么关系吗?21.(6分)数学老师从马小虎的作业中找到两道错题,马小虎不明白错误的原因,聪明的你能帮他找到错误的原因,并帮助他改正吗?(1)-52+(-5)×(-2)=25+(-5)×(-2)=25-10=15.(2)(-3)-10÷5×15=(-3)-10÷1=(-3)-10=-13.22.(8分)在一条东西走向的大街上,一辆出租车第一次从A 地出发向东行驶4km 至B 地,第二次从B 地出发向西行驶8km 至C 地,第三次从C 地出发向东行驶3km 至D 地.(1)记向东为正,点A 为原点,把该出租车先后到达的地点A ,B ,C ,D 四地用数轴直观地描绘出来.(2)试说出C 地位于A 地的什么方向?距离A 地多远?23.(8分)利用计算器计算下列各式,并将结果填在横线上:(1)10 101×11=___________;10 101×22=___________;10 101×33=___________;(2)你发现了什么规律?(3)请你利用这个规律直接写出10 101×99的结果.24.(9分)环宇自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的实际生产情况(超产为正、减产为负,单位:辆)(1)根据记录可知前三天共生产自行车多少辆?(2)生产量最多的一天比生产量最少的一天多生产自行车多少辆?(3)该厂实行计件工资制,每生产一辆车60元,超额完成任务每辆车奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?25.(10分)我们约定将16=24,写成f (16)=4,例如:根据这个约定,可把64=26写成f (64)=6;将25=52写成g(25)=2,例如:根据这个约定,可把125=53写成g(125)=3.解答下列问题:(1)f (32)=_________,g(______)=1.(2)计算f (128)-g(625)的结果为多少?26.(10分)数学课上,老师随手在黑板上写下了7个有理数.4--,0,12⎛⎫--⎪⎝⎭,3,23-,-2020,-1.(1)请你指出哪些是整数?哪些是负整数?哪些是负分数?(2)若选择其中的四个整数,将这四个整数经过有理数的混合运算后,能否得出结果为-1?若能,写出算式,并写出计算过程;若不能,请说明理由.参考答案:一、正本清源,做出选择1.C;2.D;3.C;4.D;5.C;6.B;7.A.点拨:利用特殊值法,可令a=5,b=-2,所以有-a=-5,-b=2.8.B.点拨:选项A的结果为1716,选项C的结果为18,选项D的结果为5.9.A.点拨:根据题意,得x=-1,y=1,所以(-1)16-113+3×(-1)×1=1-1-3=-3. 10.C.点拨:由于2020=4×505,探究规律知,22020-1与24-1的个位数字相同. 二、有的放矢,圆满填空11.没有;12.23-;13.4;14.2或-2. 点拨:根据题意得,a2= (-2)2 = 4,又(±2)2 = 4,故a =±2. 15.10. 点拨:可列式为(-20)÷(-5+3)=10.16.0.点拨:根据题意,得12⊗(-1)= 13×12-4×(-1)2=4-4=0.17.65.点拨:根据题意,得32-1=8,所以82+1=65.18.2,(-,4). 点拨:可画出数轴,在数轴上操作.三、细心解答,运用自如19.(1)70;(2)-54;(3)7.20.由题意知,A=(4)128----=-,B=(-6)+5=-1;(1)A-B=(-8)-(-1)=-7;(2)B-A=(-1)-(-8)=7;(3)A-B与B-A互为相反数.21.(1)误认为-52的底数是-5;另外同号相乘得正,而不是取相同的符号.正解:原式=-25+(-5)×(-2)=-25+10=-15.(2)错在没有遵循同级运算应按从左到右的顺序进行计算.正解:原式=(-3)-2×15==(-3)-25=175-.22.(1)A,B,C,D四地用数轴表示如下图所示:(2)C地位于A地的西面,距离A地4km..23.(1)111 111;222 222;333 333.(2)10 101与某个个位与十位数字相同的两位数相乘,等于一个六位数,且这个六位数的每个数字都与这个两位数的每位数字相同.(3)10 101×99=999 999.24.(1)根据题意,得[(+5)+(-2)+(-4)]+200×3=599(辆).答:根据记录可知前三天共生产自行车599辆.(2)根据题意,得(+16)-(-10)=26(辆).答:生产量最多的一天比生产量最少的一天多生产自行车26辆.(3)由于(+5)+(-2)+(-4)+(+13)+(-10)+(+16)+(―9)=9(辆),所以(7×200+9)×60+9×15=84675(元).答:该厂工人这一周的工资总额是84675元.25.(1)5,5;(2)因为27=128,所以f (128)=7;因为54=625,所以g(625)=4;故f (128)-g(625)=7-4=3.26.(1)整数:-︱-4︱,0,3,-2020,-1;负整数:-︱-4︱,-2020,-1;负分数:2 3 .(2)能!算式为:0×(-2020)+(-︱-4︱)+3=0-4+3=-1.。
人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)一.选择题1.若气温上升2℃记作+2℃,则气温下降3℃记作()A.﹣2℃B.+2℃C.﹣3℃D.+3℃2.一个数的相反数是它本身,则该数为()A.0B.1C.﹣1D.不存在3.根据世界卫生组织的统计,截止10月28日,全球新冠确诊病例累计超过4430万,用科学记数法表示这一数据是()A.4.43×107B.0.443×108C.44.3×106D.4.43×1084.下列各组的两个数中,运算后的结果相等的是()A.23和32B.﹣33和(﹣3)3C.﹣22和(﹣2)2D.﹣|﹣2|和|﹣2|5.把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是()A.﹣5﹣4+7﹣2B.5+4﹣7﹣2C.﹣5+4﹣7﹣2D.﹣5+4+7﹣26.下列各数在数轴上所对应的点与原点的距离最远的是()A.2B.1C.﹣1.5D.﹣37.下列各式比较大小正确的是()A.﹣<﹣B.﹣100>0.1C.|﹣|<D.|﹣7|>|﹣8|8.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9﹣32÷8=0÷8=0乙:24﹣(4×32)=24﹣4×6=0丙:(36﹣12)÷=36×﹣12×=16丁:(﹣3)2÷×3=9÷1=9A.甲B.乙C.丙D.丁9.已知a、b、c大小如图所示,则的值为()A.1B.﹣1C.±1D.010.等边△ABC在数轴上的位置如图所示,点A,C对应的数分别是0和﹣1,若△ABC绕顶点A沿顺时针方向连续翻转,翻转一次后点B对应的数为1,则翻转2021次后点B对应的数是()A.不对应任何数B.2019C.2020D.2021二.填空题11.的倒数等于.12.用四舍五入法将0.00519精确到千分位的近似数是.13.101﹣102+103﹣104+…+199﹣200=.14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a,如1☆3=1×32+2×1×3+1=16.则(﹣2)☆3的值为.15.已知a<b,且|a|=6,|b|=3,则a+b的值为.三.解答题16.计算:(1)13+(﹣15)﹣(﹣23).(2)﹣17+(﹣33)﹣10﹣(﹣16).17.计算:(1)﹣14﹣(﹣2)3÷4×[5﹣(﹣3)2];(2).18.(6分)已知|a﹣2|与(b+2)2互为相反数,c、d互为倒数,x的绝对值为4,求的值.19.淇淇在计算:时,步骤如下:解:原式=﹣2022﹣(﹣6)+6÷﹣6………………①=﹣2022+6+12﹣18………………………②=﹣2048…………………………………③(1)淇淇的计算过程中开始出现错误的步骤是;(填序号)(2)请给出正确的解题过程.20.已知点A、B、C、D、E在数轴上分别对应下列各数:0,|﹣3.5|,(﹣1)2,﹣(+4),﹣2.(1)如图所示,在数轴上标出表示其余各数的点.(标字母)(2)用“<”号把这些数连接起来.21.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?22.定义一种新的运算:x★y=(x+2)×(y+2).(1)计算(﹣3)★(﹣4)与(﹣4)★(﹣3),此运算满足乘法交换律吗?(2)计算[(﹣3★(4)]★(﹣5)与(﹣3)★[(﹣4)★(﹣5)],此运算满足乘法结合律吗?23.已知|a|=5,|b|=2,回答下列问题:(1)由|a|=5,|b|=2,可得a=,b=;(2)若a+b>0,求a﹣b的值;(3)若ab<0,求|a+b|的值.24.如图,半径为1个单位长度的圆形纸片上有一点Q与数轴上的原点重合.(提示:圆的周长C=2πr,π取值为3.14)(1)把圆形纸片沿数轴向左滚动1周,点Q到达数轴上点A的位置,则点A表示的数是;(2)圆形纸片在数轴上向右滚动的周数记为正数,圆形纸片在数轴上向左滚动的周数记为负数,依次运动周数记录如下:+2,﹣1,﹣5,+4,+3,﹣2.当圆形纸片结束运动时,Q点运动的路程共是多少?此时点Q所表示的数是多少?参考答案一.选择题1.解:∵气温上升2℃记作+2℃,∴气温下降3℃记作﹣3℃.故选:C.2.解:∵0的相反数是0,∴一个数的相反数是它本身,则该数为0.故选:A.3.解:4430万=44300000=4.43×107.故选:A.4.解:A.23=8,32=9,∴23≠32,故此选项不符合题意;B.﹣33=﹣27,(﹣3)3=﹣27,∴﹣33=(﹣3)3,故此选项符合题意;C.﹣22=﹣4,(﹣2)2=4,∴﹣22≠(﹣2)2,故此选项不符合题意;D.﹣|﹣2|=﹣2,|﹣2|=2,∴﹣|﹣2|≠|﹣2|,故此选项不符合题意;故选:B.5.解:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)=﹣5+4﹣7﹣2=﹣10故选:C.6.解:A.2到原点的距离是2个长度单位,不符合题意;B.1到原点的距离是1个长度单位,不符合题意;C.﹣1.5到原点的距离是1.5个长度单位,不符合题意;D.﹣3到原点的距离是3个长度单位,符合题意;∴在数轴上所对应的点与原点的距离最远的点表示的数是﹣3.故选:D.7.解:A.∵|﹣|=,|﹣|=,而,∴,故本选项不合题意;B.﹣100<0.1,故本选项不合题意;C.|﹣|==,而,∴,故本选项符合题意;D.∵|﹣7|=7,|﹣8|=8,∴|﹣7|<|﹣8|,故本选项不合题意;故选:C.8.解:甲:9﹣32÷8=9﹣9÷8=7,原来没有做对;乙:24﹣(4×32)=24﹣4×9=﹣12,原来没有做对;丙:(36﹣12)÷=36×﹣12×=16,做对了;丁:(﹣3)2÷×3=9÷×3=81,原来没有做对.故选:C.9.解:根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选:A.10.解:由题意得:2021÷3=673•2,所以:翻转2021次后点B对应的数是2020,故选:C.二.填空题11.解:的倒数是:2.故答案为:2.12.解:将0.00519精确到千分位的近似数是0.005.故答案为:0.005.13.解:原式=(﹣1)+(﹣1)+…+(﹣1)=﹣50,故答案为:﹣5014.解:∵a☆b=ab2+2ab+a,∴(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32.15.解:∵|a|=6,|b|=3,∴a=±6,b=±3,∵a<b,∴a=﹣6,b=±3,∴a+b=﹣9或a+b=﹣3,故答案为:﹣9或﹣3.三.解答题16.解:(1)13+(﹣15)﹣(﹣23)=13+(﹣15)+23=21.(2)﹣17+(﹣33)﹣10﹣(﹣16)=﹣17+(﹣33)+(﹣10)+16=﹣44.17.解:(1)原式=﹣1﹣(﹣8)÷4×(5﹣9)=﹣1﹣(﹣8)÷4×(﹣4)=﹣1﹣8÷4×4=﹣1﹣8=﹣9;(2)原式===﹣9+(﹣)×12=﹣9+(﹣13)=﹣22.18.解:由题意得:|a﹣2|+(b+2)2=0,cd=1,x=4或﹣4,则a﹣2=0,b+2=0,解得a=2,b=﹣2,则当x=4时,原式=0+(﹣1﹣1)×4﹣5=﹣8﹣5=﹣13;当x=﹣4时,原式=0+(﹣1﹣1)×(﹣4)﹣5=8﹣5=3.故的值是﹣13或3.19.解:(1)∵(﹣1)2022=1,(﹣2)3=﹣8,6÷(﹣)=6÷=36,∴原式=1﹣(﹣8)+6÷,∴开始出现错误的步骤是①,故答案为:①;(2)原式=1﹣(﹣8)+6÷=1+8+6×6=1+8+36=45.20.解:(1)如图所示:(2)用“<”号把这些数连接起来:﹣(+4)<﹣2<0<(﹣1)2<|﹣3.5|.21.解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0,所以,小虫最后能回到出发点O;(2)根据记录,小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm,所以,小虫离开出发点的O最远为12cm;(3)根据记录,小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm),所以,小虫共可得到54粒芝麻.22.解:(1)此运算满足乘法交换律,理由如下:(﹣3)★(﹣4)=(﹣3+2)×(﹣4+2)=(﹣1)×(﹣2)=2;(﹣4)★(﹣3)=(﹣4+2)(﹣3+2)=(﹣2)×(﹣1)=2.故此运算满足乘法交换律.(2)运算不满足乘法结合律,理由如下:[(﹣3)★(﹣4)]★(﹣5)=[(﹣3+2)(﹣4+2)]★(﹣5)=2★(﹣5)=(2+2)(﹣5+2)=4×(﹣3)=﹣12;(﹣3)★[(﹣4)★(﹣5)]=(﹣3)★[(﹣4+2)(﹣5+2)]=(﹣3)★6=(﹣3+2)(6+2)=﹣1×8=﹣8.故此运算不满足乘法结合律.23.解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2.故答案为:±5,±2;(2)∵a+b>0,∴a=5,b=±2,当a=5,b=2时,a﹣b=5﹣2=3;当a=5,b=﹣2时,a﹣b=5﹣(﹣2)=5+2=7;综上,a﹣b=3或7.(3)∵ab<0,∴a=5,b=﹣2或a=﹣5,b=2.当a=5,b=﹣3时,|a+b|=|5﹣2|=3;当a=﹣5,b=3时,|a+b|=|﹣5+2|=3;∴|a+b|=3.24.解:(1)∵2πr=2×3.14×1=6.28,∴点A表示的数是﹣6.28,故答案为:﹣6.28;(2)∵|+2|+|﹣1|+|﹣5|+|+4|+|+3|+|﹣2|=17,∴17×2π×1=106.76,∴当圆片结束运动时,Q点运动的路程共有106.76,∵2﹣1﹣5+4+3﹣2=1,∴1×2π×1≈6.28,∴此时点Q所表示的数是6.28.答:当圆片结束运动时,Q点运动的路共是106.76,此时点Q所表示的数是6.28.。
人教版初中数学七年级上册第一章《有理数》综合能力检测题含答案

人教版初中数学七年级上册第一章《有理数》综合能力检测题一、选择题1.-2019的相反数是( )A.-2019B.2019C.-20191D. 20191 2.一个数的倒数等于它本身的数是( )A.1B.-1C.±1D.03.如果两个数的绝对值相等,则这两个数( )A.互为相反数 B .相等 C.积为0 D.互为相反数或相等4.下列说法中正确的是( )A.一个数前面加上“-”号,这个数就是负数B.非负数就是正数C.正数和负数统称为有理数D.0既不是正数又不是负数5.下列各对数中,数值相等的是( )A.-27与(-2)7B.-32与(-3)2C.-3×23与-32×2D.-(-3)2与-(-2)36.大于-2019而小于2020的所有整数的和是( )A.-2019B.-2018C.2019D.20207.当n 为正整数时,(-1)2n +1-(-1)2n 的值是( )A.0B.2C.-2D.2,或-28.定义a ∨b 表示a 、b 两数中较大的一个,a ∧b 表示a 、b 两数中较小的一个,则(50∨52)∨(49∧51)的结果是( )A.50B.52C.49D.519.某人用1000元购进一批货物,第二天售出,获利110,过几天又以900元购进一批货物,但这一次亏了10%,这样,他在这两次交易中( )A.不盈不亏B.盈10元C.亏10元D.不能确定10.31=3,32=9,33=27,34=81,35=243,36=729,…,用你发现的规律写出32019的末位数字是( )A.3B.9C.7D.1二、填空题11.绝对值最小的有理数是_____,最小的正整数是_____.12.写出与-32异号的两个有理数:_____.13.比7大-7的数是_____.14.最小的自然数与最大的负整数的差是_____.15.不为零的两数成互为相反数,则它们的商是_____.16.绝对值小于π的所有整数有_____个,其积为_____.17.在数轴上距2.5有3.5个单位长度的点所表示的数是_____.18.19.一外地民工10天的收支情况如下(收入为正):30元,-17元,23元,-15元,-3 元,27元,45元,-10元,-8元,20元.如果他原来有钱60元,则现在他有_____元钱.20.你喜欢吃拉面吗?拉面馆的师傅将一根很粗的面条,捏合一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条,拉成了许多细的面条,如图所示:这样,第4次捏合后可拉出_____根细面条;第_____次捏合后可拉出256根细面条.三、解答题21.计算:(1)-6+213.(2)(712-56+1)÷(-124). 22.某项科学研究,以45分钟为一个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正.例如9:15记为-1,10:45记为1等等,依此类推,上午7:45•应记为多少?23.一天美美和丽丽利用温差来测量山峰的高度.美美在山脚测得的温度是4℃,丽丽此时在山顶测得的温度是-2℃,已知该地区高度每升高100米,气温下降0.6℃,问这个山峰有多高?24.讲完“有理数的乘法”后,老师在课堂上出了下面一道计算题:992122×(-11). 不一会儿,不少同学算出了答案,老师把班上同学的解题归类写到黑板上: 解法一:原式=-219922×11=-2418922=-109912. 解法二:原式=(99+2122)×(-11)=99×(-11)+ 2122×(-11)=-109912. 解法三:原式=(100-122)×(-11)=100×(-11)+122×11=-109912. 对这三种解法,大家议论纷纷,你认为哪种方法最好?说说你的理由,通过对本题的求解,你有何启发?25.若定义一种新的运算为a *b =ab ÷(1-ab ),计算[(3*2)]*16. 26.写出一个三位数,它的各个数位上的数字都不相等,如637,用这个三位数各个数位上的数字组成一个最大数和一个最小数,并用最大数减去最小数,得到一个新的三位数.对于新得到的三位数,重复上面的过程,又得到一个新的三位数,一直重复下去,你发现了什么?请写出你的探索过程.27.任选1,2,3,…,9中的一个数字,将这个数乘7,再将结果乘15 873,你发现了什么规律?能试着解释一下理由吗?28.某一出租车一天下午以文昌阁为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-5,-6,-4,+10.(1)将最后一名乘客送到目的地,出租车在文昌阁的什么方向?离文昌阁多远?(2)若每公里的价格为2.4元,司机一个下午的营业额是多少?参考答案:一、1.B.点拨:负数的相反数是正数;2.C.点拨:1的倒数等于1,-1的倒数等于-1;3.D.点拨:非负数的绝对值等于它的本身,负数的绝对值等于它的相反数;4.D.点拨:A、B、C都应忽视了0;5.A.点拨:(-2)7=-27,-32=-9≠(-3)2=9,-3×23=-24≠-32×2=-18,-(-3)2=-9≠-(-2)3=-8;6.C.点拨:-2018+(-2017) +(-2016) +…+2016+2017+2018+2019=2019;7.C.点拨:因为(-1)2n+1=-1,(-1)2n=1,所以(-1)2n+1-(-1)2n=-1-1=2;8.B.点拨:由新定义,得(50∨52)∨(49∧51)=52∨49=52;9.B.点拨:1000×110-900×10%=10;10.C.点拨:末位数字依次以3、9、7、1循环,而2019÷4=502…3,即末位数字是7.二、11.0、1;12.答案不惟一,所有正数都可,如,2、9.等等;13.0.点拨:7+(-7)=0;14.1.点拨:最小的自然数是0,最大的负整数是-1,其差为0-(-1)=1;15.-1.点拨:取具体数值验证;16.7、0.点拨:绝对值小于π的所有整数有-3、-2、-1、0、1、2、3,其和为(-3)+(-2)+(-1)+0+1+2+3=0;17.-1和6.点拨:在2.5的左边,且与之相距3.5个单位长度的点是-1,在2.5的右边,且与之相距3.5个单位长度的点是6;18.日,一.点拨:星期一的温差=11℃-2℃=9℃,星期二的温差=12℃-1℃=11℃,星期三的温差=11℃-0℃=11℃,星期四的温差=9℃-(-1)℃=10℃,星期五的温差=7℃-(-4)℃=11℃,星期六的温差=5℃-(-5)℃=10℃,星期日的温差=7℃-(-5)℃=12℃,显然,星期日的温差最大,星期一的温差最小;19.152.点拨:60+30+(-17)+23+(-15)+(-3)+27+45+(-10)+(-8)+20=152;20.16、8.点拨:第在次捏合后可拉出21根细面条,第2次捏合后可拉出22根细面条,第3次捏合后可拉出23根细面条,第4次捏合后可拉出24根细面条,…,第n次捏合后可拉出2n根细面条,所以第4次捏合后可拉出24=16根细面条,若拉出256根细面条,则有2n=256,即2n=28,所以n=8.三、21.(1)原式=-183+73=-323.(2)原式=(712-56+1)×(-24)=(712-56+1)×(-24)=712×(-24)-56×(-24) +1×(-24)=-14+20-24=-18.22.以10时为0,向前每45分钟为一个“-1”,因为7:45到10:00共135分钟,含3个45分钟,所以7:45应记为-3.23.从山脚到山顶温度降低了4-(-2)=6(℃).因为每升高100米平均降低0.6℃,由6÷0.6=10,可知从山脚到山顶共升高了10个100米,所以山高为10×100=2500(米).即综合式子是:[4-(-2)]÷0.6×100=1000(米),即山高为1000米.24.解法二与解法三;解法二与解法三巧妙地利用了拆分思想,把带分数拆成一个整数与一个真分数的和,再应用分配律,简化了计算过程;我们在解题时要善于发现问题的特点.25.因为a*b=ab÷(1-ab),所以[(3*2)]*16=3×2÷(1-3×2)*16=(-65)*16=(-65)×16÷[1-(-65)×16]=(-15)÷65=-15×56=-16.26.若以637为例进行尝试:637→763-367=396→963-369=594→954-459=495→954-459=495,最后结果固定为495,若再用258进行尝试:258→852-258=594→954-459=495→954-459=495.经过多次尝试后发现,总能得到495这结果,并固定在这一结果上,似乎掉进了一个“黑洞”.点拨:这是数学上的“黑洞”问题,有兴趣的同学可以尝试探索四位数、五位数是否也存在同样的“黑洞”,自己发现数学中某些数字的神奇作用,感受数学的无穷魅力.27.取数字3,乘7,再将结果乘15 873,得(3×7)×15 873=21•×15 •873=333 333;取数字5,乘7,再将结果乘15 873,得(5×7)×15 873=35×15 •873=555555;取数字8,乘7,再将结果乘15 873,得(8×7)×15 873=56×15 873=888 888.由此,通过观察发现,任选1,2,3,…,9中的一个数字n ,将这个数乘7,再将结果乘15 873,均得到一个6位数,每位上的数字相同,都是n ,即(n ×7)×15 873=nnn nnn .因为7×15873=111 111,所以(n ×7)×15 873=n ×(7×15 873)=n ×111 111=nnn nnn .点拨:通过探索规律可以发现,数学真奇妙,数学中存在一些具有特殊作用的数字,如本题7与15 873的积就具有神奇的“复印”功能,你能将任意一个1,2,3,…,9中的数字连续“复印”6次,你还能发现其他具有“特异功能”的数字吗?28.(1)因为+9+(-3)+(-5)+4+(-8)+6+(-5)+(-6)+(-4)+10=-2,所以出租车在文昌阁的西边,距文昌阁2千米.(2)因为+9+3-+5-+4+8-+6+5-+6-+4-+10=60,所以60×2.4=144,即司机一个下午的营业额是144元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章有理数综合测试卷
第Ⅰ卷 (选择题 共30分)
一、选择题(每题3分,共30分) 1.6.0009精确到千分位是( ) A .6.0 B .6.00 C .6.000 D .6.001
2.某商场购进某品牌上衣30件,下列与购进某品牌上衣30件具有相反意义的量是( )
A .发给员工这种上衣10件
B .售出这种上衣10件
C .这种上衣剩余10件
D .穿着这种上衣10件
3.在-0.4217中用数字3替换其中的一个非零数字后,使所得的数最小,则被替换的数字是( )
A .4
B .2
C .1
D .7
4.对下列各式计算结果的符号判断正确的是( ) A .(-2)×(-21
3)×(-3)<0 B .(-5)-5+1>0
C .(-1)+(-13)+1
2
>0 D .(-1)×(-2)<0
5.两数相减,如果差等于减数的相反数,那么下列结论中正确的是( ) A .减数一定是零 B .被减数一定是零
C .原来两数互为相反数
D .原来两数的和等于1 6.下面是小卢做的数学作业,其中正确的是( )
①0-(+47)=47;②0-(-714)=714;③(+15)-0=-15;④(-15)+0=-1
5.
A .①②
B .①③
C .①④
D .②④
7.某工厂为了完成一项任务,第一天工作15分钟,以后的五天中,后一天的工作时间都是前一天的2倍,则第六天的工作时间是( )
A .1.5小时
B .3小时
C .4.8小时
D .8小时
8.计算12÷(-3)-2×(-3)的结果是( )
A.-18 B.-10 C.2 D.18
9.如图1,数轴上的点P,O,Q,R,S表示某城市一条大街上的五个公交车站点,有一辆公交车距P站点3 km,距Q站点0.7 km,则这辆公交车的位置在( )
图1
A.R站点与S站点之间 B.P站点与O站点之间
C.O站点与Q站点之间 D.Q站点与R站点之间
10.计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母A~F共16个记数符号,这些符号与十进制的数的对应关系如下表:
例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=( )
A.16 B.1C C.1A D.22
请将选择题答案填入下表:
第Ⅱ卷(非选择题共70分)
二、填空题(每题3分,共18分)
11.倒数为3的数是________.
12.已知a-3与b+4互为相反数,则a+b=________.
13.每袋大米以50 kg 为标准,其中超过标准的千克数记为正数,不足标准的千克数记为负数,则图2中自左向右数第3袋大米的实际重量是________kg .
图2
14.若|x +2|+|y -3|=0,则x -y 的值为________.
15.2016年春节期间,在网络上搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为__________.
16.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).
如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是________(填“一类、二类、三类”中的一个).
三、解答题(共52分)
17.(本小题满分6分)把下列各数分别填在相应的括号里: -7,3.01,2018,-0.142,0.1,0,99,-75.
整数集合:{ …}; 分数集合:{ …}; 负有理数集合:{ …}.
18.(本小题满分6分)一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.
(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;
(2)小明家与小刚家相距多远?
图3
19.(本小题满分6分)规定“*”是一种新的运算法则:a*b=a2-b2,其中a,b为有理数.
(1)求2*6的值;
(2)求3*[(-2)*3]的值.
20.(本小题满分6分)计算: (1)-14
-(1-0.5)÷3×[2-(-3)2
];
(2)0.7×1949+234×(-14)+0.7×59+1
4×(-14).
21.(本小题满分6分)小宇在做分数的乘除法练习时,把一个数乘-213错写成除以-21
3,
得到的结果是18
35
,这道题的正确结果应该是多少?
22.(本小题满分7分)小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:
-3 -5 0 +3 +4
(1)从中取出2张卡片,使这2张卡片上的数的乘积最大; (2)从中取出2张卡片,使这2张卡片上的数相除的商最小;
(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;
(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24.(写出一种即可)
23.(本小题满分7分)某检修小组乘车从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶路程记录如下(单位:千米):
(1)在第________次记录时距A地最远;
(2)求收工时距A地多远;
(3)若每千米耗油0.1升,每升汽油需7.2元,则检修小组工作一天需汽油费多少元?
24.(本小题满分8分)股民吉姆上星期买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(上涨记为正,下跌记为负,星期六、星期日股市休市)(单位:元):
(1)星期三收盘时,每股是多少元?
(2)本周内每股最高价是多少元?最低价是多少元?
(3)已知吉姆买进股票时付了1.5‰的手续费,卖出时还需付成交额的1.5‰的手续费和1‰的交易税,如果吉姆在星期五收盘前将股票全部卖出,他的收益情况如何?
1.D 2.B 3.B 4.A 5.B 6.D 7.D 8.C 9.D 10.A 11.13
12.-1 13.49.3 14.-5 15.4.51×107
16.二类 17.解:整数集合:{-7,2018,0,99,…};
分数集合:⎩⎨⎧⎭⎬⎫3.01,-0.142,0.1,-7
5,…;
负有理数集合:⎩⎨⎧⎭
⎬⎫-7,-0.142,-7
5,….
18.解:(1)如图:
(2)根据(1)可得小明家与小刚家相距4-(-5)=9(千米). 19.解:(1)根据题意,得2*6=22
-62
=4-36=-32. (2)根据题意,得(-2)*3=4-9=-5, 则3*[(-2)*3]=3*(-5)=9-25=-16.
20.解:(1)原式=-1-0.5×13×(2-9)=-1-16×(-7)=-1+76=1
6
.
(2)原式=0.7×(1949+59)+(-14)×(234+1
4)=0.7×20-14×3=14-14×3=14×(1
-3)=14×(-2)=-28.
21.解:根据题意,得1835×(-73)×(-73)=14
5.
22.解:(1)(-3)×(-5)=15. (2)-5÷(+3)=-5
3.
(3)(-5)4
=625.
(4)答案不唯一,如[(-3)-(-5)]×(+3)×(+4)=2×12=24. 23.解:(1)由题意,得第一次距A 地|-3|=3(千米);
第二次距A地|-3+8|=5(千米);
第三次距A地|-3+8-9|=4(千米);
第四次距A地|-3+8-9+10|=6(千米);
第五次距A地|-3+8-9+10+4|=10(千米);
而第六次、第七次是向相反的方向又行驶了8千米,
所以在第五次记录时距A地最远.故答案为五.
(2)根据题意,得-3+8-9+10+4-6-2=2(千米).
答:收工时距A地2千米.
(3)根据题意,得检修小组工作一天行驶的路程为|-3|+|+8|+|-9|+|+10|+|+4|+|-6|+|-2|=42(千米),
42×0.1×7.2=30.24(元).
答:检修小组工作一天需汽油费30.24元.
24.解:(1)星期三收盘时,每股是27+4+4.5-1=34.5(元).
(2)本周内每股最高价为27+4+4.5=35.5(元),最低价为27+4+4.5-1-2.5-6=26(元).
(3)买入成本:1000×27×(1+1.5‰)=27040.5(元),
卖出所得:1000×26×(1-1.5‰-1‰)=25935(元).
收益:25935-27040.5=-1105.5(元).
答:如果吉姆在星期五收盘前将股票全部卖出,他将亏损1105.5元.。