数列计算题
高中数学《数列》练习题(含答案解析)

高中数学《数列》练习题(含答案解析)一、单选题1.已知等差数列{an }的前n 项和为Sn ,且48S S =13,则816S S =( )A .310 B .37C .13D .122.已知等比数列{an }的前n 项和为Sn ,则“Sn +1>Sn ”是“{an }单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.现有下列说法:①元素有三个以上的数集就是一个数列; ①数列1,1,1,1,…是无穷数列; ①每个数列都有通项公式;①根据一个数列的前若干项,只能写出唯一的通项公式; ①数列可以看着是一个定义在正整数集上的函数. 其中正确的有( ). A .0个B .1个C .2个D .3个4.数列{}n a 的前n 项和为n S ,且1(1)(21)n n a n +=-⋅+,则2021S =( )A .2020B .2021C .2022D .20235.已知等差数列{}n a 中,6819,27a a ==,则数列{}n a 的公差为( ) A .2B .3C .4D .56.标准对数视力表(如图)采用的“五分记录法”是我国独创的视力记录方式.标准对数视力表各行为正方形“E ”字视标,且从视力5.1的视标所在行开始往上,每一行“E ”的边长都是下方一行“E ”的边长的视力4.0的视标边长为a ,则视力4.9的视标边长为( )A .4510aB .91010aC .4510a -D .91010a -7.已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a8.已知{}n a 是等差数列,公差0d >,其前n 项和为n S ,若2a 、52a+、172a +成等比数列,()12n n n a S +=,则不正确的是( ) A .1d= B .1020a = C .2n S n n =+ D .当2n ≥时,32n n S a ≥9.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .1010101110.等差数列{}n a 前n 项和为n S , 281112a a a ++=,则13S =( ) A .32B .42C .52D .62二、填空题11.已知a 是1,2的等差中项,b 是1-,16-的等比中项,则ab 等于___________. 12.已知等差数列{}n a 的前n 项和为n S ,若65210,6Sa a =+=,则d =_________.13.设n S 是等差数列{}n a 的前n 项和,若891715a a =,则1517S S =______.14.已知等差数列{}n a 的前n 项和为nS,且1516a a +=-,936S =-,则n S 的最小值是______.三、解答题15.已知数列{}n a 为等差数列,{}n b 是公比为2的等比数列,且满足11221,5a b b a ==+=(1)求数列{}n a 和{}n b 的通项公式; (2)令n n n c a b =+求数列{}n c 的前n 项和n S ;16.已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (1)求{}n a 的通项公式;(2)2n nb a =-+求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 17.某公司2021年年初花费25万元引进一种新的设备,设备投入后每年的收益均为21万元.若2021年为第1年,且该公司第()n n *∈N 年需要支付的设备维修和工人工资等费用总和n a (单位:万元)的情况如图所示.(1)求n a ;(2)引进这种设备后,第几年该公司开始获利? 18.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}nb 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.参考答案与解析:1.A【分析】运用等差数列前n 项和公式进行求解即可. 【详解】设等差数列{an }的公差为d , ①41181461582832a d a d a d S S +==⇒=+,显然0d ≠, ①8161182820283161204012010a d d d a d S d S d ++===++, 故选:A 2.D【分析】由110++>⇒>n n n S S a ,举反例102=>n na 和12nn a =-即可得出结果 【详解】110++>⇒>n n n S S a ,例如102=>n na ,但是数列{}n a 不单调递增,故不充分; 数列{}n a 单调递增,例如12n na =-,但是1n n S S +<,故不必要; 故选:D 3.B【分析】根据给定条件,利用数列的定义逐一分析各个命题,判断作答.【详解】对于①,数列是按一定次序排成的一列数,而数集的元素无顺序性,①不正确; 对于①,由无穷数列的意义知,数列1,1,1,1,…是无穷数列,①正确; 对于①0.1,0.01,0.001,0.0001,得到的不足近似值,依次排成一列得到的数列没有通项公式,①不正确;对于①,前4项为1,1,1,1的数列通项公式可以为1,N n a n =∈,cos 2π,N n b n n *=∈等,即根据一个数列的前若干项,写出的通项公式可以不唯一,①不正确;对于①,有些数列是有穷数列,不可以看着是一个定义在正整数集上的函数,①不正确, 所以说法正确的个数是1. 故选:B 4.D【分析】根据数列{}n a 的通项公式,可求得12342,2a aa a +=-+=-,依此类推,即可求解.【详解】①1(1)(21)n n a n +=-⋅+,故12343,5,7,9a a a a ==-==-故202112320202021S a a a a a =+++⋅⋅⋅++357940414043=-+-+⋅⋅⋅-+2101040432023=-⨯+=.故选:D. 5.C【分析】利用862d a a =-,直接计算公差即可. 【详解】等差数列{}n a 中,6819,27aa ==,设公差为d ,则86227198d a a =-=-=,即4d =.故选:C. 6.D【分析】由等比数列的通项公式计算.【详解】设第n 行视标边长为n a ,第n 1-行视标边长为()12n a n -≥,由题意可得()12n n a n -=≥,则()1101102nn a n a --=≥,则数列{}n a 为首项为a ,公比为11010-的等比数列, 所以101191010101010a a a ---⎛⎫== ⎪⎝⎭,则视力4.9的视标边长为91010a -,故选:D. 7.B【分析】令10t n =-≥,则1n t =+,22641411ttyt t t t ,然后利用函数的知识可得答案. 【详解】令10t n =-≥,则1n t =+,22,641411tty tt t t当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B . 8.A【分析】利用等差数列的求和公式可得出1n a na =,可得出10d a =>,根据已知条件求出1a 的值,可求得n a 、n S 的表达式,然后逐项判断可得出合适的选项.【详解】因为{}n a 是等差数列,则()()1122nn n n a n a a S ++==,所以,1n a na =, 所以,110n n d a a a +=-=>,因为()()2521722a a a +=+,可得()()2111522172a a a +=+,整理可得21191640a a --=,因为10a >,故12d a ==,A 错;12n a na n ==,则1020a =,B 对;()()112nn n a S n n +==+,C 对;当2n ≥时,()233202n n S a n n n n n -=+-=-≥,即32n n S a ≥,D 对.故选:A. 9.C【解析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=.故选:C【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和; (4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 10.C【分析】将2811a a a ++化成1a 和d 的形式,得到二者关系,求得7a ,利用13713S a =求得结果. 【详解】()()28111111()71031812a a a a d a d a d a d ++=+++++=+=164a d ∴+=,即74a = ()1131371313134522a a S a +∴===⨯= 故选:C.【点睛】思路点睛:该题考查的是有关数列的问题,解题思路如下:(1)根据题中所给的条件,结合等差数列通项公式,将其转化为关于首项与公差的式子; (2)化简求得数列的某一项;(3)结合等差数列求和公式,得到和与项的关系,求得结果. 11.6±【分析】根据等差和等比中项的定义求出,a b 得值,即可求解. 【详解】因为a 是1,2的等差中项,所以12322a +==, 因为b 是1-,16-的等比中项,所以2(1)(16)16b =-⨯-=,4b =±,所以6ab =±.故答案为:6±. 12.1【分析】由等差中项性质可求4a ,又510S =依据等差数列的前n 项和公式及通项公式列方程即可求得公差 【详解】由266a a +=有43a =,而510S = ①结合等差数列的前n 项和公式及通项公式113322a d a d +=⎧⎨+=⎩即可得1d = 故答案为:1【点睛】本题考查了等差数列,利用等差中项求项,结合已知条件、前n 项和公式、通项公式求公差13.1【分析】利用等差数列性质及前n 项和公式计算作答.【详解】在等差数列{}n a 中,891715a a =,所以1151511588117171179915(15(152152117(17)(1717)2))2a a S a a a a a a S a a a a ++⨯====⋅=++⨯. 故答案为:1 14.42-【分析】根据给定条件求出等差数列{}n a 的首项、公差,探求数列{}n a 的单调性即可计算作答.【详解】设等差数列{}n a 的公差为d ,由1591636a a S +=-⎧⎨=-⎩得112416989362a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得1122a d =-⎧⎨=⎩, 因此,()1212214n a n n =-+-⨯=-,令0n a =,解得7n =,于是得数列{}n a 是递增等差数列,其前6项为负,第7项为0,从第8项开始为正, 所以6S 或7S 最小,最小值为()656122422⨯⨯-+⨯=-. 故答案为:42-15.(1)21n a n =-,12n n b -=(2)221nn S n =+-【分析】(1)根据等差数列和等比数列的通项公式得到2d =,根据通项公式的求法得到结果;(2)1221n n n n c a b n -+=+=-分组求和即可.【详解】(1)设{}n a 的公差为d , 由已知,有215d ++=解得2d =,所以{}n a 的通项公式为21,n a n n *=-∈N , {}n b 的通项公式为12,n n b n -*=∈N .(2)1221n n n n c a b n -+=+=-,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:212(121)21122n n n n n S n -+-=+=+--.16.(1)2n a n =-;(2)1n nT n =+.【解析】(1)由30S =,55S =-,可得113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩求出1,a d ,从而可得{}n a 的通项公式;(2)由(1)可得n b n =,从而可得11111(1)1n n b b n n n n +==-++,然后利用裂项相消求和法可求得n T 【详解】解:(1)设等差数列{}n a 的公差为d , 因为30S =,55S =-.所以113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩,化简得11021a d a d +=⎧⎨+=-⎩,解得111a d =⎧⎨=-⎩,所以1(1)1(1)(1)2n a a n d n n =+-=+--=-, (2)由(1)可知2(2)2n n b a n n =-+=--+=, 所以11111(1)1n n b b n n n n +==-++, 所以111111(1)()()1223111n nT n n n n =-+-+⋅⋅⋅+-=-=+++ 【点睛】此题考查等差数列前n 项和的基本量计算,考查裂项相消求和法的应用,考查计算能力,属于基础题17.(1)2n a n =;(2)第2年该公司开始获利.【分析】(1)根据题意得出数列的首项和公差,进而求得通项公式 (2)根据题意算出总利润,进而令总利润大于0,解出不等式即可. 【详解】(1)由题意知,数列{}n a 是12a =,公差2d =的等差数列, 所以()()112122n a a n d n n =+-=+-⨯=.(2)设引进这种设备后,净利润与年数n 的关系为()F n ,则()()2121222520252n n F n n n n n -⎡⎤=-+⨯-=--⎢⎥⎣⎦. 令()0F n >得220250n n -+<,解得1010n -<+ 又因为n *∈N ,所以2n =,3,4,…,18, 即第2年该公司开始获利.18.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ① 则1231111012112222Γ33333-----=++++n nn . ①由①-①得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n n T --=++++,① 231112133333n n n n n T +-=++++,① ①-①得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n n n T =--⋅, 所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2n n S T <. [方法三]:构造裂项法由(①)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243n n c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭. 则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二. [方法四]:导函数法设()231()1-=++++=-n n x x f x x x x x x ,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nx x . 又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n n n n n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n nS T,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nnc n,使1+=-n n nb c c,求得nT的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.。
奥数等差数列

1、求1+2+3+4+……+24+25的和2、甲数=1+3+5+……+97+99,乙数=2+4+6+……+98+100,问:甲数和乙数谁大?大多少?3、从4到81所有自然数的和是多少?4、五个连续自然数的和是100,求这五个数各是多少?5、四个连续自然数的和是162,求这四个数。
6、比101小的所有双数的和是多少?7、7个连续自然数的和是105,其中最小的数是多少?最大的数是多少?8、39个连续奇数的和是1989,其中最大的一个奇数是多少?9、全部三位数的和是多少?10、三年级52名学生站成4排照相,每一排都要比前一排多2人,每排各站多少人?11、十五个连续自然数中,最大数是最小数的3倍。
这十五个数的和是多少?12、11至18八个连续自然数的和加上1992,所得结果恰巧等于另外八个连续自然数的和,这另外八个连续自然数中,最小的是多少?13、四个连续奇数,第一个是第四个数的19/21,那么这四个数的和是多少?14、从1到n的连续自然数n个,这些自然数中偶数和是90,奇数和是100,n 是多少?15、在从1992开始的100个连续自然数中,前50个数的和比后50个数的和小多少?16、3=1+2,1、2是连续自然数,10以内能用连续自然数的和表示出来的数有哪几个,请你写出来。
35能不能用几个连续自然数的和表示出来?如能,你能写出几种表示形式?请写出来。
17、有些数既能表示成3个连续自然数的和,又能表示成4个连续自然数的和,还能表示成5个连续自然数的和。
例如:30就满足上述要求。
因为30=9+10+11,30=6+7+8+9,30=4+5+6+7+8。
请你在700至1000之间找出所有满足上述要求的数,并简述理由。
18、有三个连续偶数,如果最大的一个偶数增加6之后,正好是原来三个偶数和的一半,最大的一个偶数是多少?19、1~1991这1991个自然数中,所有奇数之和与所有偶数之和的差是多少?20、1+2+3+4+…+1990+1991所得的和是奇数还是偶数?21、从100到200之间,所有奇数相加的和是多少?22、有100个连续自然数的和是8450,第一个自然数是多少?23、三个连续自然数,后两个数的积与前两个数的积之差是114,最小数是多少?24、五个连续奇数和的倒数是1/45,这五个奇数中最大的数是多少?25、在两位数10、11、……、98、99中,将每个被7除余2的数的个位与十位之间添加一个小数点,其余的数不变,问:经过这样改变之后,所有数的和是多少?1、1+2+3+…+19992、2+5+8+…+2993、求数列6,9,12,…前100个数的和。
数列简单练习题

数列简单练习题数列是数学中一个基础且重要的概念,它在各个领域中都有广泛的应用。
为了帮助大家更好地理解和掌握数列的概念及相关计算方法,本文将为大家提供一系列数列简单练习题。
通过这些练习题的训练,相信大家能够在数列方面得到更好的掌握。
练习题一:等差数列求和1. 求等差数列2, 5, 8, 11, 14, …的前10项之和。
解析:根据等差数列的求和公式,可知等差数列的前n项之和为Sn = n * (a1 + an) /2,其中a1为首项,an为末项,n为项数。
根据给定的数列可知,a1 = 2,an = 2 + (n-1) * 3 = 3n - 1。
代入公式,得到S10 = 10 * (2 + (10-1) * 3) / 2 = 10 * (2 + 27) / 2 = 10 * 29 / 2 = 145。
所以,等差数列2, 5, 8, 11, 14, …的前10项之和为145。
练习题二:等比数列求和2. 求等比数列1, 3, 9, 27, …的前5项之和。
解析:根据等比数列的求和公式,可知等比数列的前n项之和为Sn = a1 * (q^n - 1) / (q - 1),其中a1为首项,q为公比,n为项数。
根据给定的数列可知,a1 = 1,q = 3。
代入公式,得到S5 = 1 * (3^5 - 1) / (3 - 1) = 1 * (243 - 1) / 2 = 242 / 2 = 121。
所以,等比数列1, 3, 9, 27, …的前5项之和为121。
练习题三:斐波那契数列3. 斐波那契数列的定义是f(1) = 1,f(2) = 1,f(n) = f(n-1) + f(n-2)(n≥3)。
求斐波那契数列的前10项。
解析:根据斐波那契数列的定义可知,首先确定前两项f(1)和f(2)分别为1。
然后根据递推公式f(n) = f(n-1) + f(n-2),可以计算出后续的项。
利用递推公式,可以得到斐波那契数列的前10项依次为1, 1, 2, 3, 5, 8, 13, 21, 34, 55。
等差数列练习题

1、计算:18+19+20+2l+22+23.2、计算:100+102+104+106+108+110+112+114.3、计算:73+77+81+85+89+93.4、计算:995+996+997+998+999.5、计算:(1 999+1 997+1 995+…+13+11)-(12+14+16+…+1 996+1 998).6、计算:1+3+5+7+…+37+39.7、计算:2+6+10+14+…+210+214.8、计算:4+7+10+13+…+298+301.9、计算:1+11+21+31+…+101+111.10、求出所有的2位数的和.11、自1开始,每隔两个数写出一个数来,得到数列:1,4,7,10,13,…,求出这个数列前100项之和.12、影剧院有座位若干排,第一排有25个座位,以后每排比前一排多3个座位.最后一排有94个座位.问:这个影剧院共有多少个座位?1、求1至100内被4除余1的数的和.2、求1至100内既是3的倍数又是5的倍数的所有数的和.3、有10只盒子,44只乒乓球.把这44只乒乓球放到盒子中,每个盒子中至少要放一个球,能不能使每个盒中的球数都不相同?4、影剧院共有25排座位.第一排有20个座位,以后每排比前一排多2个座位.问:影剧院共有多少个座位?5、力学小学的礼堂里共有30排座位.从第一排开始,以后每排比前一排多2个座位,最后一排有75个座位.问:这个礼堂共有多少个座位?6、时钟在每个整点时敲这钟点数,每半点钟时敲1下.问:一昼夜该时钟总共敲了多少下?7、求所有三位数的和.8、求1至100(包括100在内)的所有5的倍数的和.9、50把锁的钥匙搞乱了.为了使每把锁都配上自己的钥匙,至多要试多少次就足够了?10、已知数列:2,5,3,3,7,2,5,3,3,7,2,5,3,3,7,….这个数列的第30项是哪个数?到第25项止,这些数的和是多少?11、在24个连续的自然数中,有一个自然数出现3次,另有2个自然数各出现2次。
奥数题库(四年级)数列规律计算(普通)

双重数列规律1.观察如下数列:10,1,10,2,10,3,10,4,……,10,9.这个数列一共有多少个数?2.观察如下数列:5,1,5,2,5,3,5,4,……,5,10.这个数列一共有多少个数?3.观察如下数列:8,1,8,2,8,3,8,4,……,8,7.这个数列一共有多少个数?4.观察如下数列:10,2,10,4,10,6,10,8,10,10,……,10,100.那么这个数列一共有多少个数?5.观察如下数列:5,3,5,6,5,9,5,12,……,5,99.那么这个数列一共有多少个数?6.观察如下数列:10,2,10,4,10,6,10,8,10,10,……,100,10.那么这个数列一共有多少个数?7.观察如下数列:1,100,2,99,3,98,2,97,1,96,2,95,3,94,2,93,1,92,……,2,2,1.这个数列的和是多少?8.观察如下数列:1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,1,84,……,0.这个数列的和是多少?9.观察如下数列:1,60,2,57,3,54,2,51,1,48,2,45,3,42,……,2,3.那么这个数列的和是多少?10.观察如下数列:1,100,2,99,3,98,2,97,1,96,2,95,3,94,2,93,1,92,……,2,1.这个数列中有多少个“2”?11.观察如下数列:1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,1,84,……,0.这个数列中有多少个“2”?12.观察如下数列:1,60,2,57,3,54,2,51,1,48,2,45,3,42,……,2,3.那么这个数列中有多少个“2”?数组规律1.观察如下数组:(1,2,3),(2,3,4),(3,4,5),……,那么第10组中的三个数是什么?2.观察如下数组:(2,3,4),(3,4,5),(4,5,6)……,那么第10组中的三个数是什么?3.观察如下数组:(2,4,6),(4,6,8),(6,8,10),……,那么第10组中的三个数是什么?4.观察如下数组:(1,2,3),(2,3,4),(3,4,5),……,那么前10组中所有数的和是多少?5.观察如下数组:(2,3,4),(3,4,5),(4,5,6)……,那么前10组中所有数的和是多少?6.观察如下数组:(2,4,6),(4,6,8),(6,8,10),……,那么前10组中所有数的和是多少?7.观察如下数列:1,2,3,4,4,5,6,7,7,8,9,10,……,那么这个数列的第24个数是什么?8.观察如下数列:3,4,5,6,6,7,8,9,9,10,11,12,……,那么这个数列的第24个数是什么?9.观察如下数列:2,4,6,8,8,10,12,14,14,16,18,20,……,那么这个数列的第24个数是什么?10.观察如下数列:1,2,3,4,4,5,6,7,7,8,9,10,……,97,98,99,100,那么这个数列一共有多少数?11.观察如下数列:3,4,5,6,6,7,8,9,9,10,11,12,……,99,100,101,102,那么这个数列一共有多少数?12.观察如下数列:2,4,6,8,8,10,12,14,14,16,18,20,……,194,196,198,200,那么这个数列一共有多少数?。
数列的大题

{
}
4、已知数列 {an } 的前 n 项和为 S n ,若 S n 2an n, 且bn n . a a n n 1 (1) 求证: {an 1} 为等比数列; (2) 求数列 b } 的前 n 项和 T
n
a 1
n
5 在数列{an}中,a1=1,an+1=2an+2 . (1)设 bn=
2a1 3a2 1, a32 9a2 a6
. (I)求数列
{an }
的通项公式.
(II)设 bn log 3 a1 log 3 a2 log 3 an ,求数列 { 1 } 的前 n 项和.
bn
an 4、已知等差数列{an}满足 a2=0,a6+a8=-10 (II)求数列 2 n 1 的前 n 项和. (I)求数列{an}的通项公式;
考点三:数列的求和 1、已知数列 an 的各项均是正数,其前 n 项和为 S n ,满足 S n 4 an . ( n N ) (Ⅰ)求数列 an 的通项公式; (Ⅱ)设 bn
3 1 (n N ), 数列 {bnbn 2 } 的前 n 项和为 Tn ,求证: Tn . 4 2 log 2 an
3
5、 已知数列 {an } 是公差为 2 的等差数列, 且 a3 +1 是 a1+1 与 a7+1 的等比中项;设数列 bn 的
n
前 n 项和为 S ,且 bn 2 S n ;(1)求数列 {a } 和 b 的通项公式; n n (2)若 cn (an -1) bn ( n N * ), Tn 为数列 cn 的前 n 项和,求 Tn .
考点四、数列的应用 13 1、已知等比数列{an}的公比 q=3,前 3 项和 S3= . (1)求数列{an}的通项公式; 3 π (2)若函数 f(x)=Asin(2x+φ)(A>0,0<φ<π)在 x= 处取得最大值, 且最大值为 a3, 求函数 f(x) 6 的解析式.
数列计算题及答案

数列计算题及答案数学中的数列是一种有趣的概念,简单来说就是一组按照特定规律排列的数字。
在学校里,我们经常会遇到一些数列计算题,这些题目能够帮助我们锻炼数学思维,提升解题能力。
下面,就让我来为大家介绍几道常见的数列计算题及答案。
一、等差数列计算题等差数列的特点就是数列中相邻两项之间的差值相等。
因此,在解等差数列计算题时,我们只需找出差值,然后就能轻松地推算出数列中的其它项。
下面,就让我们来看看一道简单的等差数列计算题:题目:已知等差数列的第1项为3,公差为4,求第10项的值。
解题:根据等差数列的定义,可以列出数列的通项公式:an = a1 + (n-1)d其中,an表示数列的第n项,a1为数列的第1项,d为数列的公差。
将给定的数据代入公式中,就可以求出第10项的值:a10 = 3 + (10-1)×4 = 39因此,该等差数列的第10项的值为39。
二、等比数列计算题等比数列的特点就是数列中相邻两项之间的比值相等。
在解等比数列计算题时,我们需要找到相邻两项之间的比值,然后用这个比值求出数列中的其它项。
下面,就让我们来看看一道简单的等比数列计算题:题目:已知等比数列的第1项为2,公比为3,求第5项的值。
解题:根据等比数列的定义,可以列出数列的通项公式:an = a1×q^(n-1)其中,an表示数列的第n项,a1为数列的第1项,q为数列的公比。
将给定的数据代入公式中,就可以求出第5项的值:a5 = 2×3^(5-1) = 162因此,该等比数列的第5项的值为162。
三、斐波那契数列计算题斐波那契数列是数学中的一个经典问题,其特点是数列中每一项的值都等于前两项的和。
在解斐波那契数列计算题时,我们只需要找到数列中前两项的值,然后就可以逐项计算出其它项。
下面,就让我们来看看一道简单的斐波那契数列计算题:题目:求斐波那契数列的第10项的值。
解题:由于斐波那契数列中每一项的值都等于前两项的和,因此,我们可以用循环的方式依次计算出数列中的各项。
数列基础大题20道练习

所以 .
(2)当 时, ,
而 ,
所以数列 是等比数列,且首项为3,公比为3.
(3)由(1)(2)得 ,
,
所以
①
②
由①-②得
,
所以 .
因为 ,
所以 .
【点睛】
本题考查了利用 和 的关系求通项,构造法证明等比数列,以及错位相减法求和,是数列基本方法的考查,属于基础题.
5.(1) ;(2) .
(2)由(1)得 ,然后利用裂项相消法可求得
【详解】
解:(1)设 的公差为d,因为 , , 成等比数列,所以 .
即 ,即 又 ,且 ,解得
所以有 .
(2)由(1)知:
则 .即 .
【点睛】
此题考查等差数列基本量计算,考查裂项相消法求和,考查计算能力,属于基础题
13.(1) ;(2)
【分析】
(1)利用递推关系式,根据 ,逐项代入即可求解.
(2)由(1)可知 ,根据裂项相消法即可求出结果.
【详解】
设等差数列 的公差为 ,
由 ,可得
解得 ,
所以等差数列 的通项公式可得 ;
(2)由(1)可得 ,
所以 .
【点睛】
本题主要考查了等差数列通项公式的求法,以及裂项相消法在数列求和中的应用,属于基础题.
18.(1) , ,或 , ,(2) 或
【分析】
4.数列 的前 项和为 ,且 ,数列 满足 , .
(1)求数列 的通项公式;
(2)求证:数列 是等比数列;
(3)设数列 满足 ,其前 项和为 ,证明: .
5.已知等差数列 的前 项和 满足 , .
(1)求 的通项公式;
(2) 求数列 的前 项和 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列计算题
1、已知数列{}n a 满足关系式:
a 1 = 1 , a n+1 = 2a n + 1 ( n = 1 , 2 , 3 , …) , 试求出此数列的前4项 , 并猜想通项.
2、求和:)0,0)(1()1()1(22≠≠++++++y x x
x x x x x n n 3、在等比数列}{n a 中,S n 为其前n 项的和。
设28,4,0142=-=>a S a a n .求n
n a a 3+的值。
4、某公司有甲、乙两个企业,甲企业有员工150人,98年人均利税1.2万元,乙企业有员工50人,98年人均利税1.6万元.(1)求98年全公司人均利税是多少万元.(2)若乙企业人均利税不变,要使该公司2000年比98年人均利税的增长率不低于20%,问甲企业从99年起人均利税的年平均增长率不能低于百分之几?(精确到0.001,其中41.36.11≈)
5、某地现有耕地10000公顷。
规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%。
如果人口年增长率为1%,那么 耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=总人口数
总产量,人均粮食占有量=耕地面积总产量) 6、某企业经过调整后,第一年的资金增长率为300%,以后每年的资金增长率都是前一年增长率的3
1.(1)经过4年后,企业资金是原来资金的多少倍?(2)如果由于某种原因,每年损失资金的5%,那么经过多少年后企业的资金开始下降? 7、求数列,813,412
,21
1 … , )21(n n +, … 前n 项的和Sn . 8、在等比数列中, 已知第1项与第3项的和是-20 , 第2项与第4项的和是40 , 求该数列的第11项.
9、设a ≠0 , a ≠1 , 求数列 a , 2a 2 , 3a 3 , … , na n , …前n 项的和S n .
10、已知f(x)=b(x)+1为x 的一次函数,b 为不等于1的常量,且 g(n)=⎩⎨⎧
≥-=)1)(1([)0(1n n g f n (1)若a n =g(n)-g(n-1)(n ∈N),求证{a n }为等比数列.(2)设S n =a 1+a 2+…+a n ,求s n (用n,b 表示)。
答案提示
1、a 1 = 1 , a 2 = 3 , a 3 = 7 , a 4 = 15 , a n = 2n -1 .
2、分四种情形分别求和
⎩
⎨⎧=≠11y x ⎩⎨⎧≠=11y x ⎩⎨⎧==11y x ⎩⎨⎧≠≠11y x 3、解:由⎩⎨⎧=++=,28,44322a a a a 得⎩⎨⎧=+=.24)1(,4211q q a q a 由0>n a 解出⎩⎨⎧==.2,21q a。