七年级数学上册《有理数的乘法》教案北师大版

合集下载

北师大版数学七年级上册2.7.1有理数的乘法优秀教学案例

北师大版数学七年级上册2.7.1有理数的乘法优秀教学案例
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,使学生感受到数学的趣味性和实用性,激发学生学习数学的热情。
2.通过对有理数乘法的学习,使学生认识到数学在生活中的重要性,培养学生的数学应用意识。
3.注重培养学生的团队合作精神,使学生在小组合作中学会尊重他人、倾听他人意见,形成良好的合作氛围。
4.通过对本节课的学习,使学生树立正确的价值观ห้องสมุดไป่ตู้认识到只有通过努力学习和实践,才能掌握知识,实现自身价值。
3.鼓励学生自主学习:鼓励学生在课后自主探究,发挥自己的潜能,提高学习能力。
五、案例亮点
1.生活情境导入:通过生活情境的创设,使学生能够直观地感受到数学与生活的紧密联系,激发学生的学习兴趣,提高学生的学习积极性。
2.问题导向:本节课以问题为导向,引导学生思考和探究,激发学生的求知欲望。通过问题的提出和解决,让学生在实践中理解和掌握有理数乘法的运算规则。
(一)导入新课
1.利用生活情境导入:通过展示一些实际问题,如购物时找零、计算物体面积等,引导学生思考如何用数学知识解决问题。
2.激发学生兴趣:通过设置一些有趣的数学谜题或小游戏,引发学生的好奇心,激发学习兴趣。
3.回顾已有知识:复习有理数的加减法、乘除法等基本运算,为学生学习有理数的乘法做好铺垫。
(二)讲授新知
二、教学目标
(一)知识与技能
1.理解有理数乘法的概念,掌握有理数乘法的运算规则,能够熟练进行有理数的乘法运算。
2.能够运用有理数乘法解决实际问题,提高学生的应用能力。
3.通过实例的分析,使学生理解有理数乘法中符号的判断方法,能够正确判断有理数乘法的符号。
4.培养学生运用数学语言表达问题、分析问题和解决问题的能力。
三、教学策略

北师大版数学七年级上册2.7《有理数的乘法》说课稿2

北师大版数学七年级上册2.7《有理数的乘法》说课稿2

北师大版数学七年级上册2.7《有理数的乘法》说课稿2一. 教材分析《有理数的乘法》是北师大版数学七年级上册第2.7节的内容。

本节内容是在学生已经掌握了有理数的加减乘除、正负数的概念和性质的基础上进行讲解的。

有理数的乘法是数学中基本的运算之一,它在日常生活和工农业生产中有着广泛的应用。

本节内容主要包括有理数的乘法法则、乘法的运算律以及乘方的概念。

通过学习,学生可以掌握有理数乘法的基本方法,理解乘法的运算律,并能够运用乘法解决实际问题。

二. 学情分析根据我对学生的了解,他们在学习了有理数的加减法之后,对有理数的概念和性质有了基本的认识。

但是,他们在运用乘法解决实际问题时,往往会存在困惑和错误。

因此,我在教学过程中需要引导学生通过实例来理解乘法的运算规律,并能够灵活运用。

三. 说教学目标根据教材内容和学情分析,我制定了以下教学目标:1.知识与技能:使学生掌握有理数的乘法法则,理解乘法的运算律,了解乘方的概念。

2.过程与方法:通过实例分析和小组讨论,培养学生运用乘法解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们积极思考、合作交流的学习习惯。

四. 说教学重难点根据教材内容和学情分析,我确定了以下教学重难点:1.重点:有理数的乘法法则、乘法的运算律和乘方的概念。

2.难点:理解乘法的运算律,并能够灵活运用解决实际问题。

五. 说教学方法与手段为了达到教学目标,我采用了以下教学方法与手段:1.实例分析:通过具体的例子,让学生理解乘法的运算规律。

2.小组讨论:让学生在小组内进行讨论,培养他们合作交流的能力。

3.练习巩固:让学生通过练习题,巩固所学知识。

4.教学辅助手段:利用多媒体课件,帮助学生直观地理解乘法的运算规律。

六. 说教学过程教学过程分为以下几个环节:1.导入:通过一个实际问题,引入本节课的主题——有理数的乘法。

2.知识讲解:讲解有理数的乘法法则,通过实例让学生理解乘法的运算规律。

北师大版七年级数学上册《有理数的乘法(第1课时)》教学教案

北师大版七年级数学上册《有理数的乘法(第1课时)》教学教案

二、例题:
三、小结:
促进了学 生的表达 与交流,为 后续学习 打下基础。 课件展示 归纳使知 识更系统 化,便于学 生记忆。
理数的乘
(raciprocal),也称这两个有理数互为倒数 教师追问:同学们你知道怎样求一个的道数吗? 1.非零整数——直接写成这个数分之一 2.分数——把分子、分母颠倒位置即可 带分数要化成假分数,小数化为分数再求
法法则解 决两个例 题,且明确 倒数的定 义在有理 数范围内
例 2:(3)(-4)×5 ×(-0.25)(从左向右依次运算)
仍有意义。
(4)( 3)( 5)( 2)
5
6
[(3 5)] (2) 56
1 (2) 2
1
根据上面例题,教师提问:几个有理数相乘,因数都不为 0 时, 积的符号怎样确定? 有一个因数为 0 时,积是多少? 积的符号又负数的个数确定,若是奇数,结果为负, 若是偶数,结果为正 有一个因数为 0 时,积是 0 3、出示课件: 试一试 : 教师鼓励学生主动解决问题
加法法则引出有理数的乘法来解决了一些实际问题。
1、培养学生的动态观察 、对比、分析生活问题的能力;让学生能综合运用有理数及其加、
减法的有关知识灵活地解决简单的实际问题。
学习 2、在师生、生生的交流活动中,复习巩固加减运算,逐步把学生牵引到对较复杂数据的
目标 灵活处理。使学生感受到折 线统计图确实可以直观地反映事物的变化情况。
1、11 8 1 (1) 4 22 2
11 8 1 4 22 2
1 2
2、0×(-3) ×(-4) ×(-5) ×(-6)
=0
几个有理数相乘有一个因数为 0 时,积是 0
课堂 1、两个数的积为正,那么这两个数( C )

北师大版数学七年级上册2.7.2有理数的乘法优秀教学案例

北师大版数学七年级上册2.7.2有理数的乘法优秀教学案例
2.设计生活情境,如购物、体育比赛等,让学生在解决实际问题中感受数学的价值,引发学生对有理数乘法的好奇心。
3.创设互动环节,让学生通过小组讨论、分享心得,培养学生的团队协作能力和表达能力。
(二)问题导向
1.引导学生提出问题,如“有理数乘法是什么?有哪些规律?”鼓励学生主动思考、探究。
2.设计一系列有针对性的练习题,让学生在解决问题的过程中巩固有理数乘法的知识。
3.自主探究,培养能力:本节课注重引导学生通过观察、思考、交流、归纳等数学活动自主探究有理数乘法法则。这样的教学策略既有利于学生掌握知识,又能培养学生的数学思维能力和自主学习能力。
4.小组合作,互动交流:在教学过程中,将学生分成若干小组,鼓励学生相互讨论、交流,共同解决问题。这种教学方式有助于培养学生的团队协作能力和沟通能力,提高课堂氛围。
2.生对有理数乘法的好奇心。
3.组织学生进行小组讨论,分享彼此对有理数乘法的理解和疑问,为讲授新知识做好铺垫。
(二)讲授新知
1.引导学生探究有理数乘法的基本规律,如正数乘正数、负数乘负数、正数乘负数等,让学生通过观察、思考、交流等数学活动自主得出结论。
北师大版数学七年级上册2.7.2有理数的乘法优秀教学案例
一、案例背景
北师大版数学七年级上册2.7.2有理数的乘法优秀教学案例,以我国著名的数学家陈景润的故事导入,激发学生的学习兴趣。本节课主要内容是有理数的乘法,包括正数、负数、零的乘法规律,以及乘方的概念。在教学过程中,注重让学生通过观察、思考、交流、归纳等数学活动,自主探究有理数乘法法则,培养学生的数学思维能力和团队协作能力。
五、案例亮点
1.故事导入,激发兴趣:以北师大版数学七年级上册2.7.2有理数的乘法为例,通过陈景润的故事导入新课,激发了学生的学习兴趣,使学生在轻松愉快的氛围中进入学习状态。这样的导入方式不仅与学科和课本内容紧密相关,而且能够调动学生的积极性,提高课堂效率。

北师大版七年级数学上册第二章 2. 7有理数的乘法教案

北师大版七年级数学上册第二章  2. 7有理数的乘法教案

第七节有理数的乘法考点一:有理数的乘法法则1、法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,积仍为0。

2、方法导引:(1)几个有理数相乘,先确定积的符号,再把绝对值相乘。

(2)当几个因数中有一个为0时,不用再判断符号,直接得0. 3、总结提升:(1)两个有理数相乘,积的符号是由两个因数的符号确定,同号(++,或--)得正,异号(+-或-+)得负。

(2)0与任何数相乘,积都是0.(3)1乘任何数得原数,-1乘任何数得原数的相反数。

4、题型解析:例1 (1)已知两个数a,b在数轴上对应的点如图所示,下列结论正确的是()A、-a<-bB、a+b>0C、ab<0D、b-a>0(2)一个有理数与它的相反数的积是()A 、正数B 、负数C 、非正数D 、非负数 (3)计算3×(-2)的结果是(4)计算 ①-2×(-5) ②34×(83-) ③-3×0 ④(-312)×(-3)考点二:倒数1、定义:如果两个有理数的乘积为1,那么称其中的一个数是另一个数的倒数,也称这两个有理数互为倒数,如54和45,-7和71-互为倒数。

2、 求法:求带分数的倒数时,先把带分数化成假分数,再求倒数;求小数的倒数时,先把小数化成分数,在求倒数;求整数的倒数时,先把整数看作是分母为1的分数,在求倒数。

3、辨析:(1)0没有倒数。

(2)互为倒数的两个数的符号相同,即正数的倒数是正数,负数的倒数是负数。

(3)若两个数互为倒数,则它们的成绩为1. (4)倒数等于它本身的数是1和-1. 4、题型解析:例2 (1)有理数51-的倒数为( )A 、5B 、51C 、-51 D 、-5 (2)2017的倒数为( ) A 、20171 B 、2017 C 、-2017 D-20171(3)相反数是其本身的是 ,倒数是其本身的是 。

(4)若a,b 互为相反数,c,d 互为倒数,m 的绝对值是3,求:cd m ba -++35的值。

2.4有理数的乘方(教案)北师大版(2024)数学七年级上册

2.4有理数的乘方(教案)北师大版(2024)数学七年级上册

2.4有理数的乘方第1课时乘方的意义1.理解有理数乘方的意义;2.掌握有理数乘方的运算方法,并能熟练地进行有理数的乘方运算.重点理解有理数乘方的概念,掌握计算方法.难点运用乘方的意义进行正确的计算.一、导入新课问题1:在小学我们已经学习过a·a,记作a2,读作a的平方(或a的二次方);a·a·a记作a3,读作a的立方(或a的三次方);那么,a·a·a·a呢?问题2:在小学对于字母a我们只能取正数.进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明.学生思考后回答,教师点评.二、探究新知1.有理数乘方的相关概念课件出示教材第58页细胞分裂示意图,提出问题:某种细胞每过30 min便由1个分裂成2个.经过5 h,这种细胞由1个能分裂成多少个?引导学生分析题意得出:5 h后要分裂10次,分裂成=1024(个).教师进一步讲解:为了简便,可将记为210.一般地,n个相同的因数a相乘,记作a n,即=a n.这种求n个相同因数a的积的运算叫作乘方,乘方的结果叫作幂,a叫作底数,n叫作指数,a n读作“a的n次幂”.(或“a的n次方”) 强调:①一般地,在a n中,a取任意有理数,n取正整数.②乘方是一种运算,幂是乘方运算的结果.当a n看作a的n次方的结果时,也可以读作a的n次幂.2.有理数乘方的计算教师:我们知道,乘方和加、减、乘、除一样,也是一种运算,a n就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算.课件出示:(1)52=________;53=________;54=________;55=________;(2)(-5)2=________;(-5)3=________;(-5)4=________;(-5)5=________;(3)01=________;02=________;03=________.引导学生观察、比较、分析这几道计算题中,底数、指数和幂之间有什么关系?学生独立完成,教师点评,并进一步讲解:(1)正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零.(2)互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.(3)任何一个数的偶次幂都是非负数.引导学生把上述的结论用数学符号语言表示:当a >0时,a n >0(n 是正整数);当a =0时,a n =0(n 是正整数);当a <0时,⎩⎪⎨⎪⎧a n >0(n 为偶数),a n <0(n 为奇数).a 2n =(-a )2n (n 是正整数);a 2n -1=-(-a )2n -1(n 是正整数);a 2n ≥0(a 是有理数,n 是正整数).3.有理数乘方的应用有一张厚度是0.1 mm 的纸,将它对折1次后,厚度为2×0.1 mm.(1)将这张纸对折2次后,厚度为多少毫米?(2)假设可以将这张纸对折20次,那么对折20次后厚度为多少毫米?三、课堂练习1.教材第59页“随堂练习”第1、2题.2.平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?【答案】2.2个 ±3 没有 任何数的平方都大于或等于零四、课堂小结1.通过本节课的学习,你有什么收获?2.在学习乘方的概念时应注意什么?五、课后作业教材第61页习题2.4第1,2题.本节课通过自主学习与合作交流,多数学生能够掌握乘方和幂的意义,但在负数的乘方时,对于理解加括号和不加括号的区别,部分学生会有困难.而在后续的拓展中,利用乘方的意义解决问题,大部分学生可能存在困难,应用意识不够强.针对这一问题,采取策略是:师生共同对每一个算式先分析幂的意义,再计算,对易混淆的形式,举例辨析.第2课时科学记数法1.理解科学记数法的意义,学会用科学记数法表示大数;2.对用科学记数法表示的数进行简单的运算.重点用科学记数法表示大数,把用科学记数法表示的数还原成原数.难点归纳出科学记数法中指数与整数位数之间的关系.一、导入新课问题1:什么叫作乘方?103,-103,(-10)3,a n的底数、指数、幂分别是什么?问题2:计算:101,102,103,104,105,106,1010.学生完成后举手回答,教师进一步讲解问题2:左边用10的n 次幂表示简洁明了,且不易出错,右边有许多零,很容易出现写错的情况,读的时候也是左易右难,这就使我们想到用10的n次幂表示较大的数,比如一亿、一百亿等.又如像太阳的半径大约是696000千米、光速大约是300000000米/秒,中国人口大约是13亿等.教师:我们如何能简单明了地表示大数呢?这就是本节课我们要学习的内容——科学记数法.二、探究新知教师:同学们,请观察第2题:101=10,102=100,103=1000,104=10000,…,1010=10000000000.10n中的n表示n个10相乘,它与运算结果中0的个数有什么关系?与运算结果的数位有什么关系?学生:10n=100…0(n个0),n恰巧是1后面0的个数.n比运算结果的位数少1.课件出示:(1)把下面各数写成10的幂的形式:1000,100000000,100000000000.(2)指出下列各数是几位数:103,105,1012,10100.学生完成后举手回答,教师点评,引导学生总结科学记数法的定义:把大于10的数记成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫作科学记数法.教师进一步讲解:现在我们只学习大于10的数的科学记数法,以后我们还要学习其他一些数的科学记数法.说它科学,因为它简单明了,易读易记易判断大小,在自然科学中经常运用.例(课件出示教材第60页例2)要求学生独自完成后汇报答案,教师讲评.三、课堂练习教材第61页“随堂练习”第1,2题.四、课堂小结1.什么是科学记数法?2.10的幂指数与原数整数位位数有什么关系?五、课后作业教材第61页习题2.4第3,4题.本节课的内容是科学记数法.在教学过程中,通过复习乘方的知识,进而引入本课内容.教师引导学生自主探究科学记数法的概念,知道怎样用科学记数法表示大于10的数.理清10的幂指数与原数整数位位数的关系.教学由浅入深,循序渐进,学生探究的问题愈来愈有挑战性,教师适当点拨和学生充分讨论形成共识,教师利用对科学记数法的认识,设置由浅入深的练习题,加深对概念的理解与掌握.通过例题的学习、习题的训练,学生对科学记数法有了一定的认识和掌握.。

北师大版七年级数学2.7 有理数的乘法(1)教案

北师大版七年级数学2.7 有理数的乘法(1)教案

有理数的乘法〔第1课时〕1 教材说明北师大版七年级上册第二章“有理数及其运算〞第7节“有理数的乘法〞2 学情分析本节课的主要内容是“有理数的乘法法则〞,在此之前学生已经学习了有理数加法法则和减法法则,也对“几个相同的数连加形式可以写成乘法形式〞有较深刻的认识,所以本节课可以类比“有理数加法法则〞对乘法法则进行归纳总结;而本节课要为接下来的“有理数的除法〞“有理数的乘法〞做铺垫,所以对符号的处理尤为关键。

2 重难点重点:有理数的乘法法则的探索与归纳难点:有理数的乘法法则的探索与归纳3 教学目标〔1〕归纳有理数乘法法则,并能准确判断结果的正负〔2〕通过类比、找规律的方法,体会归纳获得数学结论的过程〔3〕体验数学探究的乐趣,增强数学学习的信心和兴趣4 教学设计环节1 类比发现甲水库的水位每天升高3cm,乙水库的水位每天下降3cm,4天后甲、乙水库水位的总变化量各是多少?【设计】通过水库这个具体情境,帮助学生列出正数×负数的算式,初步感知符号对结果的影响。

环节2 探索规律【设计】一正一负两数相乘有实际情景作为载体,两个负数相乘的情景学生较难理解,从找规律的角度来解释学生更容易接受。

一正一负、两负相乘都可在规律中寻找答案,并能将与0相乘的情况也列出。

环节3 归纳总结有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,积仍为0.【设计】归纳法则,使学生对运算算理和方法固定化。

环节4 应用提升【设计】简单运用乘法法则,再次稳固符号对结果的影响;将倒数的概念扩大到有理数范围,能快速说出任意有理数的倒数;能进行2个以上有理数的计算,并能快速判断结果的正负。

2024秋七年级数学上册第2章有理数及其运算2.7有理数的乘法1有理数的乘法教案(新版)北师大版

2024秋七年级数学上册第2章有理数及其运算2.7有理数的乘法1有理数的乘法教案(新版)北师大版
技能训练:
设计实践活动或计算练习,让学生在实践中体验有理数乘法的应用,提高运算能力。
在有理数乘法新课呈现结束后,对乘法运算的规则进行梳理和总结。
强调乘法运算的重点和难点,帮助学生形成完整的知识体系。
(四)巩固练习(预计用时:5分钟)
随堂练习:
随堂练习题,让学生在课堂上完成,检查学生对有理数乘法知识的掌握情况。
5.培养学生的沟通能力和团队合作能力,能够在小组讨论和合作交流中解决问题。
6.培养学生的创新意识和探索精神,能够关注学科前沿动态。
7.培养学生的社会责任感,能够思考数学与生活的联系。
8.学生能够积极分享学习有理数乘法的体会和心得,增进师生之间的情感交流。
课堂
1.课堂评价:
2.作业评价:
对学生的作业进行认真批改和点评,及时反馈学生的学习效果,鼓励学生继续努力。在布置的课后作业中,教师应关注学生的计算准确性、解题思路和创新能力。在批改作业时,教师应及时纠正学生的错误,并提供详细的解题指导和鼓励性的评语。同时,教师还可以根据学生的作业表现,了解学生对有理数乘法的掌握情况,为课堂教学提供依据。
(5)5 × (2 + 3) - 2 × (5 - 2)
答案:
(1)4 - 2 × 3 = 4 - 6 = -2
(2)3 × (5 - 2) = 3 × 3 = 9
(3)2 × 2 × 2 = 8
(4)-3 × 4 + 2 × 3 = -12 + 6 = -6
(5)5 × (2 + 3) - 2 × (5 - 2) = 5 × 5 - 2 × 3 = 25 - 6 = 19
(3)-6 ÷ 3 × 2
(4)12 ÷ 3 × (-2)
(5)-8 ÷ 4 × 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 5有理数的乘法
教学目标:(1)理解有理数的乘法法则的概念,掌握有理数乘法法则中的符号法则和绝 对值运算法则,并初步理解有理数乘法法则的合理性:
(2) 根据有理数乘法法则能进行有理数的乘法运算,探索和掌握多个有理数相乘的积 的符号法则.
教学重点:探索有理数的乘法的法则,并会应用法则进行乘法运算. 教学难点:探索、归纳、概括乘法法则:有理数相乘的符号确左. 教学过程:
一、 情境创设:
情景(-3) X (+2)二?如何进行有理数的乘法运算?有法则吗?是什么?和小学里 的乘法一样吗?有什么不同之处?
情景2: 在水文观测中,常遇到水位上升与下降问题,请根据日常生活经验,回答下列 问题:
(1) 如果水位每天上升4cm,那么3天后的水位比今天高还是低?髙(或低)多少? (2) 如果水位每天上升4cm,那么3天前•的水位比今天髙还是低?髙(或低)多少? (3) 如果水位每天下降4cm,那么3天后的水位比今天高还是低?高(或低)多少?
(4) 如果水位每天下降4cm,那么3天前的水』立比今天髙还是低?高(或低)多少? 二新授課 1、 我们能用有理数的运算来研究上而的问题吗?我们把水位上升记为正,水位下降记为 负:几天后记为正,几天前记为负。

按照此规肚,你能用算式表示上述四个问题吗? 2、 假如天数没变化,•水位发生变化吗?算式如何列呢? 3、 两个有理数相乘,积的符号怎么确泄?积的绝对值怎么确左? 一个有理数与0相乘, 积是什么? 4、 概括有理数的乘法法则:
(1) 两数相乘, _____________________________________ . (2) 任何数与0相乘, ____________________________ ・
注意:有理数乘法的运算步骤为:(1)判断两数同号还是异号:(2)确左积的符号: (3) 绝对值相乘 例1计算: (1) 9X6 (2) (-9) X6 (3) 3 X (-4) (4) (一3) X (-4) (5) (-7) X6 (6) (-48) X (-3) 例计算: (1) 8x1
(2) (-4) X (-丄)
8 4
归纳: ________________________________
例3计算: (1) 2X3X4X5 (2) 2X3X4X (一5)
(4) 2X (-3) X (-4) X (-5) (5) (-2) X (-3) X (-4) X (-5)
归纳:几个不等于o 的数相乘,枳的符号由负因数的个数决定,当负因数有;奇数个时,积为 负;当负因数有偶数个时,积为正 几个数相乘,有一个为0,积就为0. 三.课堂练习:
(7) (-6.5) X (-7.2)
7 8
(3) (-—) X (--) 8 7
_______ 倒数。

(3) 2X3X (-4) X (-5)
(7) 8-|x(-4)x(-2) (8) 8x(-|jx(-4)x(-2)
⑼ <-185. 8) X
XOX (-25)
(10)(理)X(冷)X(-中
2. 下列说法正确的是()
A. 异号两数相乘,取绝对值较大的因数的符号
B. 同号两数相乘,符号不变
C. 两数相乘,如果积为负数,那么这两个因数异号
D. 两数相乘,如果积为正数,那么这两个因数都是正数 3•若a + b >0,且a b <0,那么必有( )
A. a>0, b>0
B. NO,从0
C.扒b 异号且正数的绝对值较大
D. a 、b 异号且负数的绝对值较大. 4.下列结论正确的是()
A. 两数之积为正,这两数同为正;
B. 两数之积为负,这两数为异号
C. 几个数相乘,积的符号由负因数的个数决立
D. 三数相乘,积为负,这三个数都是负数
5•若山〈水 0,则(皿 + & ) {m - n ) ______ 0.
课后练习 班级 ____________ 姓名 ___________ 学号 _________
1、计算
(3、 (1)——x8「
(3) (-7. 6) X0. 5
3、
G Sx(--jx(-4)-2
(6)32X (
-^)
一. 判断题 (1) -2X7=-14 ・ () (2) -2X (-7) = -14 ・
()
(3) —IX (―5) = —5・ () (4) 0X(-3)=~3. ()
(5) 一个有理数和它的相反数之积一泄大于零・() (6) 几个负数相乘,积为正 () (7) 积大于任一因数 () (8) 奇数个负因数相乘,积为负 ()
(9) 几个因数相乘,当出现奇数个负因数时,积为负() (10) 同号两数相乘,符号不变。

( ) 二、 填空:
1、 两数相乘,同号得 _______ ,异号得 ______________ ,并把绝对值 —。

2、 ( -8) . -
, ( -7)这三个数相乘的积的符号是
,积的绝对值
4
是 _________ C
3、 ⑴(一3) X (-0.3) = _____________ :
⑵ <-5|)X<31)=—
(3) -0.4X0. 2= ________ (4)
4. 如果ab 二0,则 ______________
2
5. (1)(
)X(—二)=一1 ・
5
(3) ( )X3=-1, (5) (-3099・ 9)X( )=0,
(7) (-l)X (-l)X-X(-l) = ________________ .
\ ______ ____ y
7
2003 个
⑻绝对值小于4的所有•整数的积是 ______ ・
(9) 如果 Q0, b<0.那么 ______________ 0.若 MO, b<0,则 ab __________ 0:若 a>0, b>0,则 ab ____________ 0: (10) P ^ ab>0, b<0,贝Ija ________ 0:
若 ab<0, b<0,则 a __________ 0: 三、计算
(1) 5X (-3) +15
(2)丄>< (-1) + (-丄)X0
2 3 6
2
⑵(+±)x(
7
(4) (-3) X (
(6) (-8) X(
—.
3
)=-10 )=2
(+32) X (-60.6) X0X
(4) 3X (-1) -|-3| xl
3
1 2 i ]
(右)X”肓 X2-X (-55)
] 3 2 c
(9) -X (-- ) X (-二)X (丄)
4
4
3
7
四、提髙训练
1. a =6,引=3,求ab 的值.
2、定义a
罟鳥是有理数范围的种运算,计算 —
3.
a =6,
b =3, a<b 求 ab 的值.
7
⑸--X15+l -8|
(6) (-2.5) X (-0. 04)
⑶|x
(7) -9X (+11) -12X (-8)
(8)
X(-2) X (-4) X (-1)
(10) (-3)。

相关文档
最新文档