工程数学试题与答案

合集下载

工程数学复习题(含答案)

工程数学复习题(含答案)

工程数学复习题1.00110212=-k k的充分条件是( C ) (A ) k =2 (B )k =0 (C )k =-2 (D )k =3 2.如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111324324324a a a a a a a a a a a a D ---=,那么=1D ( B ) (A ) 8 (B )-12 (C )24 (D )-24 3.已知矩阵333231232221131211a a a a a a a a a A =,那么能左乘A (在A 的左边)的矩阵是( B )(A ) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡323122211211b b b b b b (B )[]131211b b b (C )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡312111b b b (D )⎥⎦⎤⎢⎣⎡22211211b b b b 4.设A ,B ,C 均为n 阶矩阵,下列运算不是运算律的是( D )(A ) (A+B)+C=(C+A)+B (B ) (A+B)C=AC+AB (C) A(BC)=(AB)C (D) A(BC)=(AC)B 5.已知A ,B ,C 均为n 阶矩阵,且ABC =I ,则下列结论必然成立的是(C ) (A )ACB =I (B )BAC =I (C)BCA =I (D)CBA =I6.设有向量组)1,0,0(),0,0,1(21==αα,若β是2,1αα的线性组合,则β可以等于( B ) (A ))2,1,0( (B ))4,0,3(- (C))0,1,1( (D))0,1,0(- 7.n 维向量组()n s s ≤≤3,...,,21ααα线性无关的充分必要条件是( D ) (A )存在一组不全为零的数s k k k ,...,,21,使0...2211≠+++s s k k k ααα; (B )s ααα,...,,21中任意两个向量都线性无关;(C)s ααα,...,,21中存在一个向量,它不能由其余向量线性表示; (D)s ααα,...,,21中任意一个向量都不能由其余向量线性表示; 8.已知向量组4321,,,αααα线性无关,则向量组( C )也线性无关(A )14433221,,,αααααααα++++ (B )14433221,,,αααααααα---- (C)14433221,,,αααααααα-+++ (D)14433221,,,αααααααα--++9.设 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111111111A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=15042-1-321B ,求A 23AB -及T AB .10.已知行列式2333231232221131211=a a a a a a a a a ,求331332123111132312221121131211252525333a a a a a a a a a a a a a a a ---+++ 解:331332123111132312221121131211252525333a a a a a a a a a a a a a a a ---+++=331332123111232221131211252525333a a a a a a a a a a a a ---+331332123111131211131211252525333a a a a a a a a a a a a --- =331332123111232221131211252525333a a a a a a a a a a a a ---+0 =131211232221131211555333a a a a a a a a a -333231232221131211222333a a a a a a a a a =0-32⨯333231232221131211a a a a a a a a a=-232⨯⨯ =-12 11.设132λλ=D ,问当λ为何值时0=D ?解:132λλ=λλ32-由λλ32-=0解得01=λ或32=λ12.计算三阶行列式140053101-解:140053101-=1405)1(111+-⨯+1410)1(312--⨯+=5+12=1713.计算四阶行列式2013133251411021---解:2013133251411021---14131232r r r r r r --+5050131061601021-----32r r ↔ -5050616013101021-----242356r r r r -+015000170023101021--341715r r + 00000170023101021-=014.计算四阶行列式2410223211511312---解:2410223211511312---21r r ↔ -2410223213121151---131222r r r r -- -241000130311101151---32r r ↔ 13⨯24103111000101151---242311r r r r +- 13⨯2400310000101151--344r r - 13⨯14000310000101151--=1411113⨯⨯⨯⨯=18215.已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=864297510213A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=612379154257B ,且B X A =+2,求X 解:由B X A =+2得()A B X -=21=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------2721224444642116.已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=114021A ,⎥⎦⎤⎢⎣⎡-=102312B ,⎥⎦⎤⎢⎣⎡--=213421C ,求()C B A 23-. 解:()C B A 23-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-114021⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡-21342121023123 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-114021⎥⎦⎤⎢⎣⎡-⨯120114=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----214480151 17.用矩阵的初等变换求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=523012101A 的逆矩阵1-A解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001523012101−−→−+-131232r r r r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---103012001220210101⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−→−-21127012001100210101127012001200210101323212r r r−−→−+-32312r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----21127115211251000100011-A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----211271152112518.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101212001A ,如A 可逆,求1-A解: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---100010001101212001−−−→−++13122rr r r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101012001100210001 −−−→−-322r r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--101210001100010001−−→−-2r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101210001100010001可见A 可逆,1-A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10121000119.判断向量组()2,0,11=α,()1,1,12=α,()5,1,33=α是否线性相关?解:由512110311132r r -110110311--=0,所以321,,ααα线性相关20.考察向量组(1))6,3(1-=α,)4,2(2-=α;(2)⎪⎪⎭⎫ ⎝⎛=211α,⎪⎪⎭⎫⎝⎛-=112α的线性关系.解:(1))6,3(1-=α,)4,2(2-=α04623=--,所以21,αα线性相关(2)⎪⎪⎭⎫ ⎝⎛=211α,⎪⎪⎭⎫⎝⎛-=112α 031121≠=-,所以21,αα线性无关21.证明:如果向量组γβ,,α线性无关,则向量组βα+,γβ+,αγ+也线性无关. 证:设有一组数321,,k k k 使 ()()()οαγγββα=+++++321k k k则有()()()ογβα=+++++322131k k k k k k由γβ,,α线性无关,有⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k (*) 因 02110011101≠=故方程组(*)只有零解,即只有当0321===k k k 时()()()οαγγββα=+++++321k k k 才成立,因此βα+,γβ+,αγ+也线性无关.22.设n 阶矩阵A 满足0422=--I A A ,证明A 可逆,并求1-A .证:由0422=--I A A I I A A =-⇒242 ⇒I I A A =⎪⎭⎫⎝⎛-24根据逆矩阵的定义可得1-A =24I A - 23.设有向量()2,3,11=α,)1,2,3(2=α,)1,5,2(3--=α,)3,11,4(=β,向量β可由向量组线性表示,则β=32102ααα-+24.求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=1293397225431A 的秩()A γ. 解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----00001140543133120114054311293397225431231312332r r r r r r 故()2=A r25.已知向量组[]T12011=α,[]T10212=α,[]T03123=α,[]T 41524-=α,试用321,,ααα线性表示4α.解:设有321,,x x x 使4332211αααα=++x x x即 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4152031210211201321x x x ,得线性方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4152011302120211321x x x 解此线性方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-4011130251202211−−−−−−→−若干次行初等变换⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-0000110030101001得⎪⎩⎪⎨⎧-===131321x x x ,因此,32143αααα-+= 26.求5R 中向量[]T 20101-=α,[]T14210=β的夹角.解题过程见课本18页27.在4R 中,设[]11111--=α,[]T 11152=α,[]T31333--=α,求321,,ααspan 中的一个标准正交基{}321,,εεε 解题过程见课本19页。

大学工程数学考试题及答案

大学工程数学考试题及答案

大学工程数学考试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是微积分的基本定理?A. 积分中值定理B. 洛必达法则C. 牛顿-莱布尼茨公式D. 泰勒级数展开答案:C2. 在概率论中,随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)等于多少?A. 2B. 3C. 4D. 5答案:A3. 线性代数中,一个矩阵A可逆的充分必要条件是什么?A. 行列式非零B. 秩等于A的阶数C. A的所有特征值非零D. 所有选项都是答案:D4. 在复数域中,下列哪个表达式表示复数的共轭?A. z + z*B. z - z*C. |z|^2D. z * z*答案:B5. 傅里叶级数在工程数学中的应用之一是?A. 信号处理B. 量子力学C. 统计物理D. 所有选项都是答案:A二、填空题(每题3分,共15分)6. 函数f(x) = sin(x)的一阶导数是_________。

答案:cos(x)7. 矩阵的特征值是_________。

答案:λ8. 拉普拉斯变换的逆变换通常使用_________。

答案:拉普拉斯逆变换9. 随机变量X和Y相互独立,且P(X=x) = 2x,P(Y=y) = 3y,则P(X+Y=4)等于_________。

答案:1/410. 曲线y = x^2在点(1,1)处的切线斜率是_________。

答案:2三、解答题(共75分)11. (15分)证明函数f(x) = e^x在实数域上是单调递增的。

答案:由于f'(x) = e^x > 0对于所有实数x,因此f(x)在实数域上是单调递增的。

12. (20分)解线性方程组:\[\begin{align*}x + 2y &= 5 \\3x - y &= 4\end{align*}\]答案:使用高斯消元法或克拉默法则,解得 \( x = 2, y = 1.5 \)。

13. (20分)计算下列定积分:\[\int_{0}^{1} x^2 dx\]答案:使用基本积分公式,得到 \( \frac{1}{3}x^3 \) 在0到1的积分为 \( \frac{1}{3} \)。

工程数学试卷及标准答案

工程数学试卷及标准答案

1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。

A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发 2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。

A. X 和Y 独立。

B. X 和Y 不独立。

C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。

A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。

B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)6. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。

7.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。

8.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正常工作的概率为 。

9.设随机变量X 的概率密度函数为其它Ax x x f <<⎩⎨⎧=002)(,则概率=≥)21(X P 。

工程数学本科试题及答案

工程数学本科试题及答案

工程数学本科试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是微分方程 \( y'' - y' - 2y = e^{2x} \) 的一个解?A. \( y = e^{-x} \)B. \( y = e^{2x} \)C. \( y = e^{x} \)D. \( y = e^{3x} \)2. 在复数域中,下列哪个表达式是正确的?A. \( |z|^2 = z \cdot \bar{z} \)B. \( |z|^2 = z + \bar{z} \)C. \( |z|^2 = z - \bar{z} \)D. \( |z|^2 = z / \bar{z} \)3. 对于向量 \( \mathbf{A} = (2, -3, 4) \) 和 \( \mathbf{B} = (1, 2, -1) \),它们的点积 \( \mathbf{A} \cdot \mathbf{B} \) 等于:A. 1B. 2C. 3D. 54. 在 \( z = x^2 + y^2 \) 中,如果 \( \frac{\partialz}{\partial x} = 2x \),那么 \( \frac{\partial z}{\partial y} \) 等于:A. \( 2y \)B. \( -2y \)C. \( 2x \)D. \( -2x \)5. 一个函数 \( f(x) \) 在点 \( x = a \) 处连续的充分必要条件是:A. \( \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) \)B. \( \lim_{x \to a} f(x) = f(a) \)C. \( f(a) \) 存在D. \( f(x) \) 在 \( x = a \) 处可导6. 微分方程 \( y' = y^2 \) 的解的形式是:A. \( y = Ce^x \)B. \( y = \frac{1}{Ce^x + 1} \)C. \( y = Ce^{-x} \)D. \( y = \frac{1}{Cx + 1} \)7. 傅里叶级数中的 \( a_n \) 系数是由以下哪个积分计算得出的?A. \( a_n = \frac{2}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)B. \( a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)C. \( a_n = \frac{2}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)D. \( a_n = \frac{1}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)8. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( |A| \) 等于:A. 7B. 2C. 1D. -29. 函数 \( f(x) = x^3 - 6x^2 + 11x - 6 \) 的零点个数是:A. 1B. 2C. 3D. 410. 拉普拉斯变换 \( \mathcal{L} \{ f(t) \} \) 的定义是:A. \( \mathcal{L} \{ f(t) \} = \int_{0}^{\infty} e^{-st} f(t) dt \)B. \( \mathcal{L} \{ f(t) \} = \int_{-\infty}^{\infty} e^{-st} f(t) dt \)C. \( \mathcal。

工程数学试题及参考答案

工程数学试题及参考答案

工程数学试题B一、单项选择题(每小题3分,本题共21分) 1.设B A ,为n 阶矩阵,则下列等式成立的是( ). (A) BA AB = (B) T T T )(B A AB = (C) T T T )(B A B A +=+ (D) AB AB =T )(2.设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4321432143214321A ,则=)(A r ( ). (A) 0 (B) 1 (C) 3 (D) 43.设B A ,为n 阶矩阵,λ既是A 又是B 的特征值,x 既是A 又是B 的特征向量,则结论( )成立.(A) λ是B A +的特征值 (B) λ是B A -的特征值 (C) x 是B A +的特征向量 (D) λ是AB 的特征值 4.设A B ,为随机事件,下列等式成立的是( ).(A) )()()(B P A P B A P -=- (B) )()()(B P A P B A P +=+ (C) )()()(B P A P B A P +=+ (D) )()()(AB P A P B A P -=- 5.随机事件A B ,相互独立的充分必要条件是( ). (A) )()()(B P A P AB P = (B) )()(A P B A P =(C) 0)(=AB P (D) )()()()(AB P B P A P B A P -+=+ 6.设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有=≤<)(b X a P ( ). (A)⎰b ax x F d )( (B) ⎰bax x f d )((C) )()(a f b f - (D) )()(b F a F -7. 对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,∑==3131i i X X ,则下列各式中( )不是统计量.(A) X (B)∑=31i iX(C) ∑=-312)(31i i X μ (D) ∑=-312)(31i i X X二、填空题(每小题3分,共15分)1.设B A ,均为3阶矩阵,2=A ,3=B ,则=--1T 3B A .2.线性无关的向量组的部分组一定 .3.已知5.0)(,3.0)(=-=A B P A P ,则=+)(B A P .4.设连续型随机变量X 的密度函数是)(x f ,则=)(X E .5.若参数θ的估计量θˆ满足θθ=)ˆ(E ,则称θˆ为θ的 估计. 三、计算题(每小题10分,共60分)1.设矩阵⎥⎦⎤⎢⎣⎡=3021A ,求A 的特征值与特征向量. 2.线性方程组的增广矩阵为 求此线性方程组的全部解.3.用配方法将二次型322322213216537),,(x x x x x x x x f +++=化为标准型,并求出所作的满秩变换.4.两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。

工程数学试题及答案

工程数学试题及答案

工程数学试题及答案《工程数学试题及答案》1. 数列与级数问题:找出以下等差数列的通项公式,并计算前n项和。

1) 3, 6, 9, 12, ...2) 1, 5, 9, 13, ...答案:1) 通项公式为a_n = 3 + 3(n-1),前n项和为S_n = n(6 + 3(n-1))/2。

2) 通项公式为a_n = 1 + 4(n-1),前n项和为S_n = n(2 + 4(n-1))/2。

2. 三角函数问题:求解以下方程在给定区间内的所有解。

1) sin(x) = 0.5,其中0 ≤ x ≤ 2π。

2) cos(2x) = 0,其中0 ≤ x ≤ π。

答案:1) 解为x = π/6, 5π/6。

根据周期性,可加2πn得到无穷解。

2) 解为x = π/4, 3π/4。

根据周期性,可加πn得到无穷解。

3. 极限与连续性问题:计算以下极限。

1) lim(x→0) (3x^2 + 2x) / x。

2) lim(x→∞) (e^x + 2x) / e^x。

答案:1) 极限等于2。

2) 极限等于2。

4. 微分与积分问题:求以下函数的导数和不定积分。

1) f(x) = 3x^2 + 4x + 1。

2) g(x) = sin(x) + cos(x)。

答案:1) f'(x) = 6x + 4,∫f(x)dx = x^3 + 2x^2 + x + C。

2) g'(x) = cos(x) - sin(x),∫g(x)dx = -cos(x) - sin(x) + C。

5. 偏导数与多重积分问题:计算以下偏导数和二重积分。

1) 求f(x, y) = x^3 + 2xy - y^2的偏导数∂f/∂x和∂f/∂y。

2) 计算∬(x^2 + y^2)dA,其中积分范围为R = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 2}。

答案:1) ∂f/∂x = 3x^2 + 2y,∂f/∂y = 2x - 2y。

工程数学练习题(附问题详解版)

工程数学练习题(附问题详解版)

(一)一、单项选择题(每小题2分,共12分) 1. 设四阶行列式bccad c d b b c a d dc b a D =,则=+++41312111A A A A ( ).A.abcdB.0C.2)(abcd D.4)(abcd2. 设(),0ij m n A a Ax ⨯==仅有零解,则 ( )(A) A 的行向量组线性无关; (B) A 的行向量组线性相关; (C) A 的列向量组线性无关; (D) A 的列向量组线性相关;3. 设8.0)(=A P ,8.0)|(=B A P ,7.0)(=B P ,则下列结论正确的是( ). A.事件A 与B 互不相容; B.B A ⊂; C.事件A 与B 互相独立;D.)()()(B P A P B A P +=4. 从一副52张的扑克牌中任意抽5张,其中没有K 字牌的概率为( ).A.552548C C B.5248 C.554855C D.5555485. 复数)5sin 5(cos5ππi z --=的三角表示式为( )A .)54sin 54(cos 5ππi +-B .)54sin 54(cos 5ππi -C .)54sin 54(cos 5ππi +D .)54sin 54(cos 5ππi --6. 设C 为正向圆周|z+1|=2,n 为正整数,则积分⎰+-c n i z dz1)(等于( )A .1;B .2πi ;C .0;D .iπ21 二、填空题(每空3分,共18分) 1. 设A 、B 均为n 阶方阵,且3||,2||==B A ,则=-|2|1BA .2. 设向量组()()()1231,1,1,1,2,1,2,3,TTTt α=α=α=则当t = 时,123,,ααα线性相关.3. 甲、乙向同一目标射击,甲、乙分别击中目标概率为0.8, 0.4,则目标被击中的概率为4. 已知()1,()3E X D X =-=,则23(2)E X ⎡⎤-=⎣⎦______.5. 设)(t f 是定义在实数域上的有界函数,且在0=t 处连续,则=⎰+∞∞-dt t f t )()(δ .6. 函数)2)(1(15)(-+-=s s s s F 的Laplace 逆变换为()f t = .三、计算题(每小题10分,共70分)1. 设423110123A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭, 而B 满足关系式2AB A B =+,试求矩阵B .2.当λ为何值时,⎪⎩⎪⎨⎧+=+++=++=+324622432132131λλλx x x x x x x x 无解,有解,并在有解时求出其解.3、设在15只同类型的零件中有两只是次品,在其中取3次,每次任取一只,作不放回抽样,以 X 表示取出次品的只数,求X 的分布律。

工程数学试题及答案高级专

工程数学试题及答案高级专

工程数学试题及答案高级专工程数学试题及答案(高级专科)一、单项选择题(每题3分,共30分)1. 极限的定义中,当x趋近于a时,f(x)的极限为L,意味着()。

A. f(x) = LB. |f(x) - L| < ε,对任意的ε > 0,存在δ > 0,使得0 < |x - a| < δ时成立C. |f(x) - L| = 0D. f(x) ≠ L答案:B2. 函数f(x) = x^2在x=0处的导数为()。

A. 0B. 1C. 2D. -1答案:B3. 以下哪个函数是奇函数?()A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x答案:B4. 以下哪个函数是周期函数?()A. f(x) = e^xB. f(x) = sin(x)C. f(x) = ln(x)D. f(x) = x^2答案:B5. 以下哪个积分是发散的?()A. ∫(0, +∞) e^(-x) dxB. ∫(0, +∞) x^2 dxC. ∫(0, +∞) e^x dxD. ∫(0, +∞) 1/x dx答案:D6. 以下哪个是二阶常系数线性微分方程?()A. y'' + 2y' + y = 0B. y'' + 2y' + 3y = 0C. y'' + y' + y = 0D. y'' + y' = 0答案:A7. 以下哪个是二阶偏导数?()A. ∂^2f/∂x∂yB. ∂^2f/∂x^2C. ∂^2f/∂y^2D. ∂^2f/∂x∂y^2答案:A8. 以下哪个是线性方程组的解?()A. {x=1, y=2}B. {x=0, y=0}C. {x=1, y=1}D. {x=2, y=3}答案:C9. 以下哪个是矩阵的特征值?()A. λ = 1B. λ = 2C. λ = 3D. λ = 4答案:A10. 以下哪个是傅里叶级数的系数?()A. a_nB. b_nC. c_nD. d_n答案:A二、填空题(每题4分,共20分)11. 函数f(x) = sin(x)在x=π/2处的导数为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仲恺农业工程学院试题答案与评分标准《工程数学Ⅰ》2008至2009 学年度第 2 学期期末(A)卷一、单项选择题(3* 8分)二.填空题(3*7分)1. 5 .2.111. 3. 0、7 .4. 0、7 .5. 1 .6. 0、1915 .7.3μ.三.计算题(本大题共2小题,每小题5分,满分10分)1.设方阵A=211210111-⎛⎫⎪⎪⎪-⎝⎭,113432B-⎛⎫= ⎪⎝⎭,解矩阵方程XA B=、解:1101 1232 3330A-⎛⎫⎪=--⎪⎪-⎝⎭、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、3分122182533X BA--⎛⎫ ⎪==⎪--⎪⎝⎭、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、5分2.某人对同一目标进行5次独立射击,若每次击中目标的概率就是23,求(1)至少一次击中目标的概率; (2)恰有3次击中目标的概率。

解:(1) 5124213243⎛⎫-=⎪⎝⎭、、、、、、、、、、、、、、、、、、、、、、、、、、、、 、、、、、、、、、、、、、、、、、、、、、、、、、 3分(2) 3235218033243C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭、、、、、、、、、、、、、、、、、、、、、、、、、、 、、、、、、、、、、、、、、、、、、、、、、、、、5分四.计算题(本大题共2小题,每小题6分,满分12分)1.计算2512371459274612D ---=--.解:25121522371402165927011346120120D -----==----、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、 、、、、3分152215220113011390216003001233--===----、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、6分2.某工厂有三个车间生产同一产品,第一车间的次品率为0、05,第二车间的次品率为0、03,第三车间的次品率为0、01,各车间的产品数量分别为2500,2000,1500件,出厂时三个车间的产品完全混合,现从中任取一件产品,求该产品就是次品的概率。

解:设B ={取到次品},i A ={取到第i 个车间的产品},i =1,2,3,则123,,A A A 构成一完备事件组。

……………… ……… …… …………… ………2分 利用全概率公式得,∑=++==31332211)()()()()()()()()(i i i A B P A P A B P A P A B P A P A B P A P B P%3.3%160001500%360002000%560002500=⋅+⋅+⋅=…………………… ……6分五.设方阵001010100A ⎛⎫⎪= ⎪ ⎪⎝⎭,求一个可逆矩阵P ,使1P AP -成为对角矩阵、 (9分)解 由12301,1A E λλλλ-=⇒===- 3分 对应这三个特征值的特征向量分别为1230111,0,0011-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭P P P 6分令123(,,)P P P P =,则0P ≠,P 可逆,并且1111P AP -⎛⎫⎪= ⎪ ⎪-⎝⎭9分六.设向量组121,2-a a a 线性无关,证明:向量组12,a a 也线性无关。

(6分) 证明:设 k 1 a 1 + k 2a 2 = 0 ⇔( k 1+2 k 2)a 1 + k 2(a 2 -2a 1)= 0∵121,,2-a a a 线性无关, ∴ k 1 +2k 2= 0, k 2= 0, ------4分 即 k 1 = k 2 = 0, ∴12,a a 线性无关。

------6分-七.求齐次线性方程组123412341234030230x x x x x x x x x x x x --+=⎧⎪-+-=⎨⎪--+=⎩的一个基础解系及通解。

(8分)解:齐次线性方程组的系数矩阵为111111131123A --⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭~110100120000--⎛⎫⎪- ⎪ ⎪⎝⎭、、、、、、、、、、、、、、、、、、、、、 、、、、、、、、4分同解方程组为1242234442x x x x x x x x x =+⎧⎪=⎪⎨=⎪⎪=⎩ 基础解系为:11100ξ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,21021ξ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、 、、6分通解为: 1211100201x k k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭…………………………………8分八.设连续型随机变量X 的密度函数为,01,()0,ax b x f x +<<⎧=⎨⎩其他.,且2()3E X =,求 (1) 常数,a b ; (2)X 的分布函数()F x ; (3)23{}32P X <<; (10分) 解 (1)2()1,()2,03f x dx xf x dx a b ∞∞-∞-∞==⇒==⎰⎰3分 (2)20,0()(),011,1xx F x f x dx x x x -∞⎧≤⎪==<<⎨⎪≥⎩⎰7分(3)233245{}()()1322399P X F F ≤≤=-=-= 10分一、单项选择题(本题共8小题,每小题3分,满分24分)1、若A 就是n ×m 矩阵, B 就是n ×s 矩阵, 则下列运算有意义的就是( )、 (A)AB (B) B A T(C) TAB (D) BA2、齐次线性方程组00x y x y λλ+=⎧⎨+=⎩存在非零解,则λ =(A) 10或-; (B) 10或; (C) 12或; (D) 11或-3、 下列函数中,可以作为随机变量X 的分布函数的就是(A) 11()arctan 2F x x =+π(B) 2()1x F x x =+ (C) 102()1202xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩ (D) 200()101x F x x x ≤⎧⎪=⎨>⎪+⎩,,4.设X 的密度函数为21()(1)=+f x x π, 则2Y X =的密度函数为(A)21(14)+y π; (B) 22(4)+y π; (C) 21(1)+y π; (D) 1arctan y π、 5.设X 的密度函数为0.4 1.2,01()0,x x p x +<<⎧=⎨⎩其它,则()E X =(A) 0、73 (B) 0、54 (C) 0、6 (D)0、896、 设),,,(21n X X X 为来自总体),(~2σμN X 的一个样本,其中μ未知,2σ已知,则( )不就是统计量(A) 2211()1n i i S X X n ==--∑ (B) 2211()=-∑n i i X X σ (C) ∑=-n i i X n 12)(1μ (D) ∑==n i iX n X 117、 设12(,,,)n X X X 为来自),(2σμN 的样本,则∑==n i i X n X 11服从( )分布。

(A) (0,1)N (B) ),(2σμN (C) 2(,)N n n μσ (D) 2(,)N nσμ 8、 设有来自正态总体2~(,)X N μσ的容量为5的样本,样本均值21259,,x =μσ未知,而样本标准差11.937s =。

(提示2.236=)。

假设检验01:1277,:1277H H =≠μμ.在显著性水平0.05α=下,则下列选项正确的就是: (A) 由0.025(4) 2.776t =,经计算拒绝0H(B) 由0.05(4) 2.132t =,经计算接受0H(C) 由0.025(5) 2.57t =,经计算拒绝0H (D) 由0.05(5) 2.015t =,经计算接受0H二.填空题(本题共7小题,每小题3分,满分21分)1、 已知向量组111α⎛⎫ ⎪= ⎪ ⎪⎝⎭,123β⎛⎫ ⎪= ⎪ ⎪⎝⎭,13t γ⎛⎫ ⎪= ⎪⎪⎝⎭的秩就是2,则t = 52、 一批零件共100个,次品率为10o o , 接连两次从这批零件中任取一个零件,第一次取出的零件不再放回去,则第二次才取得正品的概率为 1113.设()0.5()0.4()0.3,,P A P B P A B ==-=,则()P A B ⋃= 0、74、 设X 为一离散型随机变量,其分布律为 0120.10.2X P a则a = 0、75、 设随机变量X 服从参数为λ的泊松分布,且{}{}10P X P X ===,则λ= 16、 设随机变量X ~2(2,4)N ,且(0)0.5Φ=,(0.5)0.6915Φ=, 则{}02P X <<= 0、19157.设总体X 的均值与方差分别为μ与2σ,1X ,12(,)X X 就是X 的一个样本,统计量1121344X X μ=+, 2121233X X μ=+, 3121122X X μ=+ 都就是μ的无偏估计量,其中最有效的就是 3μ。

相关文档
最新文档