关于高等工程数学试题答案(20200520181920)
高等工程数学考研真题试卷

高等工程数学考研真题试卷一、选择题(每题3分,共30分)1. 设函数\( f(x) \)在点\( x_0 \)处可导,且\( f'(x_0) \neq 0 \),则\( f(x) \)在\( x_0 \)处的切线斜率为:A. \( f(x_0) \)B. \( f'(x_0) \)C. \( x_0 \)D. \( 0 \)2. 线性代数中,若矩阵\( A \)可逆,则下列哪个说法是正确的?A. \( A \)是对称矩阵B. \( A \)是正交矩阵C. \( A \)的行列式不为零D. \( A \)是单位矩阵3. 根据概率论,若随机变量\( X \)服从正态分布\( N(\mu,\sigma^2) \),则其期望值和方差分别是:A. \( \mu, \sigma \)B. \( \sigma, \mu \)C. \( \mu, \sigma^2 \)D. \( \sigma, \sigma^2 \)4. 常微分方程\( y'' - 2y' + y = 0 \)的特征方程是:A. \( r^2 - 2r + 1 = 0 \)B. \( r^2 - 2r + 2 = 0 \)C. \( r^2 + 2r + 1 = 0 \)D. \( r^2 - 2r - 1 = 0 \)5. 在多元函数极值问题中,若函数\( f(x, y) \)在点\( (x_0, y_0) \)处取得极小值,则下列说法正确的是:A. 在该点处,\( f(x, y) \)的一阶偏导数都为零B. 在该点处,\( f(x, y) \)的二阶偏导数都为正C. 在该点处,\( f(x, y) \)的Hessian矩阵是正定的D. 在该点处,\( f(x, y) \)的梯度向量为零二、填空题(每题4分,共20分)6. 若函数\( f(x) = 3x^3 - 2x^2 + x - 5 \),则\( f''(x) \)的值为________。
高等工程数学考试部分答案1

工程硕士学位课程考试
高等工程数学试题
注意:每位考生只要选做以下两部分试题,答案必须写在答题纸上
矩阵分析部分
一.(6分)设求值。
解:参考试题2第一题
二.(8分)已知函数矩阵:,求矩阵
解:参考试题2第二题
三.(10分)设向量
与,令,
(1)求的一组基和维数;(2)求维数。
解:参考试题2第三题
四.(10分)设,
1.求的Jordan标准形及最小多项式;
解: 矩阵的最小多项式为, Jordan标准形为
2。
求解初值问题
解:参考试题2第四题(2)小题
五.(8分)设与是线性空间的两个基,为从基到的过渡矩阵,为的一个线性变换,在基下的矩阵,求线性变换在基下的矩阵。
解: 由题意有
所以由第一式有
把第二式和第三式代入得到
把第一式代入左边得到
从而有, 所以
六.(8分)设且可逆,,求证:的特征值都是正数。
证明: 因为为正规矩阵, 所以酉矩阵与对角矩阵. 即存在酉矩阵, 使得, 其中为对角矩阵, 从而
所以的元素全为实数. 设为任意一个特征值, 是属于的特征向量, 则有
得证.。
2020年全国大学高等数学考试及答案解析

2020年全国大学高等数学考试试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数1,0(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==-==(2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-(3) 若级数1∞=∑nn a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin 2142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()34cos ,sin d f r r rdr ππθθθ⎰(C)()13sin 2142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰(D)()34cos ,sin d f r r dr ππθθθ⎰x(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆(6)设矩阵200210100021,020,020*********A B C ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则( ) ()()(),,(),,A A C B C B A C B C C A C B C D A C B C 与相似与相似与相似与不相似与不相似与相似与不相似与不相似(7) 若A,B 为任意两个随机事件,则 ( )(A) ()()()≤P AB P A P B (B) ()()()≥P AB P A P B (C) ()()()2≤P A P B P AB (D) ()()()2≥P A P B P AB(8)设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( )(A) 3- (B) 3 (C) 5- (D) 5二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (1) 已知函数21()1f x x=+,则(3)(0)f =__________ (2) 微分方程'''230y y y ++=的通解为y =_________(3) 若曲线积分221L xdx aydy x y -+-⎰在区域{}22(,)|1D x y x y =+<内与路径无关,则 a =__________(4)设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则(23)__________.x y z dxdydz Ω++=⎰⎰⎰(5)设二维随机变量(,)x y 服从正态分布(1,0;1,1,0)N ,则{0}________.P XY Y -<=三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (1)(本题满分10分)设函数(,)f u v 具有2阶连续偏导数,(,cos )xy f e x =,求0x dy dx=,22x d y dx=(2)(本题满分10分)求21lim ln 1nn k kk nn →∞=⎛⎫+ ⎪⎝⎭∑(3)(本题满分10分)已知函数()y x 由方程333320x y x y +-+-=确定,求()y x 的极值(4)(本题满分 10 分)(I )设函数()()u x ,v x 可导,利用导数定义证明u x v x u x v x u x v x '''=+[()()]()()()()(II )设函数()()()12n u x ,u x ,,u x 可导,n f x u x u x u x =12()()()(),写出()f x 的求导公式.(5)(本题满分 10 分)已知曲线L的方程为,z z x ⎧=⎪⎨=⎪⎩起点为()A,终点为()0,B ,计算曲线积分()()2222d d ()d LI y z x z x y y x y z =++-+++⎰.(6) (本题满11分)设向量组1,23,ααα内3R 的一个基,113=2+2k βαα,22=2βα,()313=++1k βαα.(I )证明向量组1β2β3β为3R 的一个基;(II )当k 为何值时,存在非0向量ξ在基1,23,ααα与基1β2β3β下的坐标相同,并求所有的ξ.(7)(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换X QY =下的标准型221122y y λλ+,求a 的值及一个正交矩阵Q(8)(本题满分11分)设随机变量,X Y 相互独立,且X 的概率分布为1(0)(2)2P X P X ====,Y 的概率密度为201()0,y y f y <<⎧=⎨⎩,其他()I 求()P Y EY ≤()∏求Z X Y =+的概率密度。
高等工程数学第二章习题及答案

第2章 线性代数方程组数值解法 研究n 阶线性方程组Ax b =的数值解法.()ij A a =是n n⨯矩阵且非奇异,12(,,,)Tn x x x x = ,12(,,,)Tn b b b b =两类数值方法:(1) 直接法:通过有限次的算术运算,若计算过程中没有舍入误差,可以求出精确解的方法.Ax b Gx d == 等价变换G 通常是对角矩阵、三角矩阵或者是一些结构简单的矩阵的乘积.(2) 迭代法:用某种极限过程去逐次逼近方程组的解的方法.(1)()i i Ax b x Bx k x Bx k +==+−−−−−→=+ 等价变换建立迭代格式,0,1,i =一、向量范数与矩阵范数 1. 向量范数【定义】 若对nK 上任一向量x ,对应一个非负实数x ,对任意,nx y R ∈及K α∈,满足如下条件(向量范数三公理) (1) 非负性:0x ≥,且0x =的充要条件是0x =;(2)齐次性:x xαα=;(3)三角不等式:x y x y+≤+.则称x为向量x的范数.常用的向量范数: (1) 1—范数11nii x x ==∑(2) 2—范数12221()ni i x x ==∑(3) ∞—范数1max ii nxx ∞≤≤=(4) 一般的p —范数11()pnpi pi xx ==∑2. 矩阵范数【定义】 若n nK ⨯上任一矩阵()ij n n A a ⨯=,对应一个非负实数A ,对任意的,n nA B K ⨯∈和K α∈,满足如下条件(矩阵范数公理):(1) 非负性:0A ≥,且0A =的充要条件是0A =;(2)齐次性:A Aαα=;(3)三角不等式:A B A B +≤+;(4)乘法不等式:AB A B≤.则称A为矩阵A的范数.矩阵范数与向量范数是相容的:Ax A x≤向量范数产生的从属范数或算子范数:10max maxx x AxA Ax x=≠==常见从属范数:(1) 1—范数111max ||nij j ni A a ≤≤==∑(2) ∞—范数11max ||nij i nj A a ∞≤≤==∑(3) 2—范数2A =谱半径1()max ||H i i n A A ρλ≤≤=,iλ为H A A 的特征值.H A 为A 的共轭转置. 注:矩阵A 的谱半径不超过A 的任一范数,即()A A ρ≤范数等价性定理:,s t x x为n R 上向量的任意两种范数,则存在常数12,0c c >,使得12,ns t s c x x c x x R ≤≤ ∀∈.注:矩阵范数有同样的结论. 【定理2.1】是任一向量范数,向量序列()k x 收敛于向量*x 的充要条件是()*0,k x x k -→ →∞二、 Gauss 消去法 1.顺序Gauss 消去法 将方程Ax b =写成如下形式11112211,121122222,11122,1n n n n n n n n nn n n n a x a x a x a a x a x a x a a x a x a x a ++++++=⎧⎪+++=⎪⎨⎪⎪+++=⎩其中记,1,1,2,,.i n i a b i n +==消元过程:第一次消元:设110a ≠,由第2,3,,n 个方程减去第一个方程乘以1111/(2,3,,)i i m a a i n == ,则将方程组中第一个未知数1x消去,得到同解方程11112211,1(1)(1)(1)22222,1(1)(1)(1)22,1n n n n n n n nn n n n a x a x a x a a x a x a a x a x a ++++++=⎧⎪ ++=⎪⎨⎪⎪ ++=⎩其中, (1)11,2,3,,;2,3,,,1ijij i j a a m a i n j n n =-==+ . 1111/i i m a a =,2,3,,i n = .第二次消元:设(1)220a ≠,.由第2,3,,n 个方程减去方程组中的第2个方程乘以(1)(1)2222/(3,4,,)i i m a a i n == ,则将方程组第2个未知数2x 消去,得到同解方程11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(2)(2)(2)33,1n n n n n n n n n nnn n n n a x a x a x a x a a x a a x a a x a x a a x a x a ++++++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ ++=⎩其中(2)(1)(1)22, 3,4,,; 3,4,,,1ij ij i j a a m a i n j n n =-==+ . (1)(1)2222/i i m a a =,3,4,,i n = .经过1n -次消元后,原方程组变成等价方程组11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(1)(1),1n n n n n n n n n n n nn n n n a x a x a x a x a a x a a x a a x a x a a x a +++--+++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ =⎩其中()(1)(1), 1,2,,k k k ij ij ik ij a a m a i k k n --=-=++ , 1,2,,,1j k k n n =+++ .(1)(1)/k k ik ik kkm a a --=,1,2,,i k k n =++ ;1,2,,1k n =- .回代过程:(1)(1),1(1)(1)(1),1,,1/[]/,1,2,,2,1.n n n n n m n i i i ii n i j j i j j i x a a x a a x a i n n --+---+=+⎧=⎪⎨=-=--⎪⎩∑计算量:按常规把乘除法的计算次数合在一起作为Gauss 消去法总的计算量,而略去加减法的计算次数. 在消去过程中,对固定的消去次数(1,2,,1)k k n =- ,有:除法(1)(1),,/,1,1,,k k ik i k k k m a a i k k n --= =++ 共计n k -次;乘法(1),,1,2,,;1,2,,,1k ik k j m a i k k n j k k n n - =++ =+++ 共计()(1)n k n k --+次.因此,消去过程总的计算量为1311[()(1)]3n k M n k n k n k n-==--++-≈∑ 回代过程的乘除法计算次数为21()2n n +.与消去法计算量相比可以略去不计.所以, Gauss 消去法总的计算量大约为313n .2. Gauss-Jordan 消去法Gauss-Jordan 消去法是Gauss 消去法的一种变形.此方法的第一次消元过程同Gauss 消去法一样,得到(1)(1)(1)(1)11112213311,1(1)(1)(1)(1)22223322,1(1)(1)(1)(1)32233333,1(1)(1)(1)(1)2233,1,,,,n n n n n n n n n nn nn n n n a x a x a x a x a a x a x a x a a x a x a x a a x a x a x a ++++⎧++++=⎪ +++=⎪ +++=⎨ +++= ⎪⎪⎪⎪⎩其中,(1)11,2,,,1jj a a j n n ==+ . 第二次消元:设(1)220a ≠,由第1,3,4,,n 个方程减去第2个方程乘以(1)(1)2222/(1,3,4,,)i i m a a i n == ,则得到同解方程组(2)(2)(2)11113311,1(1)(2)(2)(2)22223322,1(2)(2)(2)33333,1(2)(2)33,1,,,n n n n n n n n n nnn n n n a x a x a x a a x a x a x a a x a x a a x a x a +++++ +++= +++= ++= ++= (2),⎧⎪⎪⎪⎨⎪⎪⎪⎩继续类似的过程,在第k 次消元时,设(1)k kk a -,将第i 个方程减去第k 个方程乘以(1)(1)/k k ik ik kk m a a --=,这里1,3,4,1,1,,i k k n =-+ .经过1n -次消元,得到(2)1111,1(1)(2)2222,1(2)(2)33,1,,,n n n n n a x a a x a a x a +++⎧ =⎪ =⎪⎪ ⎨⎪⎪⎪ =⎩其中()(1)(1),1,2,,1,1,,k k k ij ij ik kj a a m a i k k n --=-=-+ ;1,2,,,1; 1,2,,1j n n k n =+=- .此时,求解回代过程为(1)(1),1/,1,2,,n i i i n iix a a i n --+= = 经统计,总的计算量约为312M n ≈次乘除法. 从表面上看Gauss-Jordan 消去法似乎比Gauss 消去法好,但从计算量上看Gauss -Jordan 消去法明显比Gauss消去法的计算量要大,这说明用Gauss-Jordan 消去法解线性方程组并不可取.但用此方法求矩阵的逆却很方便. 3.列选主元Gauss 消去法在介绍Gauss 消去法时,始终假设(1)0k kk a -≠,称(1)k kka -为主元.若(1)0k kka -=,显然消去过程无法进行.实际上,既使(1)0k kka -≠,但(1)k kka -很小时,用它作除数对实际计算结果也是很不利的.称这样的(1)k kka -为小主元.【例2.2】设计算机可保证10位有效数字,用消元法解方程1112120.3100.7,0.9,x x x x -⎧⨯+=⎪⎨ +=⎪⎩【解】经过第一次消元:第2个方程减去第1个方程乘以212111/m a a =得1112(1)(1)222230.3100.7x x a x a -⎧⨯+=⎪⎨ =⎪⎩其中(1)1222222111/0.333333333310a a a a =-=-⨯,(1)123323211113(/)0.233333333310a a a a a =-⋅=-⨯于是解得(1)(1)223221/0.7000000000,0.0000000000,x a a x ⎧==⎪⎨=⎪⎩而真解为120.2,0.7x x = =注:造成结果失真的主要因素是主元素11a太小,而且在消元过程中作了分母,为避免这个情况发生,应在消元之前,作行交换.【定义】 若 (1)(1)||max ||k k k r k ik k i na a --≤≤=,则称(1)||k k r k a - 为列主元素. k r 行为主元素行,这时可将第 k r行与第k 行进行交换,使(1)||k k r k a - 位于交换后的等价方程组的 (1)k kk a - 位置,然后再施实消去法,这种方法称为列选主元Gauss 消去法或部分主元Gauss 消去法.【例2.3】 应用列选主元Gauss 消去法解上述方程. 【解】 因为2111a a >,所以先交换第1行与第2行,得1211120.9,0.3100.7,x x x x -⎧+=⎪⎨⨯+=⎪⎩ 然后再应用Gauss 消去法,得到消元后的方程组为1220.9,0.7.x x x ⎧+=⎨=⎩回代求解,可以得到正确的结果.即120.2,0.7x x = =.三、三角分解法 设方程组Ax b =的系数矩阵A 的顺序主子式不为零.即1112121222110,1,2,,.kk k k k kka a a a a a k n a a a ∆=≠=在Gauss 消去法中,第一次消元时,相当于用单位下三角阵211131111010010n m L m m -⎡⎤⎢⎥- ⎢⎥⎢⎥=- ⎢⎥ ⎢⎥⎢⎥- ⎢⎥⎣⎦ ,左乘方程组Ax b =,得11A x b =,其中11121(1)(1)122211(1)200n n n nn a a a a a A L a a -(1)⎡⎤⎢⎥ ⎢⎥==⎢⎥ ⎢⎥⎢⎥ ⎣⎦ ,1(1)(1)111,11,1,1(,,,)Tn n n n b L b a a a -+++== .第二次消元时,相当于用单位下三角阵1232210101001n L m m - ⎡⎤⎢⎥ ⎢⎥⎢⎥= - ⎢⎥⎢⎥⎢⎥ - ⎢⎥⎣⎦0 ,左乘方程组11A x b =,得22A x b =其中11121(1)(1)22211(2)(2)221333(2)(2)300000n n n n nn a a a a a A L L A a a a a --⎡⎤ ⎢⎥ ⎢⎥⎢⎥== ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦ ,11(1)(2)(2)2211,12,13,1,1(,,,,).Tn n n n n b L L b a a a a --++++==经过1n -次消元,最后得到等价方程组11n n A x b --=其中11121(1)222111111221(1)n n n n n n nn a a a a a A L L L L A a (1)--------⎡⎤⎢⎥ ⎢⎥==⎢⎥⎢⎥⎢⎥ ⎣⎦1111(1)(1)112221,12,1,1(,,,)n Tn n n n n n n b L L L L b a a a --------+++==注意到1n A -是一个上三角阵,记111111221n n n U A L L L L A -------==则121()n A L L L U LU -==其中,121n L L L L -= . 不难验证21313212_1111n n nn m L m m m m m ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 1 ⎢⎥⎣⎦是单位下三角阵.于是解线性方程组Ax b =,就转化为解方程 LUx b =,若令Ux y =就得到一个与 Ax b =等价的方程组Ly b Ux y =⎧⎨=⎩【定理2.2】 若 A 为 n 阶方阵,且 A 的所有顺序主子式0k ∆≠,1,2,,k n = .则存在唯一的一个单位下三角矩阵 L 和一个上三角矩阵 U ,使A LU =.在上述过程中,若不假设A 的顺序主子式都不为零,只假设A 非奇异,那么Gauss 消去法将不可避免要应用两行对换的初等变换.第一次消元,将第1行与第1r 行交换,相当于将方程组Ax b =左乘矩阵11r P :1111r r P Ax P b=经第一次消元得11111111r r L P Ax L P b--=即系数矩阵为11111r A L P A-=,其中110111r P ⎡⎢ ⎢ 1= 1 0 1 ⎣0 0 ⎤⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦1 列 1r列 类似地,经1n -次消元,有121111111,22,11n n n n n r n n r r A L P L P L P A----------= .如果预先知道每一个(1,2,,1)iir P i n =- ,则在消元之前就全部作交换,得 1211,2,1,n n n r n r r A P P P A PA----== ,其中,1211,2,1,n n n r n r r P P P P ----= .即原方程变为PAx Pb =然后再消元,相当于对PA 做三角分解PA LU =由以上讨论,可得结论 【定理2.3】 若A 非奇异,则一定存在排列矩阵 P ,使得 PA 被分解为一个单位下三角阵和一个上三角1 行1行r阵的乘积,即PA LU =成立.这时,原方程组Ax b = 等价于 PAx Pb =,即等价于求解LUx Pb =令Ux y =则Ly Pb =实际求解时,先解方程组Ly Pb =,再根据 y 求解 Ux y =,即得原方程组Ax b =的解. 这种求解方法称为三角分解法.常用三角分解方法有以下几种. 1.Doolittle 分解方法 假设系数矩阵A 不需要进行行交换,且三角分解是唯一的. 记21121110n n l L l l ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ ⎢⎥⎣⎦ , 11121222n n nn u u u u u U u ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ 0 ⎣⎦ 于是有1112111121222212222112111110n n n n n n n n nn a a a u u u u u a a a l l l a a a ⎡⎤ ⎡⎤⎢⎥⎢⎥ ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎣⎦⎣⎦ nn u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥0 ⎣⎦从前面讨论A 的LU 分解过程可看出,L 、U 的元素都是用有关的(1)k ij a -来表示的,而它们的计算较麻烦.现在给出直接从系数矩阵A ,通过比较等式的两边逐步把L 和U 构造出来的方法,而不必利用Gauss 消去法的中间结果(1)k ij a -.计算步骤: (1) 由L 阵的第1行分别乘U 阵的各列,先算出U 阵的第1行元素 11,1,2,,j j u a j n = = .然后,由L 阵的各行分别去乘U 阵的第1列,算出L 阵的第1列元素1111/,2,3,,i i l a a i n = = .(2)现假设已经算出U 阵的前1r -行元素,L 阵的前1r -列元素,下面来算U 阵的第r 行元素,L 阵的第r 列元素.由L 阵的第r 行分别乘U 阵的第j 列(,1,,)j r r n =+ ,得11r ij rk kj rjk a l u u -==+∑所以,得U 阵的第r 行元素11,,1,,r rj rj rk kj k u a l u j r r n-==- =+∑ .再由L 阵的第i 行(1,2,,)i r r n =++ 分别去乘U 阵的第r 列,得11r ir ik kr ir rrk a l u l u -==+∑,所以,得L 阵的第r 列元素11[]/,1,2,,.r ir ir ik kr rr k l a l u u i r r n -==- =++∑取1,2,,r n = 逐步计算,就可完成三角分解A LU =;(3)解与Ax b = 等价的方程组Ly b Ux y =⎧⎨=⎩逐次用向前代入过程先解Ly b = 得1111,2,3,,.i i i ij j j y b y b l y i n -==⎧⎪⎨=- =⎪⎩∑然后再用逐次向后回代过程解Ux y =得1/,()/,1,2,,2,1.n n nn n i i ij j ii j i x y u x y u x u i n n =+=⎧⎪⎨=- =--⎪⎩∑2.Crout 分解方法仍假设系数矩阵A 不需要进行行交换,且三角分解是唯一的.即ˆA L=ˆU .与Doolittle 分解方法的区别在111212122211n n n n nn a a a a a a a a a ⎡⎤ ⎢⎥ ⎢⎥=⎢⎥ ⎢⎥⎢⎥ ⎣⎦ 1122ˆˆl l ⎡⎤ 0⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥⎣⎦ 122ˆ1ˆ10n u u ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1 ⎣⎦ 比较两边,则可推导出与Doolittle 分解方法类似的公式,不过Crout 分解方法是先算ˆL 的第r 列,然后再算ˆU的第r 行.3.Cholesky 分解方法若 A 为对称正定矩阵,则有 ˆT U L =,即11()()TT T A LDL LD LD LL ===其中L 为下三角阵. 进一步展开为1121111211112122221222221212n n n n n n nn n n nn a a a l l l l a a a l l l l l l l a a a ⎡⎤⎡⎤ ⎢⎥⎢⎥ 0 ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦⎣⎦ 0nn l ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎣⎦ 比较两边对应元素,容易得到12121()r rr rr rk k l a l -==-∑ ,11()/r ir ir ik rk rrk l a l l l -==-∑ 1,2,,;1,2,,.r n i r r n ==++Cholesky 分解的优点:不用选主元. 由21rrr rk k a l ==∑ 可以看出||1,2,,.rk l k r ≤=这表明中间量rk l得以控制,因此不会产生由中间量放大使计算不稳定的现象. Cholesky 分解的缺点:需要作开方运算. 改进的Cholesky 分解: 改为使用分解T A LDL =即11121121121221222121111n n n n n n n n nn a a a d l l l d a a a l l d a a a ⎡⎤ 1 ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 1 1 ⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥ ⎢⎥ ⎣⎦⎣⎦⎣⎦ 2n l ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1⎣⎦其中21ˆl 1ˆn l 2ˆn l ˆnn l 1ˆn u12111()/r r rr rk k k r ir ir ik k rk rk d a l d l a l d l d-=-=⎧=-⎪⎪⎨⎪=-⎪⎩∑∑,1,2,,;1,2,,.r n i r r n ==++Cholesky 分解方法或平方根法:应用Cholesky 分解可将Ax b =分解为两个三角形方程组T Ly b L x y ⎧= ⎪⎨= ⎪⎩分别可解得111111/,()/.i i i ik k ii k y b l y b l y l i n -=⎧=⎪⎨=-, =2,3,,⎪⎩∑和1/,()/1,.n n nn n i i ki k ii k i x y l x y l x l i n n =+⎧=⎪⎨=-, =--2,,2,1⎪⎩∑改进的Cholesky 分解方法或改进的平方根法:应用改进的Cholesky 分解,将方程组Ax b =分解为下面两个方程组1,,T Ly b L x D y -= ⎧⎨= ⎩同理可解得1111,,2,3,,.i i i ik k k y b y b l y i n ==⎧=⎪⎨=- =⎪⎩∑和1/,/,1,2,,2,1.n n n n i i i ki k k i x y d x y d l x i n n =+⎧=⎪⎨=- =--⎪⎩∑ 4.解三对角方程组的追赶法若()ij n n A a ⨯=满足1||||,1,2,,.nii ij j j ia a i n =≠> =∑则称A 为严格对角占优矩阵.若A 满足1||||,1,2,,.nii ij j j ia a i n =≠≥ =∑且其中至少有一个严格不等式成立,则称A 为弱对角占优矩阵.现在考虑Ax d = 的求解,即11112222211111n n n n n n n n n b c x d a b c x d a b c x d d a b x -----⎡⎤⎡⎤⎡⎤ ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ = ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 系数矩阵A 满足条件11||||0,||||||,,0,2,3,, 1.||||0,i i i i i n n b c b a c a c i n b a ⎧>>⎪≥+ ≠=-⎨⎪>>⎩采用Crout 分解方法11112222221111n n n n n n n b c a b c a b c a b βαβγαγα---⎡⎤ ⎡⎤⎢⎥ 1 ⎢⎥⎢⎥ ⎢⎥⎢⎥ = ⎢⎥⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥⎢⎥⎣⎦ ⎣⎦ 1n β-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥1 ⎢⎥⎢⎥ 1 ⎣⎦其中,,,i i i αβγ为待定系数.比较上式两边可得到111111,;,,2,3,,;,2,3,, 1.i i i i i i i i i b c a b i n c i n ααβγγβααβ-= == =+ == =-进而可导出1111111,2,3,,.,/,,2,3,,./(),2,3,, 1.i i i i i i ii i i i a i n b c b b i n c b i n γαβααββαβ--⎧= =⎪= =⎪⎨=- =⎪⎪=- =-⎩由此可看出,真正需要计算的是(1,2,,1)i n β=- ,而i α可由,i i b a 和1i β-产生.因此,实现了A 的Crout 分解后,求解Ax d =就等价于解方程组Ly dUx y =⎧⎨=⎩从而得到解三对角方程组的追赶法公式: (1) 计算i β的递推公式:1111/,/(),2,3,, 1.i i i i i c b c b i n ββαβ-⎧=⎪⎨=- =-⎪⎩(2) 解方程组Ly d =:11111/()/(),2,3,,.i i i i i i i y d b y d a y b a i n β--⎧=⎪⎨=-- =⎪⎩(3) 解方程组Ux y =:1,1,2,,2,1.n n i i i i x y x y x i n n β+⎧=⎪⎨=- =--⎪⎩追赶法的乘除法次数是66n -次.将计算121n βββ-→→→ 及12n y y y →→→ 的过程称之为“追”的过程,将计算方程组Ax d =的解121n n x x x x -→→→→ 的过程称之为“赶”的过程.四、迭代法 将Ax b =改写为一个等价的方程组 x Bx k =+建立迭代公式 (1)(),0,1,2,.i i x Bx k i +=+ =称矩阵B 为迭代矩阵.【定义】 如果对固定的矩阵B及向量k,对任意初始猜值向量(0)x ,迭代公式(1)()i i +()i()*lim i i x x →+∞=成立,其中*x 是一确定的向量,它不依赖于(0)x 的选取.则称此迭代公式是收敛的,否则称为发散的.如果迭代收敛,则应有**,x Bx k =+1. 收敛性()()*,0,1,2,i i x x i ε=- =为第i步迭代的误差向量.则有(1)(1)*()*()(),0,1,2,.x x B x x B i εε++=-=-==所以,容易推出()(0),0,1,2,,i i B i εε= =其中,(0)(0)*xxε=-为初始猜值的误差向量.设n nB K ⨯∈,lim 0i i B →+∞=⇔ ()1B ρ<.迭代法收敛基本定理: 下面三个命题是等价的 (1) 迭代法(1)()i i x Bx k +=+收敛;(2)()1B ρ<;(3) 至少存在一种矩阵的从属范数⋅,使1B <注:当条件()1B ρ<难以检验时,用1B 或B ∞等容易求出的范数,检验11B <或1B∞<来作为收敛的充分条件较为方便.常用迭代法如下. 2.Jacob 迭代 考察线性方程组Ax b =,设A 为非奇异的n 阶方阵,且对角线元素0ii a ≠(1,2,,)i n = .此时,可将矩阵A 写成如下形式A D L U =++,1122(,,,)nn D diag a a a = ,21313212000n n a L a a a a ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 0 ⎢⎥⎣⎦ ,12131232000n n a a a a a U ⎡⎤ ⎢⎥ ⎢⎥⎢⎥= 0 ⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎣⎦ ,建立Jacobi 迭代公式(1)1()1(),i i x D L U x D b +--=-++迭代矩阵11()J B D L U I D A --=-+=-J B 的具体元素为112111122122221200n n J n n nn nn a a a a a a B a a a a a a ⎡⎤ - -⎢⎥⎢⎥⎢⎥- - ⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥- - 0 ⎢⎥⎣⎦ Jacobi 迭代法的分量形式如下1(1)()()111(),j n i i i jj jm m jm m m m j jj xb a x a x a -+==+=--∑∑1,2,,;0,1,2,.j n i = =3.Gauss-Seidel 迭代容易看出,在Jacobi 迭代法中,每次迭代用的是前一次迭代的全部分量()(1,2,,)i jx j n = .实际上,在计算(1)i j x +时,最新的分量(1)(1)(1)121,,,i i i j x x x +++- 已经算出,但没有被利用.事实上,如果Jacobi 迭代收敛,最新算出的分量一般都比前一次旧的分量更加逼近精确解,因此,若在求(1)i j x+时,利用刚刚计算出的新分量(1)(1)(1)121,,,i i i j x x x+++- ,对Jacobi 迭代加以修改,可得迭代公式1(1)(1)()111(),j ni i i jj jm m jm m m m j jj xb a x a x a -++==+=--∑∑1,2,,;0,1,2,.j n i = =矩阵形式(1)1()1()(),0,1,2,.i i x D L Ux D L b i +--=-++-+=1()G B D L U -=--+注:(1)两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更快一些.(2)但也有这样的方程组,对Jacobi 迭代法收敛,而对Gauss-Seidel 迭代法却是发散的. 【例2.4】 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下面的方程组121232342,46,4 2.x x x x x x x ⎧- =⎪-+-=⎨⎪-+=⎩初始猜值取0(0,0,0)x =. 【解】 Jacobi 迭代公式为(1)()12(1)()()213(1)()321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下 (1)(2)(3)(4)(0.5,1.5,0.5),(0.875,1.75,0.875),(0.938,1.938,0.938),(0.984,1.969,0.984).T T T T x x x x ====Gauss-Seidel 迭代公式为(1)()12(1)(1)()213(1)(1)321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下(1)(2)(3)(4)(0.5,1.625,0.9063),(0.9063,1.9532,0.9883),(0.9883,2.0,0.9985),(0.9985,1.999,0.9998).T T T T x x x x ====从这个例子可以看到,两种迭代法作出的向量序列(){}i x 逐步逼近方程组的精确解*(1,2,1)T x =,而且Gauss-Seidel 迭代法收敛速度较快.一般情况下,当这两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更3.超松弛迭代法为了加快迭代的收敛速度,可将Gauss-Seidel 迭代公式改写成1(1)()(1)()11(),j ni i i i jjj jm m jm m m m jjj xx b a x a x a -++===+--∑∑ 1,2,,;0,1,2,.j n i = =并记1(1)(1)()11(),j ni i i jj jm m jm m m m jjj rb a x a x a -++===--∑∑称 (1)i j r + 为 1i + 步迭代的第 j 个分量的误差向量.当迭代收敛时,显然有所有的误差向量(1)0(),1,2,,.i j r i j n +→→∞=为了获得更快的迭代公式,引入因子R ω∈,对误差向量 (1)i j r + 加以修正,得超松弛迭代法(简称SOR 方法)(1)()(1),0,1,2,.i i i j j j x x r i ω++=+ =即1(1)()(1)()1(),j ni i i i jjj jm mjm m m m jjjxx b a xa x a ω-++===+--∑∑1,2,,;0,1,2,.j n i = =适当选取因子ω,可望比Gauss-Seidel 迭代法收敛得更快.称ω为松弛因子.特别当1ω=时,SOR 方法就是Gauss-Seidel 迭代法.写成矩阵向量形式(1)1()1()[(1)](),j i x D L D U x D L b ωωωωω+--=+--++0,1,2,.i =迭代矩阵为1()[(1)].B D L D U ωωωω-=+--实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的. 4.迭代收敛其它判别方法:用迭代法收敛基本定理来判断收敛性时,当n 较大时,迭代矩阵的谱半径计算比较困难,因此,人们试图建立直接利用矩阵元素的条件来判别迭代法的收敛定理. (1) 若方程组Ax b =中的系数矩阵A 是对称正定阵,则 Gauss-Seidel 迭代法收敛. 对于SOR 方法,当02ω<< 时迭代收敛(2)若A 为严格对角占优阵,则解方程组 Ax b = 的Jacobi 迭代法,Gauss -Seidel 迭代法均收敛. 对于SOR 方法,当01ω<< 时迭代收敛.【例2.5】 设线性方程组为121221,32,x x x x ⎧+=-⎪⎨+=⎪⎩建立收敛的Jacobi 迭代公式和Gauss -Seidel 迭代公式. 【解】 对方程组直接建立迭代公式,其Jacobi 迭代矩阵为0230J B -⎡⎤=⎢⎥- ⎣⎦,显见谱半径()1J B ρ=>,故Jacobi 迭代公式发散.同理Gauss -Seidel 迭代矩阵为0206G B -⎡⎤=⎢⎥ ⎣⎦,谱半径()61G B ρ=>,故Gauss -Seidel 选代公式也发散. 若交换原方程组两个方程的次序,得一等价方程组121232,21,x x x x ⎧+=⎪⎨+=-⎪⎩其系数矩阵显然对角占优,故对这一等价方程组建立的Jacobi 迭代公式,Gauss -Seidel 迭代公式皆收敛. (3)SOR 方法收敛的必要条件是 02ω<<【定理2.5】 如果A 是对称正定阵,且02ω<<,则解Ax b =的SOR 方法收敛.注:当(0,2)ω∈ 时,并不是对任意类型的矩阵A ,解线性方程组Ax b =的SOR 方法都是收敛的.当SOR 方法收敛时,通常希望选择一个最佳的值opt ω使SOR 方法的收敛速度最快.然而遗憾的是,目前尚无确定最佳超松弛因子opt ω的一般理论结果.实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的.【例2.6】 求解线性方程组Ax b =,其中10.3000900.308980.30009100.4669110.274710.30898A - -- -0.46691 0= - -- 00.274711(5.32088,6.07624,8.80455,2.67600).T b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥ - ⎣⎦ =-分别利用Jacobi 迭代法,Gauss -Seidel 迭代法,SOR 迭代法求解. 【解】其结果列入下表中,方程组精确解(五位有效数字)为*(8.4877,6.4275, 4.7028,4.0066).T x =-Jacobi 迭代法计算结果i()1i x()2i x ()3i x ()4i x ()2||||i r0 012.3095 1 5.3209 6.0762 -8.8046 2.6760 5.3609 27.97113.5621 -5.2324 1.90143.631820 8.4872 6.4263 -4.7035 4.0041 0.0041 218.48606.4271 -4.7050 4.0063 0.0028Gauss-Seidel 迭代法计算结果i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 5.3209 7.6730 -5.2220 2.8855 3.6202 28.51506.1933 -5.1201 3.90040.49098 8.4832 6.4228 -4.7064 4.0043 0.0078 98.48556.4252-4.70554.00550.0038SOR 迭代法计算结果(1.16ω=)i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 6.1722 9.1970 -5.2320 3.6492 3.6659 29.69416.1177 -4.8999 4.43351.33136 8.4842 6.4253 -4.7005 4.4047 0.0051 78.48686.4288-4.70314.00650.0016计算结果表明,若求出精确到小数点后两位的近似解,Jacobi 迭代法需要21次,Gauss -Seidel 迭代法需要9次,而SOR 迭代法(选松弛因子 1.16ω=)仅需要7次,起到加速作用.5.误差分析 【定理2.6】设 *x 是方程 Ax b = 的惟一解,v ⋅ 是某一种向量范数,若对应的迭代矩阵其范数1v B <,则迭代法(1)(),0,1,2,.i i xBx k i +=+ = 收敛,且产生向量序列(){}i x 满足()*()(1)||||||||||||1||||i i i vv vvB x x x x B --≤--()*(1)(0)||||||||||||1||||i i vv vvB x x x x B -≤--【证明】 由迭代收敛基本定理的(3)知,迭代法(1)(),0,1,2,.i i x Bx k i +=+ =收敛到方程的解*x .于是,由迭代公式立即得到(1)*()*(1)()()(1)(),().i i i i i i x x B x x x x B x x ++--=--=-为书写方便把v 范数中v 略去,有估计式(1)*()*||||||||||||,i i x x B x x +-≤⋅-(1)()()(1)||||||||||||.i i i i x x B x x +--≤⋅-再利用向量范数不等式||||||||||||x y x y -≥-于是得第一个不等式()(1)(1)()()*(1)*()*||||||||||||||||||||(1||||)||||,i i i i i i i B x x x x x x x x B x x -++ -≥-≥--- ≥--再反复递推即第二个不等式.注:(1)若事先给出误差精度ε,利用第二个不等式可得到迭代次数的估计(1)(0)(1||||)ln ln ||||||||v v v B i B x x ε⎡⎤->⎢⎥-⎣⎦ (2)在||||v B 不太接近1的情况下,由第一个不等式,可用()(1)||||i i v x x ε--<作为控制迭代终止的条件,并取 ()i x 作为方程组 Ax b = 的近似解.但是在||||v B 很接近1时,此方法并不可靠.一般可取1,2,v =∞或F .【例2.7】 用Jacobi 迭代法解方程组123123123202324,812,231530.x x x x x x x x x ⎧++=⎪++=⎨⎪-+=⎩问Jacobi 迭代是否收敛?若收敛,取(0)(0,0,0)T x =,需要迭代多少次,才能保证各分量的误差绝对值小于610-?【解】 Jacobi 迭代的分量公式为(1)()()123(1)()()213(1)()()3121(2423)201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x +++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩Jacobi 迭代矩阵J B 为130102011088210155J B ⎡⎤ - -⎢⎥⎢⎥⎢⎥=- -⎢⎥⎢⎥⎢⎥- ⎢⎥⎣⎦,由5251||||max ,,1208153J B ∞⎧⎫==<⎨⎬⎩⎭知,Jacobi 迭代收敛. 因设(0)(0,0,0)Tx =,用迭代公式计算一次得(1)(1)(1)12363,, 2.52x x x = = =而(1)(0)|||| 2.x x ∞-=于是有6110(1)13ln ln 13.23i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所以,要保证各分量误差绝对值小于610-,需要迭代14次.【例2.8】 用Gauss -Seidel 迭代法解例2.11中的方程组,问迭代是否收敛?若收敛,取(0)(0,0,0)Tx =,需要迭代多少次,才能保证各分量误差的绝对值小于610-?【解】 Gauss -Seidel 迭代矩阵G B 为102403601()03025524000G B D L U - - ⎡⎤⎢⎥=-+= -⎢⎥⎢⎥ 38 -3⎣⎦显然1||||14G B =<,所以迭代收敛. Gauss -Seidel 迭代分量公式为(1)()()123(1)(1)()213(1)(1)(1)3121(2423),201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x ++++++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩因取(0)(0,0,0)T x =,故迭代一次得(1)(1)(1)1231.2, 1.35, 2.11x x x = = =于是有(1)(0)|||| 2.11x x ∞-=,计算得6110(1)14ln ln 10.2.114i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所在,要保证各分量误差绝对值小于610-,需要迭代11次.。
2020年普通高等学校招生全国统一考试(数学)试题及参考答案(1)

试题及答案数学试题第1页(共5页)绝密★启用前2020年普通高等学校招生全国统一考试数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 冋答选择题时,选出每小题答案后,用铅笔把答题卡上对应题日的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
冋答1F 选择题时,将答案写在 答题卡上。
写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交冋。
一、选择题:本题共8小题,每小题5分,共40分。
在每小踐给出的四个选项中.只 有一项是符合题目要求的。
L 设集合/={x|lWxW3}, B = {x\2<x<4},则=A. {x|2<xW3}B. {x|2W.tW3}C. {x|lWx<4}D. (x|l<x<4} 2.竺=l + 2iA. IB. -1C. iD.・i3*. 6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排I 名.乙场饨安排2名,丙场馆安排3名,则不同的安排方法共有A. 120种B. 90种C. 60种D. 30种4.日軽是中国古代用来测定时间的仪器,利用与昌面垂直的辱针投射到暑面的影子来测定时 间.把地球看成一个球(球心记为。
),地球 上一点X 的纬度是指0.4与地球赤道所在平面 所成角,点.4处的水平面是指过点X 且与。
4 垂直的平面.在点X 处放置一个日軽,若瞽面 与赤道所在平面平行,点彳处的纬度为北纬试题及答案40\则楼针与点4处的水平面所成角为A. 20°B. 40°C. 50°D. 90数学试题第1页(共5页)5.某中学的学牛.积极参加体育锻炼,其中有96%的学生二欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生兑数的比例是A. 62%B. 56%C. 46%D. 42%6.基本再生数心与世代间隔「是新冠肺炎的流行宿学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:/。
《高等工程数学》习题一参考答案

2 1 1 1 3 1 0 0 1 4 ,可得基础解系为 1 1 1 0 1 0 1 1 1 5
f1 (0,1,1,0,0) , f 2 (1,1,0,1,0) , f 3 (4,5,0,0,1) ,Schmidt 正交化得,
1
13.按 P21 欧氏空间定义 2.1,逐条验证, 1) 不满足第 (2 ) 条, (4) 条, 故不是欧氏空间; 不满足第(4)条,故不是欧氏空间;3)都满足,故是欧氏空间。 14. 按 P21 欧氏空间定义 2.1,逐条验证,都满足,故是欧氏空间。 15. 设向量 ( x1 , x2 , x3 , x4 ) 与三个向量正交,则有
所以对两组基有相同坐标的非零向量可取为 (c, c, c,c)(c 0). 5. 由第 7 页子空间定义可得,1)向量满足加法和数乘封闭,是子空间;2)向量不满足加 法或数乘封闭,故而不是子空间。 注:从几何上看,子空间过原点,而不过原点的都不是。 6. 两个向量组生成相同子空间的充分必要条件是这两个向量组等价, 即可以互相线性表示。 解:因对应分量不成比例,故 α1 (1,1,0,0), α2 (1,0,1,1) , β1 (1,1,0,0), β2 (1,0,1,1) 线性
2
T1T2 ( x1 , x2 ) T1[T2 ( x1 , x2 )] T1 ( x1 , x2 ) ( x2 , x1 ) T2T1 ( x1 , x2 ) T2 [T1 ( x1 , x2 )] T2 ( x2 , x1 ) ( x2 , x1 )
11.略。 12. 解:1)因为 T ( x1 , x2 , x3 ) ( 2 x1 x2 , x2 x3 , x1 ) ,按照 P18 (1.21),可知
2020年全国大学高数考试试题及解析

2020年全国大学高等数学考试试题一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线上与直线垂直的切线方程为__________ . (2)已知,且,则=__________ . (3)设为正向圆周在第一象限中的部分,则曲线积分的值为__________.(4)设是由锥面与半球面围成的空间区域,是的整个边界的外侧,则_________.(5)设均为3维列向量,记矩阵,,如果,那么 .(6)从数1,2,3,4中任取一个数,记为, 再从中任取一个数,记为, 则=____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数,则在内( )(A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点 (D)至少有三个不可导点(2)设是连续函数的一个原函数,表示的充分必要条件是则必有( )(A)是偶函数是奇函数 (B)是奇函数是偶函数ln y x =1=+y x (e )e x x f x -'=(1)0f =()f x L 222=+y x ⎰-Lydx xdy 2Ω22y x z +=222y x R z --=∑Ω⎰⎰∑=++zdxdy ydzdx xdydz 123,,ααα123(,,)=A ααα123123123(,24,39)=++++++B ααααααααα1=A =B X X ,,2,1 Y }2{=Y P n nn xx f 31lim )(+=∞→()f x ),(+∞-∞()F x ()f x ""N M ⇔"M ",N ()F x ()f x ⇔()F x ()f x ⇔(C)是周期函数是周期函数 (D)是单调函数是单调函数(3)设函数, 其中函数具有二阶导数, 具有一阶导数,则必有( )(A)(B)(C)(D)(4)设有三元方程,根据隐函数存在定理,存在点的一个邻域,在此邻域内该方程( )(A)只能确定一个具有连续偏导数的隐函数(B)可确定两个具有连续偏导数的隐函数和 (C)可确定两个具有连续偏导数的隐函数和 (D)可确定两个具有连续偏导数的隐函数和(5)设是3阶方阵,将的第1列与第2列交换得,再把的第2列加到第3列得,则满足的可逆矩阵为( )(A) (B)(C)(D)()F x ()f x ⇔()F x ()f x ⇔⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕϕψ2222y ux u ∂∂-=∂∂2222yu x u ∂∂=∂∂222y uy x u ∂∂=∂∂∂222xuy x u ∂∂=∂∂∂ln e 1xz xy z y -+=(0,1,1)(,)z z x y =(,)x x y z =(,)z z x y =(,)y y x z =(,)z z x y =(,)x x y z =(,)y y x z =A A B B C =AQ C Q ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110(6)设为满足的任意两个非零矩阵,则必有( )(A)的列向量组线性相关的行向量组线性相关 (B)的列向量组线性相关的列向量组线性相关 (C)的行向量组线性相关的行向量组线性相关 (D)的行向量组线性相关的列向量组线性相关(7)设随机变量服从正态分布对给定的,数满足,若,则等于() (A)(B)(C) (D)(8)设随机变量独立同分布,且其方差为 令,则( )(A)(B) (C)(D)三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)1、(本题满分12分)设,证明.,A B =AB O A ,B A ,B A ,B A ,B X (0,1),N )10(<<αααu αα=>}{u X P α=<}{x X P x 2αu 21α-u21α-u α-1u )1(,,,21>n X X X n .02>σ∑==ni i X n Y 1121Cov(,)X Y nσ=21Cov(,)X Y σ=212)(σnn Y X D +=+211)(σnn Y X D +=-2e e a b <<<2224ln ln ()e b a b a ->-某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)3、(本题满分12分)计算曲面积分其中是曲面的上侧.4、(本题满分12分)已知函数在上连续,在内可导,且. 证明: A 存在 使得.B 存在两个不同的点,使得5、(本题满分12分)设函数具有连续导数,在围绕原点的任意分段光滑简单闭曲线上,曲线积分的值恒为同一常数.(1)证明:对右半平面内的任意分段光滑简单闭曲线有.(2)求函数的表达式.).100.66⨯=k ,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=∑)0(122≥--=z y x z ()f x [0,1](0,1)(0)0,(1)1f f ==),1,0(∈ξξξ-=1)(f )1,0(,∈ζη.1)()(=''ζηf f )(y ϕL 24()22Ly dx xydyx yφ++⎰0x >,C 24()202Cy dx xydyx y φ+=+⎰)(y ϕ已知二次型的秩为2. (1)求的值;(2)求正交变换,把化成标准形. (3)求方程=0的解.7、(本题满分9分)设矩阵的特征方程有一个二重根,求的值,并讨论是否可相似对角化.8、(本题满分9分)设为随机事件,且,令求:(1)二维随机变量的概率分布. (2)和的相关系数9、(本题满分9分)设为来自总体的简单随机样本,为样本均值,记求:(1)的方差. (2)与的协方差21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=a x y =Q ),,(321x x x f ),,(321x x x f 12314315a -⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A a A ,AB 111(),(|),(|)432P A P B A P A B ===;,,0,1不发生发生A A X ⎩⎨⎧=.,,0,1不发生发生B B Y ⎩⎨⎧=(,)X Y X Y .XY ρ)2(,,,21>n X X X n (0,1)N X .,,2,1,n i X X Y i i =-=i Y n i DY i ,,2,1, =1Y n Y 1Cov(,).n Y Y2020年全国大学高等数学考试试题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y . 【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
高等工程数学智慧树知到答案2024年南京理工大学

高等工程数学南京理工大学智慧树知到答案2024年第一章测试1.有限维线性空间上范数1,范数2之间的关系是A:2强于1 B:等价 C:1强于2 D:无法比较答案:B2.赋范线性空间成为Banach空间,需要范数足?A:完备性 B:可加性 C:不变性 D:非负性答案:A3.标准正交系是一个完全正交系的充要条件是满足Parseval等式A:错 B:对答案:B4.在内积空间中,可以从一组线性无关向量得到一列标准正交系A:对 B:错答案:A5.矩阵的F范数不满足酉不变性A:错 B:对答案:A6.与任何向量范数相容的矩阵范数是?A:F范数 B:极大行范数 C:算子范数 D:极大列范数答案:C7.正规矩阵的谱半径与矩阵何种范数一致A:极大行范数 B:极大列范数 C:矩阵2范数 D:算子范数答案:C8.矩阵收敛,则该矩阵的谱半径A:无从判断 B:大于1 C:小于1 D:等于1答案:C9.矩阵幂级数收敛,则该矩阵的谱半径A:等于1 B:大于1 C:无从判断 D:小于1答案:D10.正规矩阵的条件数等于其最大特征值的模与最小特征值的模之商A:错 B:对答案:B第二章测试1.l矩阵不变因子的个数等于( )A:矩阵的列数 B:矩阵的秩 C:行数和列数的最小值 D:矩阵的行数答案:B2.Jordan标准形中Jordan块的个数等于( )A:矩阵的秩 B:行列式因子的个数 C:不变因子的个数 D:初等因子的个数答案:D3.Jordan块的对角元等于其( )A:初等因子的零点 B:初等因子的次数 C:不变因子的个数 D:行列式因子的个数答案:A4.n阶矩阵A的特征多项式等于( )A:A的n个不变因子的乘积 B:A的n阶行列式因子 C:A的行列式因子的乘积 D:A的次数最高的初等因子答案:AB5.下述条件中,幂迭代法能够成功处理的有( )A:主特征值有两个,是一对共轭的复特征值 B:主特征值有两个,是一对相反的实数 C:主特征值是实r重的 D:主特征值只有一个答案:ABCD6.n阶矩阵A的特征值在( )A:A的n个行盖尔圆构成的并集与n个列盖尔圆构成的并集的交集中 B:A的n个列盖尔圆构成的并集中 C:A的n个行盖尔圆构成的并集中 D:都不对答案:ABC7.不变因子是首项系数为1的多项式A:错 B:对答案:B8.任意具有互异特征值的矩阵,其盖尔圆均能分隔开A:对 B:错答案:B9.特征值在两个或两个以上的盖尔圆构成的连通部分中分布是平均的A:错 B:对答案:A10.规范化幂迭代法中,向量序列uk不收敛A:对 B:错答案:B第三章测试1.二阶方阵可作Doolittle分解A:错 B:对答案:A2.若矩阵A可作满秩分解A=FG,则F的列数为A的()A:列数B:都不对C:秩D:行数答案:C3.矩阵的满秩分解不唯一.A:错 B:对答案:B4.酉等价矩阵有相同的奇异值.A:对 B:错答案:A5.求矩阵A的加号逆的方法有()A:满秩分解 B:Greville递推法 C:奇异值分解 D:矩阵迭代法答案:ABCD6.若A为可逆方阵,则A:错 B:对答案:B7.用A的加号逆可以判断线性方程组Ax=b是否有解?A:对 B:错答案:A8.A的加号逆的秩与A的秩相等A:错 B:对答案:B9.若方阵A是Hermite正定矩阵,则A的Cholesky分解存在且唯一.A:错 B:对答案:B10.是Hermite标准形.A:错 B:对答案:A第四章测试1.()是利用Gauss消去法求解线性方程组的条件.A:系数矩阵的顺序主子式均不为0B:系数矩阵满秩C:所有主元均不为0D:都不对答案:AC2.关于求解线性方程组的迭代解法, 下面说法正确的是().A:J法和GS法的敛散性无相关性B:若迭代矩阵谱半径不大于1, 则迭代收敛C:若系数矩阵A对称正定, 则GS迭代法收敛D:都不对答案:AC3.如果不考虑舍入误差, ()最多经n步可迭代得到线性方程组的解.A:SOR法B:共轭梯度法C:最速下降法D:都是答案:B4.关于共轭梯度法, 下面说法正确的是()A:相邻两步的残量正交 B:相邻两步的搜索方向正交 C:搜索方向满足A共轭条件 D:B和C都对答案:D5.下面哪些是求解线性方程组的迭代解法().A:共轭梯度法 B:三角分解解法 C:ABC都对 D:最速下降法答案:AD6.若系数矩阵A对称正定, 则()A:J法和GS法均收敛B:都不对 C:可用Cholesky法求解线性方程组D:SOR法收敛答案:C7.任意线性方程组都可以通过三角分解法求解.A:错 B:对答案:A8.最速下降法和共轭梯度法的区别在于选取的搜索方向不同.A:错 B:对答案:B9.广义逆矩阵法可用于任意线性方程组的求解.A:对 B:错答案:A10.Gauss消去法和列主元素法的数值稳定性相当.A:错 B:对答案:A第五章测试1.对于凸规划,如果x为问题的KKT点,则其为原问题的全局极小点A:对 B:错答案:A2.对于无约束规划问题,如果海塞阵非正定,我们可采用哪种改进牛顿法求解原问题?A:难以处理 B:构造一对称正定矩阵来取代当前海塞阵,并一该矩阵的逆乘以当前梯度的负值作为方向 C:牛顿法 D:阻尼牛顿法答案:B3.共轭梯度法中,为A:FR公式 B:DY公式 C:DM公式 D:PRP公式答案:A4.内点罚函数法中常用的障碍函数有A:三种都可以B:二次函数C:倒数障碍函数D:对数障碍函数答案:CD5.广义乘子罚函数的优点是在罚因子适当大的情形下,通过修正拉格朗日乘子就可逐步逼近原问题的最优解?A:错 B:对答案:B6.分子停留在最低能量状态的概率随温度降低趋于( ).A:2 B:3 C:0 D:1答案:D7.模拟退火算法内循环终止准则可采用的方法.A:固定步数 B:温度很低时 C:接受概率很低时 D:由接受和拒绝的比率控制迭代步答案:AD8.背包问题是组合优化问题吗?A:错 B:对答案:B9.单纯形算法是求解线性规划问题的多项式时间算法.A:对 B:错答案:B10.对于难以确定初始基本可行解的线性规划问题,我们引入人工变量后,可采用哪些方法求解原问题?A:单纯形法 B:无法确定 C:两阶段法 D:大M法答案:CD第六章测试1.如果不限定插值多项式的次数,满足插值条件的插值多项式也是唯一的()A:错 B:对答案:A2.改变节点的排列顺序,差商的值不变()A:错 B:对答案:B3.Hermite插值只能用插值基函数的方法求解()A:错 B:对答案:A4.在最小二乘问题中,权系数越大表明相应的数据越重要()A:错 B:对答案:B5.加窗傅里叶变换时频窗的长宽比是信号自适应的()A:对 B:错答案:B6.傅里叶变换域的点和时间域上的点是一一对应的()A:对 B:错答案:B7.若f(t)的傅里叶变换为,则 f(2t)的傅里叶变换为 ( )A: B: C:答案:B8.小波函数对应了()A:低通滤波器 B:高通滤波器答案:B第七章测试1.有界区域上的弦振动方程定解问题可以用傅里叶积分变换法求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等工程数学》试题
一、设总体X 具有分布律
1 2 3
其中(01)为未知参数,已知取得了样本值
123
1,2,1x x x ,求的矩估
计和最大似然估计. 解:(1)矩估计:2
2
22(1)3(1)
23
EX
令EX
X ,得5?
6
.
(2)最大似然估计:得5?
6
二、(本题14分)某工厂正常生产时,排出的污水中动植物油的浓度)1,10(~N X ,
今阶段性抽取10个水样,测得平均浓度为10.8(mg/L ),标准差为 1.2(mg/L ),
问该工厂生产是否正常?(2
20.0250.025
0.975
0.05,(9) 2.2622,
(9)19.023,
(9)
2.700t )
解:
(1)检验假设H 0:2
=1,H 1:
2
≠1;取统计量:
2
2
2
)1(s
n ;
拒绝域为:
2
≤
)9()
1(2975
.0221
n =2.70或
2
≥
2025
.022
)1(n =19.023,
经计算:
96.121
2.19)1(2
20
2
2
s
n ,由于
)023.19,700.2(96
.122
2
,
故接受H 0,即可以认为排出的污水中动植物油浓度的方差为2
=1。
(2)检验假设101010:
,:
H H ;
取统计量:10
/10
S X t
~ )9(2
t ;
拒绝域为2622.2)9(025.0t t
;
1028.210
/2.1108.10t
<2.2622 ,所以接受0H ,
即可以认为排出的污水中动植物油的平均浓度是
10(mg/L )。
综上,认为工厂生产正常。
三、在单因素方差分析中,因素A 有3个水平,每个水平各做4次重复实验,完
成下列方差分析表,在显着水平0.05下对因素A 是否显着做检验。
来源平方和自由度均方和F 比
因素A 4.2 误差 2.5 总和 6.7
解:来源平方和自由度均方和F 比因素A 4.2 2 2.1 7.5
误差 2.5 9 0.28
总和
6.7
11
0.95(2,9)
4.26F ,7.5 4.26F
,认为因素A 是显着的.
四、现收集了16组合金钢中的碳含量
x 及强度y 的数据,求得
0.125,45.7886,0.3024,25.5218xx
xy
x
y
L L ,2432.4566yy
L .
(1)建立y 关于x 的一元线性回归方程01???y
x ;
(2)对回归系数1
做显着性检验(0.05).
解:(1)1
25.5218
?84.3975
0.3024
xy xx
l l 所以,?35.238984.3975y
x (2)1?2432.456684.397525.5218278.4805
e
yy
xy
Q l l 拒绝原假设,故回归效果显着.
五、某正交试验结果如下
列号
试验号
A B C 1 2 3
结果
i
y 1 2 3 4 1 1 1 1 2 2 2 1 2 2 2 1 13.25 16.54 12.11 18.75
(1)找出对结果y 影响最大的因素;
(2)找出“算一算”的较优生产条件;(指标越大越好)(3)写出第4号实验的数据结构模型。
解:
列号
试验号
A B C 1 2 3
结果
i
y 1 2 3 4
1 1 1 1
2 2 2 1 2 2 2 1 13.25 16.54 12.11 18.75
ⅠⅡR
29.79 25.36 32.0 30.86 35.29 28.65 1.07 9.9
3.35
(1)对结果y 影响最大的因素是B ;
(2)“算一算”的较优生产条件为221
A B C (3)4号实验的数据结构模型为
2
2
1
4
y
a b c ,
2
4
~(0,
)
N。