工程数学(本)模拟试题1及参考答案

合集下载

工程数学(线性代数与概率统计)答案(1章)

工程数学(线性代数与概率统计)答案(1章)

工程数学(线性代数与概率统计)习题一一、 1.5)1(1222112=-⨯-⨯=-;2.1)1)(1(111232222--=-++-=++-x x x x x x x x x x ;3.b a ab bab a 2222-=4.53615827325598413111=---++=5.比例)第一行与第三行对应成(,000000=dc ba6.186662781132213321=---++=。

二.求逆序数 1. 551243122=↓↓↓↓↓τ即 2. 5213423=↓↓↓↓τ即3. 2)1(12)2()1(12)1(01)2()1(-=+++-+-=-↓↓-↓-↓n n n n n nn n ΛΛτ即 4.2)1(*2]12)2()1[()]1(21[24)22()2()12(31012111-=+++-+-+-+++=--↓↓-↓-↓-↓↓↓n n n n n n n n n n n ΛΛΛΛτ三.四阶行列式中含有2311a a 的项为4234231144322311a a a a a a a a +- 四.计算行列式值1.07110851700202145900157711202150202142701047110025102021421443412321=++------r r r r r r r r2.310010000101111301111011110111113011310131103111301111011110111104321-=---⋅=⋅=+++c c c c3.abcdef adfbce ef cf bf de cd bdae ac ab4111111111=---=--- 4.dcdcba dcb a1010111011110110011001--------按第一行展开 ad cd ab dc dadc ab+++=-+---=)1)(1(1111115.ba c cbc a b a a c b a c c b c a b a a b b a c c c b c a b b a a a ba c c cbc a b b a a c b a --------------=------202022202022222222222222 其中)3)(()(3522)(22)(12221222122)(2202022202022222220222200222202222222222222ac ab a c a b a ab abc ba c c aa c ab b a a b a abc ba c c aa c a bc c b b a aa cc b b a ac cc b b b aa ab ac c b c b aa b a c c b a b a a b a c c c b b b a a a b a c c c b c a b b a a a ++++++=--+-+-=--+---=--------=----其余同法可求。

工程数学(本科)形考任务答案

工程数学(本科)形考任务答案

工程数学作业(一)答案第 2 章矩阵(一)单项选择题(每小题 2 分,共 20 分)⒈设,则( D ).A. 4B. - 4C. 6D. - 6⒉若,则( A ).A. B. - 1 C. D. 1⒊乘积矩阵中元素( C ).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是( B ).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是( D ).A. B.C. D.⒍下列结论正确的是( A ).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为( C ).A. B.C. D.⒏方阵可逆的充分必要条件是( B ).A. B. C. D.⒐设均为阶可逆矩阵,则( D ).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是( A ).A. B.C. D.(二)填空题(每小题 2 分,共 20 分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为 5 × 4 矩阵.⒋二阶矩阵.⒌设,则⒍设均为 3 阶矩阵,且,则72 .⒎设均为 3 阶矩阵,且,则- 3 .⒏若为正交矩阵,则 0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题 8 分,共 48 分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⒉设,求.解:⒊已知,求满足方程中的.解:⒋写出 4 阶行列式中元素的代数余子式,并求其值.答案:⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.解:( 1 )( 2 )( 过程略 ) (3)⒍求矩阵的秩.解:(四)证明题(每小题 4 分,共 12 分)⒎对任意方阵,试证是对称矩阵.证明:是对称矩阵⒏若是阶方阵,且,试证或.证明:是阶方阵,且或⒐若是正交矩阵,试证也是正交矩阵.证明:是正交矩阵即是正交矩阵工程数学作业(第二次)第 3 章线性方程组(一)单项选择题 ( 每小题 2 分,共 16 分 )⒈用消元法得的解为( C ).A. B.C. D.⒉线性方程组( B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为( A ).A. 3B. 2C. 4D. 5⒋设向量组为,则( B )是极大无关组.A. B. C. D.⒌与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( D ).A. 秩秩B. 秩秩C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解⒎以下结论正确的是( D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组线性相关,则向量组( A )可被该向量组其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9 .设 A ,B为阶矩阵,既是A又是B的特征值,既是A又是B的属于的特征向量,则结论()成立.A.是 AB 的特征值B.是 A+B 的特征值C.是 A - B 的特征值D.是 A+B 的属于的特征向量10 .设A,B,P为阶矩阵,若等式(C)成立,则称A和B相似.A.B.C.D.(二)填空题 ( 每小题 2 分,共 16 分 )⒈当1时,齐次线性方程组有非零解.⒉向量组线性相关.⒊向量组的秩是3.⒋设齐次线性方程组的系数行列式,则这个方程组有无穷多解,且系数列向量是线性相关的.⒌向量组的极大线性无关组是.⒍向量组的秩与矩阵的秩相同.⒎设线性方程组中有 5 个未知量,且秩,则其基础解系中线性无关的解向量有2个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为.9 .若是A的特征值,则是方程的根.10 .若矩阵A满足,则称A为正交矩阵.(三)解答题 ( 第 1 小题 9 分,其余每小题 11 分 )1 .用消元法解线性方程组解:方程组解为2.设有线性方程组为何值时,方程组有唯一解 ? 或有无穷多解 ?解:]当且时,,方程组有唯一解当时,,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组线性表出,当且仅当方程组有解这里方程组无解不能由向量线性表出4.计算下列向量组的秩,并且( 1 )判断该向量组是否线性相关解:该向量组线性相关5.求齐次线性方程组的一个基础解系.解:方程组的一般解为令,得基础解系6.求下列线性方程组的全部解.解:方程组一般解为令,,这里,为任意常数,得方程组通解7.试证:任一4维向量都可由向量组,,,线性表示,且表示方式唯一,写出这种表示方式.证明:任一4维向量可唯一表示为⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设为含个未知量的线性方程组该方程组有解,即从而有唯一解当且仅当而相应齐次线性方程组只有零解的充分必要条件是有唯一解的充分必要条件是:相应的齐次线性方程组只有零解9 .设是可逆矩阵A的特征值,且,试证:是矩阵的特征值.证明:是可逆矩阵A的特征值存在向量,使即是矩阵的特征值10 .用配方法将二次型化为标准型.解:令,,,即则将二次型化为标准型工程数学作业(第三次)第 4 章随机事件与概率(一)单项选择题⒈为两个事件,则( B )成立.A. B.C. D.⒉如果( C )成立,则事件与互为对立事件.A. B.C. 且D. 与互为对立事件⒊ 10 奖券中含有 3 中奖的奖券,每人购买 1 ,则前 3 个购买者中恰有 1 人中奖的概率为( D ).A. B. C. D.4. 对于事件,命题( C )是正确的.A. 如果互不相容,则互不相容B. 如果,则C. 如果对立,则对立D. 如果相容,则相容⒌某随机试验的成功率为, 则在 3 次重复试验中至少失败 1 次的概率为( D ).A. B. C. D.6. 设随机变量,且,则参数与分别是( A ).A. 6, 0.8B. 8, 0.6C. 12, 0.4D. 14, 0.27. 设为连续型随机变量的密度函数,则对任意的,( A ).A. B.C. D.8. 在下列函数中可以作为分布密度函数的是( B ).A. B.C. D.9. 设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则( D ).A. B.C. D.10. 设为随机变量,,当( C )时,有.A. B.C. D.(二)填空题⒈从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为.2. 已知,则当事件互不相容时, 0.8 ,0.3 .3. 为两个事件,且,则.4. 已知,则.5. 若事件相互独立,且,则.6. 已知,则当事件相互独立时,0.65 , 0.3 .7. 设随机变量,则的分布函数.8. 若,则 6 .9. 若,则.10. 称为二维随机变量的协方差.(三)解答题1. 设为三个事件,试用的运算分别表示下列事件:⑴中至少有一个发生;⑵中只有一个发生;⑶中至多有一个发生;⑷中至少有两个发生;⑸中不多于两个发生;⑹中只有发生.解 : (1) (2) (3)(4) (5) (6)2. 袋中有 3 个红球, 2 个白球,现从中随机抽取 2 个球,求下列事件的概率:⑴ 2 球恰好同色;⑵ 2 球中至少有 1 红球.解 : 设= “ 2 球恰好同色”,= “ 2 球中至少有 1 红球”3. 加工某种零件需要两道工序,第一道工序的次品率是 2% ,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是 3% ,求加工出来的零件是正品的概率.解:设“第 i 道工序出正品”( i=1,2 )4. 市场供应的热水瓶中,甲厂产品占 50% ,乙厂产品占 30% ,丙厂产品占20% ,甲、乙、丙厂产品的合格率分别为 90%,85%,80% ,求买到一个热水瓶是合格品的概率.解:设5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是,求所需设计次数的概率分布.解:……………………故 X 的概率分布是6. 设随机变量的概率分布为试求.解:7. 设随机变量具有概率密度试求.解:8. 设,求.解:9. 设,计算⑴;⑵.解:10. 设是独立同分布的随机变量,已知,设,求.解:工程数学作业(第四次)第 6 章统计推断(一)单项选择题⒈设是来自正态总体(均未知)的样本,则( A )是统计量.A. B. C. D.⒉设是来自正态总体(均未知)的样本,则统计量( D )不是的无偏估计.A. B.C. D.(二)填空题1 .统计量就是不含未知参数的样本函数.2 .参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法.3 .比较估计量好坏的两个重要标准是无偏性,有效性.4 .设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量.5 .假设检验中的显著性水平为事件( u 为临界值)发生的概率.(三)解答题1 .设对总体得到一个容量为 10 的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值和样本方差.解:2 .设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数.解:提示教材第 214 页例 3矩估计:最大似然估计:,3 .测两点之间的直线距离 5 次,测得距离的值为(单位: m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布的,求与的估计值.并在⑴;⑵未知的情况下,分别求的置信度为 0.95 的置信区间.解:( 1 )当时,由 1 -α= 0.95 ,查表得:- -- - 专业资料- 故所求置信区间为:( 2 )当 未知时,用 替代 ,查 t (4, 0.05 ) ,得故所求置信区间为: 4 .设某产品的性能指标服从正态分布,从历史资料已知 ,抽查 10 个样品,求得均值为 17 ,取显著性水平,问原假设 是否成立. 解: ,由,查表得:因为> 1.96 ,所以拒绝 5 .某零件长度服从正态分布,过去的均值为 20.0 ,现换了新材料,从产品中随机抽取 8 个样品,测得的长度为(单位: cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5 问用新材料做的零件平均长度是否起了变化().解:由已知条件可求得:∵ | T | < 2.62 ∴ 接受 H 0。

国开电大 工程数学(本) 形考任务1-5答案 (2)

国开电大 工程数学(本) 形考任务1-5答案 (2)

国开电大工程数学(本) 形考任务1-5答案任务1答案在工程数学中,任务1通常包括对于给定的函数或方程求解、求导或求积分等基本运算。

以下是对任务1的答案:1.1 求解方程对于给定的方程,求解意味着找到使方程成立的变量的值。

解方程的一般步骤如下:1.将方程移项,整理为标准形式;2.根据运算法则,对方程进行简化;3.通过合适的代数运算,解出变量的值。

例如,对于方程2x+5=15,我们可以按照以下步骤求解:1.将方程移项得到2x=15−5;2.简化方程为2x=10;3.通过除法运算解出x的值,得到 $x = \\frac{10}{2}= 5$。

因此,方程2x+5=15的解为x=5。

1.2 求导求导是对给定函数的导数进行计算。

函数的导数反映了函数在每个点上的变化率。

求导的一般步骤如下:1.根据导数的定义,写出函数的导数表达式;2.使用导数的基本运算法则,对函数进行求导。

例如,对于函数x(x)=3x2+2x+1,我们可以按照以下步骤求导:1.写出函数x(x)的导数表达式为x′(x)=6x+2;2.使用导数的基本运算法则得到x′(x)=6x+2。

因此,函数x(x)=3x2+2x+1的导数为x′(x)=6x+2。

1.3 求积分求积分是对给定函数的积分进行计算。

函数的积分表示了函数在指定区间上的面积或曲线长度。

求积分的一般步骤如下:1.根据积分的定义,写出函数的积分表达式;2.使用积分的基本运算法则,对函数进行积分。

例如,对于函数x(x)=3x2+2x+1,我们可以按照以下步骤求积分:1.写出函数x(x)的积分表达式为 $\\int{(3x^2 + 2x +1)dx}$;2.使用积分的基本运算法则得到 $\\int{(3x^2 + 2x +1)dx} = x^3 + x^2 + x + C$,其中x为常数。

因此,函数x(x)=3x2+2x+1的积分为 $\\int{(3x^2 +2x + 1)dx} = x^3 + x^2 + x + C$。

工程数学试卷与答案汇总(完整版)

工程数学试卷与答案汇总(完整版)

求极值得 y=3500 (吨)
(3 分) (1 分)
工程数学(本)10 秋模拟试题(一) 一、单项选择题(每小题 3 分,共 15 分)
1.设 A, B 都是 n 阶方阵,则下列命题正确的是( AB A B ).
2.向量组 1 1 0 2 的秩是( 3 ).
0,1,2, 3 0 0 3 7
P2 P{Y 5}, 则有( )
A. 对于任意的 , P1=P2
B. 对于任意的 , P1 < P2
C. 只对个别的 ,才有 P1=P2 D. 对于任意的 , P1 > P2
5.设 X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中
正确的是(

A.D(X+c)=D(X). B. D(X+c)=D(X)+c.
.专业.整理.
下载可编辑
得分
评卷人
五、应用题(共 10 分)
17.设在国际市场上每年对我国某种出口商品的需求量 X 是随机变量, 它在[2000,4000]( 单位:吨 )上服从均匀分布,又设每售出这种商品 一吨,可为国家挣得外汇 3 万元,但假如销售不出而囤积在仓库,则 每吨需保养费 1 万元。问需要组织多少货源,才能使国家收益最大。
当 2 x 3时, F(x) P( X 1) P( X 2) 2 ; 3
当 x 3 时, F(x) 1;
(2)EX=1 x 1/6+2 x 3/6+3 x 2/6= 13/6
(1 分) (3 分) (1 分) (1 分) (1 分)
(1 分) (1 分) (1 分)
四、证明题(共 10 分) (1) A2=aaT·aaT=aTa ·aaT =║a║2A (2)因 Aa= aaT ·a=aTa·a= ║a║2a

2019年电大本科《工程数学》期末试题资料三套附答案【电大备考篇】

2019年电大本科《工程数学》期末试题资料三套附答案【电大备考篇】

2019年电大本科《工程数学》期末试题资料三套附答案一、1.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是( B )矩阵. A .s n ⨯ B .n s ⨯ C .t m ⨯ D .m t ⨯2.若X 1、X 2是线性方程组AX =B 的解,而21ηη、是方程组AX = O 的解,则( A )是AX =B 的解. A .213231X X + B .213231ηη+C .21X X -D .21X X + 3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( C ) . A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101 B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011 D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1004. 下列事件运算关系正确的是( A ).A .A B BA B += B .A B BA B +=C .A B BA B +=D .B B -=1 5.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( D ). A .)3,2(-N B .)3,4(-N C .)3,4(2-N D .)3,2(2-N6.设321,,x x x 是来自正态总体),(2σμN 的样本,则( C )是μ的无偏估计. A .321525252x x x ++ B .321x x x ++ C .321535151x x x ++ D .321515151x x x ++ 7.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从( B ).A .χ2分布B .t 分布C .指数分布D .正态分布 二、填空题(每小题3分,共15分) 1.设三阶矩阵A 的行列式21=A ,则1-A .2.若向量组:⎥⎥⎥⎤⎢⎢⎢⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k 3.设A B ,互不相容,且A )>0,则P B A ()=4.若随机变量X ~ ]2,0[U ,则=)(X D5.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ三、(每小题10分,共60分)1.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=350211B ,求X .解:因为B X A I =-)(,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-101210011110001011100201010101001011)(I A I⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→110100121010120001110100011110010101即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--110121120)(1A I 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X . 2.设向量组)1,421(1'--=,,α,)4,1684(2'--=,,α,)2,513(3'--=,,α,)1,132(4'-=,,α,求这个向量组的秩以及它的一个极大线性无关组.解:因为 (1α 2α 3α 4α)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------12411516431822341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→1100770075002341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000200011002341所以,r (4321,,,αααα) = 3.它的一个极大线性无关组是431,,ααα(或432,,ααα).3.用配方法将二次型32312123222132122435),,(x x x x x x x x x x x x f +++++=化为标准型,并求出所作的满秩变换. 解:32312123222132122435),,(x x x x x x x x x x x x f +++++=322322232122)2(x x x x x x x -++++=232322321)()2(x x x x x x +-+++=令333223211,,2x y x x y x x x y =-=++=即得 232221321),,(y y y x x x f ++=由(*)式解出321,,x x x ,即得⎪⎩⎪⎨⎧=+=--=33322321132y x y y x y y y x 或写成⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321*********y y y x x x4.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取P (X < a )=0.9成立的常数a . (8413.0)0.1(=Φ,9.0)28.1(=Φ,9973.0)0.2(=Φ).均值得x = 21,求μ的置信度为95%的置信区间.(已知96.1975.0=u )设A 是n 阶矩阵,若3A = 0,则21)(A A I A I++=--.证明:因为 ))((2A A I A I ++-=322A A A A A I ---++ =3A I -= I所以 21)(A A I A I ++=--一、 1.设B A ,都是n 阶矩阵)1(>n ,则下列命题正确的是(D ). A . 若AC AB =,且0≠A ,则C B = B .2222)(B AB A B A ++=+C . A B B A '-'='-)(D . 0=AB ,且0≠A ,则0=B2.在下列所指明的各向量组中,(B )中的向量组是线性无关的.A . 向量组中含有零向量B . 任何一个向量都不能被其余的向量线性表出C . 存在一个向量可以被其余的向量线性表出D . 向量组的向量个数大于向量的维数3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( C ) .A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100 4. 甲、乙二人射击,分别表示甲、乙射中目标,则AB 表示( A )的事件. A . 至少有一人没射中 B . 二人都没射中C . 至少有一人射中D . 两人都射中 5.设)1,0(~N X,)(x Φ是X的分布函数,则下列式子不成立的是( C ).A .5.0)0(=ΦB . 1)()(=Φ+-Φx xC . )()(a a Φ=-ΦD .1)(2)(-Φ=<a a x P6.设321,,x x x 是来自正态总体的样本,则(D )是μ无偏估计.A . 321x x x ++ B .321525252x x x ++ C . 321515151x x x ++ D . 321535151x x x ++7.对正态总体),(2σμN 的假设检验问题中,U 检验解决的问题是(A ).A . 已知方差,检验均值B . 未知方差,检验均值C . 已知均值,检验方差D . 未知均值,检验方差二、填空题(每小题3分,共15分) 1.设A 是2阶矩阵,且9=A ,'-)(31A2为53⨯矩阵,且该方程组有非零解,则)(A r3.2.)(=A P ,则=+)(B A P4.若连续型随机变量X数的是⎩⎨⎧≤≤=其它,010,2)(x x x f ,则)(X E 5.若参数θ的两个无偏估计量1ˆθ和2θ满足)ˆ()(21θθD D >,则称2ˆθ比1ˆθ三、计算题(每小题10分,共60分)1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=500050002,322121011B A ,问:A1-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-520125151051585000500021461351341B A2.线性方程组的增广矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----112313211151132212322213214242),,(x x x x x x x x x x f ++++=化为标准(C)⎩⎨⎧≤≤=其它,0π0,sin )(x x x f (D)⎪⎩⎪⎨⎧≤≤-=其它,0π2π,cos )(x x x f 7.设总体满足,又,其中是来自总体的个样品,则等式(B )成立. (A)nX E μ=)( (B)μ=)(X E (C)22)(n X D σ=(D)2)(σ=X D1.=⎥⎦⎤⎢⎣⎡-*02132.若λ是A 根.3.已知5.0)(,9.0)(==AB P A P ,则=-)(B A P4.0.4.设连续型随机变量X的密度函数是)(x f ,则<<)(b X a P5三、计算题(每小题10分,共60分)1.设矩阵⎥⎥⎥⎤⎢⎢⎢⎡--=101111001A ,求1)(-'A A即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡='-211110102)(1A A2.在线性方程组⎪⎩⎪⎨⎧=++-=+-=++153233232121321x x x x x x x x λλ中λ取何值时,此方程组有解.有解的情况下写出方程组的一般解.解:将方程组的增广矩阵化为阶梯形 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--λλλλ21110333032115323011321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→λλλλ2200011102101220001110321由此可知当1≠λ时方程组无解,当1=λ时方程组有解.此时方程组的一般解为⎩⎨⎧+-=--=113231x x x x 3.用配方法将二次型23322231212132162242),,(x x x x x x x x x x x x f +++-+=化为标准型,并求出所作的满秩变换. 解:23322231212132162242),,(x x x x x x x x x x x x f +++-+=232332223231212322217)96()4424(x x x x x x x x x x x x x x -+++--+++=2323223217)3()2(x x x x x x -++-+=令333223211,3,2x y x x y x x x y =+=-+=即得2322213217),,(y y y x x x f -+=由式解出321,,x x x ,即得⎪⎩⎪⎨⎧=-=+-=33322321135yx y y x y y y x或写成。

工程数学(本科)形考任务答案

工程数学(本科)形考任务答案

工程数学作业(一)答案第 2 章矩阵(一)单项选择题(每小题 2 分,共 20 分)⒈设,则( D ).A. 4B. - 4C. 6D. - 6⒉若,则( A ).A. B. - 1 C. D. 1⒊乘积矩阵中元素( C ).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是( B ).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是( D ).A. B.C. D.⒍下列结论正确的是( A ).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为( C ).A. B.C. D.⒏方阵可逆的充分必要条件是( B ).A. B. C. D.⒐设均为阶可逆矩阵,则( D ).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是( A ). A. B.C. D.(二)填空题(每小题 2 分,共 20 分)⒈ 7 .⒉ 是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为5 × 4 矩阵.⒋二阶矩阵.⒌设,则⒍设均为 3 阶矩阵,且,则72 .⒎设均为 3 阶矩阵,且,则- 3 .⒏若为正交矩阵,则 0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题 8 分,共 48 分)⒈设,求⑴ ;⑵ ;⑶;⑷ ;⑸ ;⑹ .答案:⒉设,求.解:⒊已知,求满足方程中的.解:⒋写出 4 阶行列式中元素的代数余子式,并求其值.答案:⒌用初等行变换求下列矩阵的逆矩阵:⑴ ;⑵ ;⑶ .解:( 1 )( 2 )( 过程略 ) (3)⒍求矩阵的秩.解:(四)证明题(每小题 4 分,共 12 分)⒎对任意方阵,试证是对称矩阵.证明:是对称矩阵⒏若是阶方阵,且,试证或.证明:是阶方阵,且或⒐若是正交矩阵,试证也是正交矩阵.证明:是正交矩阵即是正交矩阵工程数学作业(第二次)第 3 章线性方程组(一)单项选择题 ( 每小题 2 分,共 16 分 )⒈用消元法得的解为( C ).A. B.C. D.⒉线性方程组( B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为( A ).A. 3B. 2C. 4D. 5⒋设向量组为,则( B )是极大无关组.A. B. C. D.⒌ 与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( D ).A. 秩秩B. 秩秩C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解⒎以下结论正确的是( D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组线性相关,则向量组内( A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9 .设 A ,B为阶矩阵,既是A又是B的特征值,既是A又是B的属于的特征向量,则结论()成立.A.是 AB 的特征值B.是 A+B 的特征值C.是 A - B 的特征值D.是 A+B 的属于的特征向量10 .设A,B,P为阶矩阵,若等式(C)成立,则称A和B相似.A.B.C.D.(二)填空题 ( 每小题 2 分,共 16 分 )⒈当1时,齐次线性方程组有非零解.⒉向量组线性相关.⒊向量组的秩是3.⒋设齐次线性方程组的系数行列式,则这个方程组有无穷多解,且系数列向量是线性相关的.⒌向量组的极大线性无关组是.⒍向量组的秩与矩阵的秩相同.⒎设线性方程组中有 5 个未知量,且秩,则其基础解系中线性无关的解向量有2个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为.9 .若是A的特征值,则是方程的根.10 .若矩阵A满足,则称A为正交矩阵.(三)解答题 ( 第 1 小题 9 分,其余每小题 11 分 )1 .用消元法解线性方程组解:方程组解为2.设有线性方程组为何值时,方程组有唯一解 ? 或有无穷多解 ?解:]当且时,,方程组有唯一解当时,,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组线性表出,当且仅当方程组有解这里方程组无解不能由向量线性表出4.计算下列向量组的秩,并且( 1 )判断该向量组是否线性相关解:该向量组线性相关5.求齐次线性方程组的一个基础解系.解:方程组的一般解为令,得基础解系6.求下列线性方程组的全部解.解:方程组一般解为令,,这里,为任意常数,得方程组通解7.试证:任一4维向量都可由向量组,,,线性表示,且表示方式唯一,写出这种表示方式.证明:任一4维向量可唯一表示为⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设为含个未知量的线性方程组该方程组有解,即从而有唯一解当且仅当而相应齐次线性方程组只有零解的充分必要条件是有唯一解的充分必要条件是:相应的齐次线性方程组只有零解9 .设是可逆矩阵A的特征值,且,试证:是矩阵的特征值.证明:是可逆矩阵A的特征值存在向量,使即是矩阵的特征值10 .用配方法将二次型化为标准型.解:令,,,即则将二次型化为标准型工程数学作业(第三次)第 4 章随机事件与概率(一)单项选择题⒈ 为两个事件,则( B )成立.A. B.C. D.⒉如果( C )成立,则事件与互为对立事件.A. B.C. 且D. 与互为对立事件⒊ 10 张奖券中含有 3 张中奖的奖券,每人购买 1 张,则前 3 个购买者中恰有 1 人中奖的概率为( D ).A. B. C. D.4. 对于事件,命题( C )是正确的.A. 如果互不相容,则互不相容B. 如果,则C. 如果对立,则对立D. 如果相容,则相容⒌某随机试验的成功率为, 则在 3 次重复试验中至少失败 1 次的概率为( D ).A. B. C. D.6. 设随机变量,且,则参数与分别是( A ).A. 6, 0.8B. 8, 0.6C. 12, 0.4D. 14, 0.27. 设为连续型随机变量的密度函数,则对任意的,( A ).A. B.C. D.8. 在下列函数中可以作为分布密度函数的是( B ).A. B.C. D.9. 设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则( D ).A. B.C. D.10. 设为随机变量,,当( C )时,有.A. B.C. D.(二)填空题⒈从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为.2. 已知,则当事件互不相容时, 0.8 ,0.3 .3. 为两个事件,且,则.4. 已知,则.5. 若事件相互独立,且,则.6. 已知,则当事件相互独立时, 0.65 ,0.3 .7. 设随机变量,则的分布函数.8. 若,则 6 .9. 若,则.10. 称为二维随机变量的协方差.(三)解答题1. 设为三个事件,试用的运算分别表示下列事件:⑴ 中至少有一个发生;⑵ 中只有一个发生;⑶ 中至多有一个发生;⑷ 中至少有两个发生;⑸ 中不多于两个发生;⑹ 中只有发生.解 : (1) (2) (3)(4) (5) (6)2. 袋中有 3 个红球, 2 个白球,现从中随机抽取 2 个球,求下列事件的概率:⑴ 2 球恰好同色;⑵ 2 球中至少有 1 红球.解 : 设= “ 2 球恰好同色”,= “ 2 球中至少有 1 红球”3. 加工某种零件需要两道工序,第一道工序的次品率是 2% ,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是 3% ,求加工出来的零件是正品的概率.解:设“第 i 道工序出正品”( i=1,2 )4. 市场供应的热水瓶中,甲厂产品占 50% ,乙厂产品占 30% ,丙厂产品占 20% ,甲、乙、丙厂产品的合格率分别为 90%,85%,80% ,求买到一个热水瓶是合格品的概率.解:设5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是,求所需设计次数的概率分布.解:……………………故 X 的概率分布是6. 设随机变量的概率分布为试求.解:7. 设随机变量具有概率密度试求.解:8. 设,求.解:9. 设,计算⑴ ;⑵ .解:10. 设是独立同分布的随机变量,已知,设,求.解:工程数学作业(第四次)第 6 章统计推断(一)单项选择题⒈设是来自正态总体(均未知)的样本,则( A )是统计量.A. B. C. D.⒉设是来自正态总体(均未知)的样本,则统计量( D )不是的无偏估计.A. B.C. D.(二)填空题1 .统计量就是不含未知参数的样本函数.2 .参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法.3 .比较估计量好坏的两个重要标准是无偏性,有效性.4 .设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量.5 .假设检验中的显著性水平为事件( u 为临界值)发生的概率.(三)解答题1 .设对总体得到一个容量为 10 的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值和样本方差.解:2 .设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数.解:提示教材第 214 页例 3矩估计:最大似然估计:,3 .测两点之间的直线距离 5 次,测得距离的值为(单位: m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布的,求与的估计值.并在⑴ ;⑵ 未知的情况下,分别求的置信度为 0.95 的置信区间.解:( 1 )当时,由 1 -α= 0.95 ,查表得:故所求置信区间为:( 2 )当未知时,用替代,查 t (4, 0.05 ) ,得故所求置信区间为:4 .设某产品的性能指标服从正态分布,从历史资料已知,抽查10 个样品,求得均值为 17 ,取显著性水平,问原假设是否成立.解:,由,查表得:因为> 1.96 ,所以拒绝5 .某零件长度服从正态分布,过去的均值为 20.0 ,现换了新材料,从产品中随机抽取 8 个样品,测得的长度为(单位: cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化().解:由已知条件可求得:∵ | T |< 2.62 ∴ 接受 H 0。

工程数学(本)13春模拟练习参考答案

工程数学(本)13春模拟练习参考答案

工程数学(本)(13春)模拟练习试题答案(供参考)2013年6月一、单项选择题(每小题3分,本题共15分)1. D2. C3.D4. B5. A二、填空题(每小题3分,本题共15分)1. B A C ()--'112. r A r A b ()([])=3. 3.04. 815. ),(2n N σμ三、计算题(每小题16分,本题共64分)1. 解: B A I X 1)(--=,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--110121120)(1A I由矩阵乘法得B A I X 1)(--==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----110121120⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--350211=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---3342312. 解: 将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---273503735024121114712412111112k k⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→500003735024121k当5=k 时,方程组有解,且方程组的一般解为⎪⎪⎩⎪⎪⎨⎧-+=--=432431575353565154x x x xx x (其中43,x x 为自由未知量)3. 解:⑴)3231()23923235()95(<-<=-<-<-=<<X P X P X P1574.08413.09987.0)1()3(=-=Φ-Φ=⑵)23723()7(->-=>X P X P)223(1)223(≤--=>-=X P X P0228.09772.01)2(1=-=Φ-=4. 解 作假设 85:0=μH ,85:1≠μH选取统计量 ns x T 0μ-=当0H 为真时,)27(~t T 已知80=x ,8=s ,28=n ,850=μ,计算得 25.328885800=-=-=n s x T μ 查t 分布临界值表,得052.2)27(025.0=t . 因为>=25.3T 052.2)27(025.0=t ,所以拒绝0H .即不能认为该班的数学成绩为85分.四、证明题(本题6分)证明:由事件的关系可知A A U AB B AB AB A B AB ==+=+=-+ ()()而()A B AB -=∅ ,故由概率的性质可知P A P A B P AB ()()()=-+证毕.。

电大《工程数学》期末复习题

电大《工程数学》期末复习题

《工程数学》期末复习题库工程数学(本)模拟试题一、单项选择题(每小题3分,共15分)1.设B A ,为n 阶矩阵,则下列等式成立的是( ). A .BA AB = B .B A B A +=+ C .111)(---+=+B A B A D .111)(---=B A AB2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( ),其中0≠i a ,)3,2,1(=i .A .0321=++a a aB .0321=-+a a aC .0321=+-a a aD .0321=++-a a a3.下列命题中不正确的是( ). A .A 与A '有相同的特征多项式B .若λ是A 的特征值,则O X A I =-)(λ的非零解向量必是A 对应于λ的特征向量 C .若λ=0是A 的一个特征值,则O AX =必有非零解 D .A 的特征向量的线性组合仍为A 的特征向量4.若事件与互斥,则下列等式中正确的是( ). A . B . C . D .5.设n x x x ,,,21 是来自正态总体)1,5(N 的样本,则检验假设5:0=μH 采用统计量U =( ).A .55-xB .5/15-xC .nx /15- D .15-x二、填空题(每小题3分,共15分)1.设22112112214A x x =-+,则0A =的根是 . 2.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 个解向量. 3.设互不相容,且,则 . 4.设随机变量X ~ B (n ,p ),则E (X )= .5.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x n x 11,则~x .三、计算题(每小题16分,共64分)1.设矩阵100111101A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,求1()AA -'. 2.求下列线性方程组的通解.123412341234245353652548151115x x x x x x x x x x x x -++=⎧⎪-++=⎨⎪-++=⎩ 3.设随机变量X ~ N (3,4).求:(1)P (1< X < 7);(2)使P (X < a )=0.9成立的常数a . (已知8413.0)0.1(=Φ,9.0)28.1(=Φ,9773.0)0.2(=Φ).4.从正态总体N (μ,4)中抽取容量为625的样本,计算样本均值得x = 2.5,求μ的置信度为99%的置信区间.(已知 576.2995.0=u )四、证明题(本题6分)4.设n 阶矩阵A 满足0))((=+-I A I A ,则A 为可逆矩阵.工程数学(本)11春模拟试卷参考解答一、单项选择题(每小题3分,共15分) 1.A 2.B 3.D 4.A 5.C 二、填空题(每小题3分,共15分)1.1,-1,2,-2 2.3 3.0 4.np 5.)1,0(nN三、(每小题16分,共64分) 1.解:由矩阵乘法和转置运算得10011111111010132101011122AA --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥'=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ ………6分 利用初等行变换得10020001112011101⎡⎤⎢⎥→⎢⎥⎢⎥-⎣⎦1002001110101112⎡⎤⎢⎥→---⎢⎥⎢⎥⎣⎦即 1201()011112AA -⎡⎤⎢⎥'=⎢⎥⎢⎥⎣⎦………16分 7-2.解 利用初等行变换,将方程组的增广矩阵化成行简化阶梯形矩阵,即 245353652548151115-⎛⎫ ⎪- ⎪ ⎪-⎝⎭→245351201000555-⎛⎫ ⎪-- ⎪ ⎪⎝⎭→120100055500555--⎛⎫ ⎪ ⎪ ⎪⎝⎭→120100011100000--⎛⎫ ⎪ ⎪ ⎪⎝⎭ 方程组的一般解为:1243421x x x x x =+⎧⎨=-+⎩,其中2x ,4x 是自由未知量. ……8分令042==x x ,得方程组的一个特解0(0010)X '=,,,.方程组的导出组的一般解为: 124342x x x x x =+⎧⎨=-⎩,其中2x ,4x 是自由未知量. 令12=x ,04=x ,得导出组的解向量1(2100)X '=,,,;令02=x ,14=x ,得导出组的解向量2(1011)X '=-,,,. ……13分所以方程组的通解为:22110X k X k X X ++=12(0010)(2100)(1011)k k '''=++-,,,,,,,,,,其中1k ,2k 是任意实数. ……16分3.解:(1)P (1< X < 7)=)23723231(-<-<-X P =)2231(<-<-X P =)1()2(-Φ-Φ= 0.9773 + 0.8413 – 1 = 0.8186 ……8分(2)因为 P (X < a )=)2323(-<-a X P =)23(-Φa = 0.9 所以 28.123=-a ,a = 3 + 28.12⨯ = 5.56 ……16分 4.解:已知2=σ,n = 625,且nx u σμ-= ~ )1,0(N ……5分因为 x = 2.5,01.0=α,995.021=-α,576.221=-αu206.06252576.221=⨯=-nuσα……10分所以置信度为99%的μ的置信区间为:]706.2,294.2[],[2121=+---nux nux σσαα. ……16分四、(本题6分)证明: 因为 0))((2=-=+-I A I A I A ,即I A =2.所以,A 为可逆矩阵. ……6分《工程数学》综合练习一、单项选择题1.设B A ,都是n 阶方阵,则下列命题正确的是( ). A .AB A B = B .222()2A B A AB B -=-+ C .AB BA = D .若AB O =,则A O =或B O = 正确答案:A2.向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡732,320,011,001的秩是( ). A . 1 B . 3 C . 2 D . 4正确答案: B3.n 元线性方程组有解的充分必要条件是( ).A . )()(b A r A r =B . 不是行满秩矩阵C .D . 正确答案:A4. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是( ).A . 256B . 103 C . 203 D . 259正确答案:D 5.设是来自正态总体的样本,则( )是μ无偏估计.A . 321515151x x x ++ B . 321x x x ++C . 321535151x x x ++D . 321525252x x x ++正确答案: C6.若是对称矩阵,则等式( )成立. A . I AA =-1 B . A A =' C . 1-='A A D . A A =-1正确答案:B7.=⎥⎦⎤⎢⎣⎡-15473( ). A . ⎥⎦⎤⎢⎣⎡--3547 B . 7453-⎡⎤⎢⎥-⎣⎦ C . 7543-⎡⎤⎢⎥-⎣⎦ D . 7543-⎡⎤⎢⎥-⎣⎦ 正确答案:D8.若( )成立,则元线性方程组AX O =有唯一解.A .B . A O ≠C .D . A 的行向量线性相关 正确答案:A9. 若条件( )成立,则随机事件,互为对立事件.A . ∅=AB 或A B U += B . 0)(=AB P 或()1P A B +=C . ∅=AB 且A B U +=D . 0)(=AB P 且1)(=+B A P正确答案:C10.对来自正态总体(未知)的一个样本,记∑==3131i i X X ,则下列各式中( )不是统计量.A . XB .∑=31i iXC . ∑=-312)(31i i X μ D . ∑=-312)(31i i X X正确答案: C二、填空题1.设B A ,均为3阶方阵,2,3A B ==,则13A B -'-= .应该填写:-182.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得 ,则称λ为A 的特征值.应该填写:AX X λ=3.设随机变量012~0.20.5X a ⎛⎫ ⎪⎝⎭,则a = .应该填写:0.34.设为随机变量,已知3)(=X D ,此时.应该填写:275.设θˆ是未知参数θ的一个无偏估计量,则有 .应该填写:ˆ()E θθ=6.设B A ,均为3阶方阵,6,3A B =-=,则13()A B -'-= . 应该填写:87.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得 ,则称X 为A 相应于特征值λ的特征向量. 应该填写:AX X λ=8.若5.0)(,8.0)(==B A P A P ,则=)(AB P . 应该填写:0.39.如果随机变量的期望2)(=X E ,9)(2=X E ,那么=)2(X D .应该填写:2010.不含未知参数的样本函数称为 . 应该填写:统计量三、计算题1.设矩阵,且有,求X .解:利用初等行变换得即由矩阵乘法和转置运算得2.求线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=++--=+-+-=-+-2284212342272134321432143214321x x x x x x x x x x x x x x x x的全部解.解: 将方程组的增广矩阵化为阶梯形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------0462003210010101113122842123412127211131 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000002200010101113106600022000101011131 方程组的一般解为: (其中为自由未知量)令=0,得到方程的一个特解)0001(0'=X .方程组相应的齐方程的一般解为: ⎪⎩⎪⎨⎧-===4342415xx x x x x (其中为自由未知量)令=1,得到方程的一个基础解系)1115(1'-=X .于是,方程组的全部解为:10kX X X +=(其中k 为任意常数)3.设)4,3(~N X ,试求: (1))95(<<X P ;(2))7(>X P . (已知,8413.0)1(=Φ9987.0)3(,9772.0)2(=Φ=Φ)解:(1))3231()23923235()95(<-<=-<-<-=<<X P X P X P 1574.08413.09987.0)1()3(=-=Φ-Φ=(2))23723()7(->-=>X P X P )223(1)223(≤--=>-=X P X P 0228.09772.01)2(1=-=Φ-=4.据资料分析,某厂生产的一批砖,其抗断强度)21.1,5.32(~N X ,今从这批砖中随机地抽取了9块,测得抗断强度(单位:kg /cm 2)的平均值为31.12,问这批砖的抗断强度是否合格().解: 零假设.由于已知,故选取样本函数已知,经计算得,由已知条件,故拒绝零假设,即这批砖的抗断强度不合格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程数学(本)模拟试题2011.11
一、单项选择题(每小题3分,本题共15分)
1. B A ,都是n 阶矩阵,则下列命题正确的是 ( ) .
(A) B A AB = (B) 2222)(B AB A B A +-=-
(C) BA AB = (D) 若0AB =,则0A =或0B =
2. 已知2维向量组4321,,,αααα,则),,,(4321ααααr 至多是( ).
(A) 1 (B) 2
(C) 3 (D) 4
3. 设0AX =是n 元线性方程组,其中A 是n 阶矩阵,若条件( )成立,则该方程组没有非0解.
(A) n r <)(A (B) A 的行向量线性相关
(C) 0=A (D) A 是行满秩矩阵
4. 袋中放有3个红球,2个白球,第一次取出一球,不放回,第二次再取一球,则两次都是红球的概率是( ).
(A) 256 (B) 10
3 (C) 203 (D) 25
9 5. 设x x x n 12,,, 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.
(A) 3215
15151x x x ++ (B) 321x x x ++ (C)
321535151x x x ++ (D) 321525252x x x ++ 二、填空题(每小题3分,共15分)
1. 设B ,A 均为3阶矩阵,且3,6=-=B A ,='--3)(1B A .
2. 设A 为n 阶方阵,若存在数λ和非零n 维向量x ,使得x x A λ=,则称λ为A 的 .
3. 已知2.0)(,8.0)(==AB P A P ,则=-)(B A P .
4. 设随机变量⎥⎦
⎤⎢⎣⎡a X 5.02.0210~,则=a .
5. 若参数θ的估计量 θ
满足E ( )θθ=,则称 θ为θ的 . 三、计算题(每小题16分,共64分)
1设矩阵⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------=031052,843722310B A ,I
是3阶单位矩阵,且有B X A I =-)(,求X .
2. 求线性方程组
⎪⎪⎩⎪⎪⎨⎧=++--=--+--=--=+++8
8325
92343232432143214324321x x x x x x x x x x x x x x x 的全部解.
3. 设)4,3(~N X ,试求⑴)95(<<X P ;⑵)7(>X P .(已知,8413.0)1(=Φ 9987.0)3(,9772.0)2(=Φ=Φ)
4. 某钢厂生产了一批管材,每根标准直径100mm ,今对这批管材进行检验,随机取出9根测得直径的平均值为99.9mm ,样本标准差s = 0.47,已知管材直径服从正态分布,问这批管材的质量是否合格(检验显著性水平α=00
5.,t 0058230
6.().=)
四、证明题(本题6分)
设321,,ααα是线性无关的,证明, 313221,,αααααα+++也线性无关.
试题答案及评分标准
(供参考)
一、单项选择题(每小题3分,本题共15分)
1. A
2. B
3. D
4.B
5. C
二、填空题(每小题3分,本题共15分)
1. 8
2. 特征值
3.6.0
4.3.0
5. 无偏估计
三、计算题(每小题16分,本题共64分)
1. 解:由矩阵减法运算得
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---------⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-943732311843722310100010001A I ………5分 利用初等行变换得
113100237010349001113100011210010301⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→--⎡⎣⎢⎢⎢⎤⎦
⎥⎥⎥
→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦
⎥⎥⎥113100011210001111110233010301001111 →---⎡⎣⎢⎢⎢⎤⎦
⎥⎥⎥100132010301001111 即 ()I A -=---⎡⎣⎢⎢⎢⎤⎦
⎥⎥⎥-1132301111 由矩阵乘法运算得
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-=-6515924031052111103231)(1B A I X ………16分 2. 解:将方程组的增广矩阵化为阶梯形
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------2413043250432103211188312
591234321032
111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→0000021100432103211110550
0241212004321032111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→0000
0211000101012001 此时齐次方程组化为 ⎪⎩⎪⎨⎧-==-=43
42412x x x x x x
令14=x ,得齐次方程组的一个基础解系
[]'--=11121X ………12分 令04=x ,得非齐次方程组的一个特解
[]'=02010X
由此得原方程组的全部解为
10kX X X += (其中k 为任意常数) ………16分
3. 解:⑴)32
31()23923235(
)95(<-<=-<-<-=<<X P X P X P 1574.08413.09987.0)1()3(=-=Φ-Φ= ………8分
⑵)2
3723()7(->-=>X P X P )22
3(1)223(≤--=>-=X P X P 0228.09772.01)2(1=-=Φ-= ………16分 4. 解:零假设H 0100:μ=.由于未知σ2,故选取样本函数
T x s n
t n =--μ~()1 ………5分 已知x =999.,经计算得
s 90473016==..,x s n
-=-=μ9991000160625... ………11分 由已知条件t 00582306.().=,
x s n
t -=<=μ062523068005..(). 故接受零假设,即可以认为这批管材的质量是合格的。

………16分
四、证明题(本题6分)
证明:设有一组数321,,k k k ,使得
0)()()(313322211=+++++ααααααk k k
成立,即0)()()(332221131=+++++αααk k k k k k ,由已知321,,ααα线性无关,故有
⎪⎩⎪⎨⎧=+=+=+00032
2131k k k k k k
该方程组只有零解,得0321===k k k ,故313221,,αααααα+++是线性无关的.证毕. ………6分
(素材和资料部分来自网络,供参考。

可复制、编制,期待您的好评与关注)。

相关文档
最新文档