bipt概率论第一章试题含答案

合集下载

概率论第一章习题参考解答

概率论第一章习题参考解答

概论论与数理统计习题参考解答习题一8. 掷3枚硬币, 求出现3个正面的概率.解: 设事件A ={出现3个正面}基本事件总数n =23, 有利于A 的基本事件数n A =1, 即A 为一基本事件, 则125.08121)(3====n n A P A . 9. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率.解: 设事件A ={能打开门}, 则A 为不能打开门基本事件总数210C n =, 有利于A 的基本事件数27C n A =,467.0157910212167)(21027==⨯⨯⋅⨯⨯==C C A P 因此, 533.0467.01)(1)(=-=-=A P A P .10. 一部四卷的文集随便放在书架上, 问恰好各卷自左向右或自右向左的卷号为1,2,3,4的概率是多少?解: 设A ={能打开门},基本事件总数2412344=⨯⨯⨯==P n ,有利于A 的基本事件数为2=A n ,因此, 0833.0121)(===n n A P A . 11. 100个产品中有3个次品,任取5个, 求其次品数分别为0,1,2,3的概率.解: 设A i 为取到i 个次品, i =0,1,2,3,基本事件总数5100C n =, 有利于A i 的基本事件数为3,2,1,0,5973==-i C C n i i i则00006.09833512196979697989910054321)(006.0983359532195969739697989910054321)(138.09833209495432194959697396979899100543213)(856.0334920314719969798991009394959697)(51002973351003972322510049711510059700=⨯⨯==⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯=⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯=⨯===⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C C n n A P C C n n A P C C n n A P12. N 个产品中有N 1个次品, 从中任取n 个(1≤n ≤N 1≤N ), 求其中有k (k ≤n )个次品的概率. 解: 设A k 为有k 个次品的概率, k =0,1,2,…,n ,基本事件总数n N C m =, 有利于事件A k 的基本事件数kn N N k N k C C m --=11,k =0,1,2,…,n ,因此, n k C C C m m A P n N k n N N k N k k ,,1,0,)(11 ===-- 13. 一个袋内有5个红球, 3个白球, 2个黑球, 计算任取3个球恰为一红, 一白, 一黑的概率. 解: 设A 为任取三个球恰为一红一白一黑的事件,则基本事件总数310C n =, 有利于A 的基本事件数为121315C C C n A =, 则25.0412358910321)(310121315==⨯⨯⨯⨯⨯⨯⨯===C C C C n n A P A 14. 两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解: 设A 为前两个邮筒没有信的事件, B 为第一个邮筒内只有一封信的事件,则基本事件总数1644=⨯=n ,有利于A 的基本事件数422=⨯=A n ,有利于B 的基本事件数632=⨯=B n , 则25.041164)(====n n A P A 375.083166)(====n n B P B .15. 一批产品中, 一, 二, 三等品率分别为0.8, 0.16, 0.04, 若规定一, 二等品为合格品, 求产品的合格率.解: 设事件A 1为一等品, A 2为二等品, B 为合格品, 则P (A 1)=0.8, P (A 2)=0.16,B =A 1+A 2, 且A 1与A 2互不相容, 根据加法法则有P (B )=P (A 1)+P (A 2)=0.8+0.16=0.9616. 袋内装有两个5分, 三个2分, 五个一分的硬币, 任意取出5个, 求总数超过一角的概率. 解: 假设B 为总数超过一角,A 1为5个中有两个5分, A 2为5个中有一个5分三个2分一个1分,A 3为5个中有一个5分两个2分两个1分, 则B =A 1+A 2+A 3, 而A 1,A 2,A 3互不相容, 基本事件总数252762354321678910510=⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯==C n 设有利于A 1,A 2,A 3的基本事件数为n 1,n 2,n 3,则5.0252126252601056)(,60214532,1052,563216782523123153312238221==++==⨯⨯⨯⨯===⨯===⨯⨯⨯⨯==B P C C C n C C C n C C n 17. 求习题11中次品数不超过一个的概率.解: 设A i 为取到i 个次品, i =0,1,2,3, B 为次品数不超过一个,则B =A 0+A 1, A 0与A 1互不相容, 则根据11题的计算结果有P (B )=P (A 0)+P (A 1)=0.856+0.138=0.99419. 由长期统计资料得知, 某一地区在4月份下雨(记作事件A )的概率为4/15, 刮风(用B 表示)的概率为7/15, 既刮风又下雨的概率为1/10, 求P (A |B ), P (B |A ), P (A +B ).解: 根据题意有P (A )=4/15, P (B )=7/15, P (AB )=1/10, 则633.03019303814101154157)()()()(275.08315/410/1)())|(214.014315/710/1)()()|(==-+=-+=-+=+========AB P B P A P B A P A P PAB A B P B P AB P B A P 20. 为防止意外, 在矿内同时设有两种报警系统A 与B , 每种系统单独使用时, 其有效的概率系统A 为0.92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85, 求(1) 发生意外时, 这两个报警系统至少有一个有效的概率(2) B 失灵的条件下, A 有效的概率解: 设A 为系统A 有效, B 为系统B 有效, 则根据题意有P (A )=0.92, P (B )=0.93, 85.0)|(=A B P(1) 两个系统至少一个有效的事件为A +B , 其对立事件为两个系统都失效, 即B A B A =+, 而15.085.01)|(1)|(=-=-=A B P A B P , 则988.0012.01)(1)(012.015.008.015.0)92.01()|()()(=-=-=+=⨯=⨯-==B A P B A P A B P A P B A P(2) B 失灵条件下A 有效的概率为)|(B A P , 则 829.093.01012.01)()(1)|(1)|(=--=-=-=B P B A P B A P B A P 21. 10个考签中有4个难签, 3人参加抽签考试, 不重复地抽取, 每人一次, 甲先, 乙次, 丙最后, 证明3人抽到难签的概率相等.证: 设事件A ,B ,C 表示甲,乙,丙各抽到难签, 显然P (A )=4/10,而由903095106)|()()(902496104)|()()(902494106)|()()(901293104)|()()(=⨯===⨯===⨯===⨯==A B P A P B A P A B P A P B A P A B P A P B A P A B P A P AB P 由于A 与A 互不相容,且构成完备事件组, 因此B A AB B +=可分解为两个互不相容事件的并, 则有1049036902412)()()(==+=+=B A P AB P B P 又因B A B A B A AB ,,,之间两两互不相容且构成完备事件组, 因此有C B A C B A BC A ABC C +++=分解为四个互不相容的事件的并,且720120849030)|()()(72072839024)|()()(72072839024)|()()(72024829012)|()()(=⨯===⨯===⨯===⨯==B A C P B A P C B A P B A C P B A P C B A P B A C P B A P BC A P AB C P AB P ABC P则104720288720120727224()()()()(==+++=+++=CB A PC B A P BC A P ABC P C P 因此有P (A )=P (B )=P (C ), 证毕.22. 用3个机床加工同一种零件, 零件由各机床加工的概率分别为0.5, 0.3, 0.2, 各机床加工的零件为合格品的概率分别等于0.94, 0.9, 0.95, 求全部产品中的合格率.解: 设A 1,A 2,A 3零件由第1,2,3个机床加工, B 为产品合格,A 1,A 2,A 3构成完备事件组.则根据题意有P (A 1)=0.5, P (A 2)=0.3, P (A 3)=0.2,P (B |A 1)=0.94, P (B |A 2)=0.9, P (B |A 3)=0.95,由全概率公式得全部产品的合格率P (B )为93.095.02.09.03.094.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P23. 12个乒乓球中有9个新的3个旧的, 第一次比赛取出了3个, 用完后放回去, 第二次比赛又取出3个, 求第二次取到的3个球中有2个新球的概率.解: 设A 0,A 1,A 2,A 3为第一次比赛取到了0,1,2,3个新球, A 0,A 1,A 2,A 3构成完备事件组. 设B 为第二次取到的3个球中有2个新球. 则有22962156101112321)|(,552132101112789321)(,442152167101112321)|(,55272101112389321)(,552842178101112321)|(,2202710111239321)(,552732189101112321)|(,2201101112321)(3121626331239331215272312132923121428131223191312132********=⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯==C C C A B P C C A P C C C A B P C C C A P C C C A B P C C C A P C C C A B P C C A P 根据全概率公式有455.01562.02341.00625.00022.022955214421552755282202755272201)|()()(30=+++=⋅+⋅+⋅+⋅==∑=i i i A B P A P B P 24. 某商店收进甲厂生产的产品30箱, 乙厂生产的同种产品20箱, 甲厂每箱100个, 废品率为0.06, 乙厂每箱装120个, 废品率是0.05, 求:(1)任取一箱, 从中任取一个为废品的概率;(2)若将所有产品开箱混放, 求任取一个为废品的概率.解: (1) 设B 为任取一箱, 从中任取一个为废品的事件.设A 为取到甲厂的箱, 则A 与A 构成完备事件组056.005.04.006.06.0)|()()|()()(05.0)|(,06.0)|(4.05020)(,6.05030)(=⨯+⨯=+=======A B P A P A B P A P B P A B P A B P A P A P(2) 设B 为开箱混放后任取一个为废品的事件.则甲厂产品的总数为30×100=3000个, 其中废品总数为3000×0.06=180个,乙厂产品的总数为20×120=2400个, 其中废品总数为2400×0.05=120个,因此...055555555.0540030024003000120180)(==++=B P 25. 一个机床有1/3的时间加工零件A , 其余时间加工零件B , 加工零件A 时, 停机的概率是0.3, 加工零件B 时, 停机的概率是0.4, 求这个机床停机的概率.解: 设C 为加工零件A 的事件, 则C 为加工零件B 的事件, C 与C 构成完备事件组. 设D 为停机事件, 则根据题意有P (C )=1/3, P (C )=2/3,P (D |C )=0.3, P (D |C )=0.4,根据全概率公司有367.04.0323.031)|()()|()()(=⨯+⨯=+=C D P C P C D P C P D P 26. 甲, 乙两部机器制造大量的同一种机器零件, 根据长期资料总结, 甲机器制造出的零件废品率为1%, 乙机器制造出的废品率为2%, 现有同一机器制造的一批零件, 估计这一批零件是乙机器制造的可能性比它们是甲机器制造的可能性大一倍, 今从该批零件中任意取出一件, 经检查恰好是废品, 试由此检查结果计算这批零件为甲机器制造的概率.解: 设A 为零件由甲机器制造, 则A 为零件由乙机器制造, A 与A 构成完备事件组. 由P (A +A )=P (A )+P (A )=1并由题意知P (A )=2P (A ),得P (A )=1/3, P (A )=2/3.设B 为零件为废品, 则由题意知P (B |A )=0.01, P (B |A )=0.02,则根据贝叶斯公式, 任抽一件检查为废品条件下零件由甲机器制造的概率为2.005.001.002.03201.03101.031)|()()|()()|()()|(==⨯+⨯⨯==+=A B P A P A B P A P A B P A P B A P 27. 有两个口袋, 甲袋中盛有两个白球, 一个黑球, 乙袋中盛有一个白球两个黑球. 由甲袋中任取一个球放入乙袋, 再从乙袋中取出一个球, 求取到白球的概率.解: 设事件A 为从甲袋中取出的是白球, 则A 为从甲袋中取出的是黑球, A 与A 构成完备事件组. 设事件B 为从乙袋中取到的是白球.则P (A )=2/3, P (A )=1/3,P (B |A )=2/4=1/2, P (B |A )=1/4,则根据全概率公式有417.012541312132)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P28. 上题中若发现从乙袋中取出的是白球, 问从甲袋中取出放入乙袋的球, 黑白哪种颜色可能性大?解: 事件假设如上题, 而现在要求的是在事件B 已经发生条件下, 事件A 和A 发生的条件概率P (A |B )和P (A |B )哪个大, 可以套用贝叶斯公式进行计算, 而计算时分母为P (B )已上题算出为0.417, 因此2.0417.04131)()|()()|(8.0417.02132)()|()()|(=⨯===⨯==B P A B P A P B A P B P A B P A P B A PP (A |B )>P (A |B ), 因此在乙袋取出的是白球的情况下, 甲袋放入乙袋的球是白球的可能性大.29. 假设有3箱同种型号的零件, 里面分别装有50件, 30件和40件, 而一等品分别有20件, 12件及24件. 现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回). 试求先取出的零件是一等品的概率; 并计算两次都取出一等品的概率.解: 称这三箱分别为甲,乙,丙箱, 假设A 1,A 2,A 3分别为取到甲,乙,丙箱的事件, 则A 1,A 2,A 3构成完备事件组.易知P (A 1)=P (A 2)=P (A 3)=1/3.设B 为先取出的是一等品的事件. 则6.04024)|(,4.03012)|(,4.05020)|(321======A B P A B P A B P 根据全概率公式有 467.036.04.04.0)|()()(31=++==∑=i i i A B P A P B P 设C 为两次都取到一等品的事件, 则38.039402324)|(1517.029301112)|(1551.049501920)|(240224323021222502201=⨯⨯===⨯⨯===⨯⨯==C C A C P C C A C P C C A C P 根据全概率公式有22.033538.01517.01551.0)|()()(31=++==∑=i i i A C P A P C P 30. 发报台分别以概率0.6和0.4发出信号“·”和“—”。

《概率论》第一章习题(A)参考答案

《概率论》第一章习题(A)参考答案

第一章习题(A )参考答案(注:有些题可能存在多种解法,希望同学能够多动脑思考,不要将思维局限于参考答案。

)4.解:(1)()1()0.7P B P B =-= ,()()()()0.4P AB P A P B P A B ∴=+-⋃=;(2)()()()()0.3P B A P B AB P B P AB -=-=-= ; (3)()()1()0.2P AB P A B P A B =⋃=-⋃= 。

5.解:从8个球中任取2个,共有2887282!n C ⨯===种取法。

设事件A 表示取到的两个球颜色相同,可分成两种情况:取到白球;取到黑球。

完成事件A 共有22535432132!2!m C C ⨯⨯=+=+=种取法,则根据古典概型的概率计算公式,可求得13()28m P A n ==。

6.解:考虑将两组分别记为甲组和乙组,则分配球队的时候,先将10支球队分到甲组,再将剩下的10支球队分到乙组,共有101010201020n C C C ==种分法。

对于最强的两队,先取一支强队分到甲组,接着再从其余18支稍弱的球队中取9支分到甲组,这样甲组就有一支最强队及9支稍弱的队,最后将剩下的10支球队分到乙组,这样共有19218m C C =种分法。

则最强的两队被分到不同组内的概率为192181020100.526319===≈C C m p n C 。

7.解:将12个球随意放入3个盒子中,对于每个球,都可以从3个盒子中选一个盒子放球进去,因此共有123n =种放法。

设事件A 表示第一个盒子中有3个球,先从12个球中取出3个球放进第一个盒子,剩下的9个球随意放进其余两个盒子中,对于这9个球,每个都可以从其余两个盒子中选一个盒子放球进去,因此完成事件A 共有39122m C =⨯种方法,则第一个盒子中有3个球的概率为3912122()0.2123C m P A n ⨯==≈。

8.解:由于每颗骰子有6个不同的点数,因此同时掷4颗均匀骰子共有46n =种不同的结果。

概率论与数理统计第一章课后习题详解

概率论与数理统计第一章课后习题详解

概率论与数理统计习题第一章习题1-1(P 7)1.解:(1)}18,4,3{,⋯=Ω (2)}1|),{22<+=Ωy x y x ( (3) {=Ωt |t},10N t ∈≥(本题答案由经济1101班童婷婷提供) 2.AB 表示只有一件次品,-A 表示没有次品,-B 表示至少有一件次品。

(本题答案由经济1101班童婷婷提供) 3.解:(1)A 1∪A 2=“前两次至少有一次击中目标”;(2)2A =“第二次未击中目标”; (3)A 1A 2A 3=“前三次均击中目标”;(4)A 1⋃A 2⋃A 3=“前三次射击中至少有一次击中目标”; (5)A 3-A 2=“第三次击中但第二次未击中”; (6)A 32A =“第三次击中但第二次未击中”; (7)12A A =“前两次均未击中”; (8)12A A =“前两次均未击中”;(9)(A 1A 2)⋃(A 2A 3)⋃(A 3A 1)=“三次射击中至少有两次击中目标”.(本题答案由陈丽娜同学提供)4.解: (1)ABC(2)ABC(3) ABC (4) A B C(5) ABC (6) AB BC AC (7) A B C (8) (AB) (AC) (BC)(本题答案由丁汉同学提供)5.解: (1)A=BC(2)A =B C(本题答案由房晋同学提供)习题1-2(P 11)6.解:设A=“从中任取两只球为颜色不同的球”,则:112538P(A)=/15/28C C C =(本题答案由顾夏玲同学提供)7.解: (1)组成实验的样本点总数为340C ,组成事件(1)所包含的样本点数为 12337C C ,所以P 1=12337340C C C ⋅ ≈0.2022 (2)组成事件(2)所包含的样本点数为33C ,所以P 2=33340C C ≈0.0001(3)组成事件(3)所包含的样本点数为337C ,所以 P 3=337340C C ≈0.7864 (4)事件(4)的对立事件,即事件A=“三件全为正品”所包含的样本点数为337C ,所以P 4=1-P(A)=1-337340C C ≈0.2136(5)组成事件(5)所包含的样本点数为2133373C C C ⋅+,所以P 5=2133373340+C C C C ⋅ ≈0.01134 (本题答案由金向男同学提供)8.解:(1)组成实验的样本点总数为410A ,末位先考虑有五种选择,首位除去0,有8种选择。

概率论习题第一章(答案)

概率论习题第一章(答案)

第一章一、填空题1、设事件A,B 满足AB AB =,则()P A B = 1 ,()P AB = 0 。

2、已知P(A)0.5,P(B )0.6,P(B A)0.8,===则()P A B = 。

3、已知()()()1P A P B P C 4===,()P AB 0=,()()1P AC P BC 6==,则事件A,B,C 都不发生的概率为712。

4、把10本书随意放在书架上,其中指定的3本书放在一起的概率为115。

5、一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为16。

二、选择题1、下列命题成立的是( B )A :()()ABC A B C --=- B :若AB ≠∅且A C ⊂,则BC ≠∅ C :A B B A -=D :()A B B A -= 2、设A,B 为两个事件,则( C )A :()()()P AB P A P B ≥+ B : ()()()P AB P A P B ≥C :()()()P A B P A P B -≥-D :()()()()P A P A B P B0P B ≥>3、设A,B 为任意两个事件,且A B ⊂,P(B )0>,则下列选项必然成立的是( D )A :P(A)P(AB )< B :P(A)P(A B )>C :P(A)P(A B )≥D :P(A)P(A B )≤4、袋中装有2个五分,3个贰分,5个壹分的硬币,任取其中5个,则总币值超过壹角的概率( B )A :14B :12C :23D :34三、解答题1、某班有50名同学,其中正、副班长各1名,现从中任意选派5名同学参加假期社会实践活动,试求正、副班长至少有一个被选派上的概率。

()248248142347P A 502455⎛⎫⎛⎫⎛⎫⎛⎫+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭==⎛⎫ ⎪⎝⎭或者()()48547P A 1P A 1502455⎛⎫ ⎪⎝⎭=-=-=⎛⎫ ⎪⎝⎭2、一批产品共200个,有6个废品。

概率论~第一章习题参考答案与提示

概率论~第一章习题参考答案与提示

第一章 随机事件与概率习题参考答案与提示1. 设为三个事件,试用表示下列事件,并指出其中哪两个事件是互逆事件:C B A 、、C B A 、、(1)仅有一个事件发生; (2)至少有两个事件发生;(3)三个事件都发生; (4)至多有两个事件发生;(5)三个事件都不发生; (6)恰好两个事件发生。

分析:依题意,即利用事件之间的运算关系,将所给事件通过事件表示出来。

C B A 、、 解:(1)仅有一个事件发生相当于事件C B A C B A C B A 、、有一个发生,即可表示成C B A C B A C B A ∪∪;类似地其余事件可分别表为(2)或AC BC AB ∪∪ABC B A BC A C AB ∪∪∪;(3);(4)ABC ABC 或C B A ∪∪;(5)C B A ;(6)B A BC A C AB ∪∪或。

ABC AC BC AB −∪∪ 由上讨论知,(3)与(4)所表示的事件是互逆的。

2.如果表示一个沿着数轴随机运动的质点位置,试说明下列事件的包含、互不相容等关系:x {}20|≤=x x A {}3|>=x x B {}9|<=x x C{}5|−<=x x D{}9|≥=x x E 解:(1)包含关系: 、 A C D ⊂⊂B E ⊂ 。

(2)互不相容关系:C 与E (也互逆)、B 与、D E 与。

D 3.写出下列随机事件的样本空间:(1)将一枚硬币掷三次,观察出现H (正面)和T (反面)的情况;(2)连续掷三颗骰子,直到6点出现时停止, 记录掷骰子的次数;(3)连续掷三颗骰子,记录三颗骰子点数之和;(4)生产产品直到有10件正品时停止,记录生产产品的总数。

提示与答案:(1);{}TTT TTH THT HTT THH HTH HHT HHH ,,,,,,,=Ω(2); {,2,1=Ω}(3);{}18,,4,3 =Ω(4)。

{} ,11,10=Ω4.设对于事件有C B A 、、=)(A P 4/1)()(==C P B P , ,8/1)(=AC P0)()(==BC P AB P ,求至少出现一个的概率。

概率论与数理统计第一章习题及答案

概率论与数理统计第一章习题及答案

概率论与数理统计习题 第一章 概率论的基本概念习题1-1 设C B A ,,为三事件,用C B A ,,的运算关系表示下列各事件.(1)A 发生,B 与C 不发生, (2)A 与B 都发生,而C 不发生,(3)C B A ,,中至少有一个发生,(4)C B A ,,都发生,(5)C B A ,,都不发生, (6)C B A ,,中不多于一个发生, (7)C B A ,,中不多于两个发生, (8)C B A ,,中至少有两个发生,解(1)A 发生,B 与C 不发生表示为C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生表示为C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生表示为A+B+C (4)A ,B ,C 都发生,表示为ABC(5)A ,B ,C 都不发生,表示为C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生,相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生相当于C B A ,,中至少有一个发生。

故表示为ABC C B A 或++(8)A ,B ,C 中至少有二个发生。

相当于AB ,BC ,AC 中至少有一个发生。

故表示为AB +BC +AC习题1-2 设B A ,为两事件且6.0)(=A P ,7.0)(=B P ,问(1)在什么条件下)(AB P 取得最大值,最大值是多少?(2)在什么条件下)(AB P 取得最小值,最小值是多少?解 由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。

概率统计第一章概率论的基础知识习题与答案

概率统计第一章概率论的基础知识习题与答案

概率统计第一章概率论的基础知识习题与答案概率论与数理统计概率论的基础知识习题一、选择题1、下列关系正确的是( )。

A、0∈∅B、{0}∅=∅⊂D、{0}∅∈C、{0}答案:C2、设{}{}2222=+==+=,则( )。

P x y x y Q x y x y(,)1,(,)4A、P Q⊂B、P Q<C、P Q⊂与P Q⊃都不对D、4P Q=答案:C二、填空1、6个学生和一个老师并排照相,让老师在正中间共有________种排法。

答案:6!720=2、5个教师分配教5门课,每人教一门,但教师甲只能教其中三门课,则不同的分配方法有____________种。

答案:723、编号为1,2,3,4,5的5个小球任意地放到编号为A、B、C、D、E、F的六个小盒子中,概率论的基础知识第 1 页(共 19 页)每一个盒至多可放一球,则不同的放法有_________种。

答案:()65432720⨯⨯⨯⨯=4、设由十个数字0,1,2,3, ,9的任意七个数字都可以组成电话号码,则所有可能组成的电话号码的总数是_______________。

答案:710个5、九名战士排成一队,正班长必须排在前头,副班长必须排在后头,共有_______________种不同的排法。

答案:77!5040P==6、平面上有10个点,其中任何三点都不在一直线上,这些点可以确定_____个三角形。

答案:1207、5个篮球队员,分工打右前锋,左前锋,中锋,左后卫右后卫5个位置共有_____________种分工方法?答案:5!120=8、6个毕业生,两个留校,另4人分配到4个概率论的基础知识第 2 页(共 19 页)不同单位,每单位1人。

则分配方法有______种。

答案:(6543)360⨯⨯⨯=9、平面上有12个点,其中任意三点都不在一条直线上,这些点可以确定_____________条不同的直线。

答案:6610、编号为1,2,3,4,5的5个小球,任意地放到编号为A,B,C,D,E,F,的六个小箱子中,每个箱子中可放0至5个球,则不同的放法有___________种。

概率论第一章习题答案

概率论第一章习题答案

概率论11、甲、乙两艘轮船驶向一个不能同时停泊两艘船的码头停泊.它们在一昼夜内到达码头的时刻是等可能的.如果甲船停泊的时间是一小时,乙船停泊的时间是两小时,求这两艘船都不等候码头的概率. 解:分别用x、y表示甲、乙船到达时刻,在直角坐标系下作直线x=24、y=24,它们与x轴及y轴围成一个正方形,点(x,y)总是落入这个正方形的;作直线y=x+1与y=x-2,如果点(x,y)落入两直线所夹以外区域就不需要等待,所以不需要等待的概率为:p=(22*22/2+23*23/2)/(24*24)=1013/1152≈0.87934027777777825、已知男人中5%是色盲患者,女人中有0.25%;今从男女人数相等的人群中随机挑选一人,恰好是色盲患者,问此人是男人的概率是多少?解:可以算出色盲的人占总人数的比率是5%x50%+0.25%x50%=2.625%,而在2.625%的人中,男的占5%x50%,所以是男的几率为5%x50%除以2.625%=20/21第一章随机事件与概率1.设A,B,C为三个事件,试用A、B、C表示下列事件,并指出其中哪俩个事件是互逆事件:1)仅有一个事件发生;2)至少有一个事件发生;3)三个事件都发生;4)至多有两个事件发生;5)三个事件都不发生;6)恰好两个事件发生。

用a,b,c分别表示A,B,C的补事件,那么有1)abC∪aBc∪Abc2)1-abc3)ABC4)1-ABC5)abc6)ABc∪AbC∪aBC其中(2)和(5) (3)和(4) 是互逆事件2.设对于事件A,B,C,有P(A)=P(B)=P(C)=1/4,P(AC)=1/8,P(AB)=P(BC)=0,求A、B、C至少出现一个的概率。

因为P(AB)=0,所以P(ABC)=0,所以P(A+B+C)=PA+PB+PC-PAB-PAC-PBC+PABC=5/83.设A,B为随机事件,P(A)=0.7,P(A-B)=0.3,求P(AB(—))。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)0.6=B ,则___
()P AB 个是黄球,30球,取后不放回,求第二个人取得黄球的概率为,且事件,A B 互不相容,则)=B 个产品,其中有3个正品,按不放回抽样抽产品两次,每次抽为“第一次取到正品”,事件为“第二次取到的是正品”,则条件概率
,现从甲乙两人中任选一人,由此2
1
,则能将此密码译出的概率)0.7=B )1/4=AB ,
)0,(=AB P AC D.9
20 3
4. )=B D.
5. )0.84=P B ()=P B B. D.
1. 在的整数中任意抽取一个数,设表示抽取的数能被2整除的数,能被表示抽取的数能被()P ABC )B C .
2. 在的整数中任取1个数,求此数即不能被
3. 将
4个,用后放回,新球用过一次即算旧球. 设A={第一5. ,每次从中取一个零件,取出的零件不再放回去,求第三6. P {7. (1)8. 以C 9. (1
(2)若从市场上的商品中随机抽取一件,发现是次品,求它是甲厂生产的概率.
10. 设甲袋中有6只红球,4只白球,乙袋中有7只红球,3只白球,现在从甲袋中随机取一球放入乙袋,再从乙袋中随机取一球,试求
(1)两次都取到红球的概率;(2)从乙袋中取到红球的概率.
11. 设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的产品中随机抽取一件,发现是次品,求该次品属A 工厂生产的概率.
12. 有两箱同种类的零件,第一箱装50只,其中10只一等品,第二箱装30只,其中18只一等品.今从两箱中任意挑出一箱,然后从该箱中取零件两次,每次任取一只,不放回.求 (1)第一次取到的零件是一等品的概率;
(2)第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率.
13. 一学生接连参加同一课程的两次考试. 第一次及格的概率为p ,若第一次及格则第二次及格的概率也为p ;若第一次不及格则第二次及格的概率为
2
p . (1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率. (2)若已知他第二次已经及格,求他第一次及格的概率.
14. 有两种花籽,发芽率分别为0.8,0.9,从中各取一颗,设花籽是否发芽相互独立,求(1)这两颗花籽都能发芽的概率;(2)至少有一颗发芽的概率;(3)恰有一颗发芽的概率.
15. 根据报道美国人血型的分布近似地为:A 型37%,O 型为44%,B 型为13%,AB 型为6%.
夫妻拥有的血型是相互独立的.
(1)B 型的人只有输入B 和O 两种血型才安全. 若妻为B 型,夫为何种血型未知,求夫是妻的安全输血者的概率.
(2)随机地取一对夫妇,求妻为A 型,夫为B 型的概率.
(3)随机地取一对夫妇,求其中一人为A 型,另一人为B 型的概率. (4)随机地取一对夫妇,求其中至少有一人为O 型的概率.
16. 设第一只盒子中装有3只蓝球,2只绿球,2只白球;第二只盒子中装有2只蓝球,3只绿球,4只白球. 独立地分别在两只盒子中各取一只球. (1)求至少有一只蓝球的概率. (2)求有一蓝球一只白球的概率.
(3)已知至少有一只蓝球,求有一只蓝球一只白球的概率.。

相关文档
最新文档