工程数学练习题(附答案版)

合集下载

《工程数学(本)》期末综合练习

《工程数学(本)》期末综合练习

《工程数学(本)》期末综合练习一、单项选择题1.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ). A .()BAAB 11=- B .()111---+=+B A B A C .()111---=B A AB D .1111----+=+B A B A正确答案:A2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( ),其中0≠i a ,)3,2,1(=i .A .0321=++a a aB .0321=-+a a aC .0321=+-a a aD .0321=++-a a a 正确答案:B3.设矩阵⎥⎦⎤⎢⎣⎡--=1111A 的特征值为0,2,则3A 的特征值为 ( ) .A .0,2B .0,6C .0,0D .2,6 正确答案:B4. 设A ,B 是两事件,则下列等式中( )是不正确的. A. )()()(B P A P AB P =,其中A ,B 相互独立 B. )()()(B A P B P AB P =,其中0)(≠B P C. )()()(B P A P AB P =,其中A ,B 互不相容 D. )()()(A B P A P AB P =,其中0)(≠A P 正确答案:C5.若随机变量X 与Y 相互独立,则方差)32(Y X D -=( ). A .)(3)(2Y D X D - B .)(3)(2Y D X D + C .)(9)(4Y D X D - D .)(9)(4Y D X D + 正确答案:D6.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是( )矩阵.A .s n ⨯B .n s ⨯C .t m ⨯D .m t ⨯ 正确答案:B7.若X 1、X 2是线性方程组AX =B 的解,而21ηη、是方程组AX = O 的解,则( )是AX =B 的解. A .213231X X + B .213231ηη+ C .21X X - D .21X X + 正确答案:A8.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( ) . A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101 B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011 D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100 正确答案:C9. 下列事件运算关系正确的是( ).A .AB BA B += B .A B BA B +=C .A B BA B +=D .B B -=1 正确答案:A10.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( ). A .)3,2(-N B .)3,4(-N C .)3,4(2-N D .)3,2(2-N 正确答案:D11.设321,,x x x 是来自正态总体),(2σμN 的样本,则( )是μ的无偏估计. A .321525252x x x ++ B .321x x x ++ C .321535151x x x ++ D .321515151x x x ++ 正确答案:C12.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从( ).A .χ2分布 B .t 分布 C .指数分布 D .正态分布 正确答案:B二、填空题1.设412211211)(22+-=x x x f ,则0)(=x f 的根是 .应该填写:2,2,1,1--2.设向量β可由向量组n ααα,,,21 线性表示,则表示方法唯一的充分必要条件是n ααα,,,21 .应该填写:线性无关3.若事件A ,B 满足B A ⊃,则 P (A - B )= . 应该填写:)()(B P A P -4..设随机变量的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它,010,1)(2x x kx f ,则常数k = .应该填写:π45.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x n x 11,则~x .应该填写:)1,0(nN 6.行列式701215683的元素21a 的代数余子式21A 的值为= . 应该填写-567.设三阶矩阵A 的行列式21=A ,则1-A = . 应该填写:28.若向量组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k .应该填写:2≠9.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 个解向量. 应该填写:310.设A B ,互不相容,且P A ()>0,则P B A ()= . 应该填写:011.若随机变量X ~ ]2,0[U ,则=)(X D . 应该填写:31 12.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ的 估计. 应该填写:无偏三、计算题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210211321,100110132B A ,求:(1)AB ;(2)1-A . 解:(1)因为210110132-=--=A 12111210211110210211321-=-===B 所以2==B A AB .(2)因为 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100010110001132I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→10010011001012/32/1001100100110010101032所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-10011012/32/11A .2.求齐次线性方程组 ⎪⎩⎪⎨⎧=++--=++++=++++0233035962023353215432154321x x x x x x x x x x x x x x 的通解.解: A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--326001130012331203313596212331⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100001130012331⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100000130001031 一般解为 ⎪⎪⎩⎪⎪⎨⎧=-=--=0313543421x x x x x x ,其中x 2,x 4 是自由元令x 2 = 1,x 4 = 0,得X 1 =)0,0,0,1,3('-; x 2 = 0,x 4 = 3,得X 2 =)0,3,1,0,3('--所以原方程组的一个基础解系为 { X 1,X 2 }.原方程组的通解为: 2211X k X k +,其中k 1,k 2 是任意常数.3.设随机变量)1,4(~N X .(1)求)24(>-X P ;(2)若9332.0)(=>k X P ,求k 的值. (已知9332.0)5.1(,8413.0)1(,9775.0)2(=Φ=Φ=Φ).解:(1))24(>-X P =1-)24(≤-X P= 1-)242(≤-≤-X P =1-()2()2(-Φ-Φ) = 2(1-)2(Φ)=0.045. (2))44()(->-=>k X P k X P =1-)44(-≤-k X P=1-)5.1(9332.0)4(Φ==-Φk )5.1()5.1(1)4(-Φ=Φ-=-Φk即 k -4 = -1.5, k =2.5.4.某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5 cm ,标准差为0.15cm.从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm )10.4,10.6,10.1,10.4问:该机工作是否正常(05.0=α, 96.1975.0=u )?解:零假设5.10:0=μH .由于已知15.0=σ,故选取样本函数nx U σμ-=~)1,0(N经计算得375.10=x ,075.0415.0==nσ,67.1075.05.10375.10=-=-nx σμ由已知条件96.121=-αu,且2196.167.1αμσμ-=<=-nx故接受零假设,即该机工作正常.5.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=350211B ,求X . 解:因为B X A I =-)(,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-101210011110001011100201010101001011)(I A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→11100121010120001110100011110010101 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--110121120)(1A I所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X .6.设向量组)1,421(1'--=,,α,)4,1684(2'--=,,α,)2,513(3'--=,,α,)1,132(4'-=,,α,求这个向量组的秩以及它的一个极大线性无关组. 解:因为(1α 2α 3α 4α)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------12411516431822341 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→1100770075002341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000200011002341 所以,r (4321,,,αααα) = 3.它的一个极大线性无关组是 431,,ααα(或432,,ααα).7.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ,λ为何值时方程组有非零解?在有非零解时,求出通解. 解:因为A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---λ83352231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→610110231λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ505==-λλ即当时,3)(<A r ,所以方程组有非零解.方程组的一般解为: ⎩⎨⎧==3231x x x x ,其中3x 为自由元.令3x =1得X 1=)1,1,1(',则方程组的基础解系为{X 1}. 通解为k 1X 1,其中k 1为任意常数.8.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率.解:设1A =“取到3颗棋子中至少有一颗黑子”,2A =“取到的都是白子”,3A =“取到的都是黑子”,B =“取到3颗棋子颜色相同”,则 (1))(1)(1)(211A P A P A P -=-=745.0255.01131238=-=-=C C .(2))()()()(3232A P A P A A P B P +=+=273.0018.0255.0255.031234=+=+C C .9.设随机变量X ~ N (3,4).求:(1)P (1< X < 7);(2)使P (X < a )=0.9成立的常数a . (8413.0)0.1(=Φ,9.0)28.1(=Φ,9973.0)0.2(=Φ). 解:(1)P (1< X < 7)=)23723231(-<-<-X P =)2231(<-<-X P =)1()2(-Φ-Φ = 0.9973 + 0.8413 – 1 = 0.8386 (2)因为 P (X < a )=)2323(-<-a X P =)23(-Φa = 0.9 所以28.123=-a ,a = 3 + 28.12⨯ = 5.56 10.从正态总体N (μ,9)中抽取容量为64的样本,计算样本均值得x = 21,求μ的置信度为95%的置信区间.(已知 96.1975.0=u ) 解:已知3=σ,n = 64,且nx u σμ-= ~ )1,0(N因为 x = 21,96.121=-αu,且735.064396.121=⨯=-nuσα所以,置信度为95%的μ的置信区间为: ]735.21,265.20[],[2121=+---nux nux σσαα.四、证明题1.设A 是n 阶矩阵,若3A = 0,则21)(A A I A I ++=--. 证明:因为 ))((2A A I A I ++-=322A A A A A I ---++ =3A I -= I所以 21)(A A I A I ++=--2.设n 阶矩阵A 满足0))((=+-I A I A ,则A 为可逆矩阵.证明: 因为 0))((2=-=+-I A I A I A ,即I A =2 所以,A 为可逆矩阵.3.设向量组321,,ααα线性无关,令2112ααβ+=,32223ααβ+=,1334ααβ-=,证明向量组321,,βββ线性无关。

六年级数学工程问题(附例题答案)

六年级数学工程问题(附例题答案)

二、典型例题例1. 一件工作,甲做9天可以完成,乙做8天可以完成,.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?例2.有一工程,甲队单独做24天完成,乙队单独做30天完成,甲、乙两队合做8天后,余下的由丙队做,又做了10天才完成。

这个工程由丙队单独做需几天完成?例3.某工程先由甲单独做63天,再由乙单独做28天即可完成,若由甲乙两人合作,需48天完成,现在甲先单独做12天,然后由乙来单独完成,那么还需要多少天?例3.一项工程,甲乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1 30,甲乙单独做这项工程各需要多少天?例4.一项工程,甲队单独做20天完成,乙队单独做30天完成,.现在他们两队一起做,其间甲队休息了4天,乙队休息了若干天.从开始到完成共用了17天.问乙队休息了多少天?例6.有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?例7.甲、乙合做一件工作要15天才能完成,现在甲、乙合做10天后,再由乙独做6天,还剩下这件工作的1/10,甲单独完成这件工作要多少天?例8.一项工程甲队单独做15天可以完成,乙队独坐10天可以完成。

现在开始两队合作,但中间乙队因另有任务调走,从开始到完成任务,甲队工作了9天,乙队比甲队少工作了多少天?例9.甲、乙合做一件工作,合作8天后,乙又独做5天,还剩下这件工作的1/6。

已知乙单独完成这件工作要30天,那么甲单独完成这件工作要多少天?例10.甲、乙合做一件工作,每天能完成全部工作的1/12,甲单独做6天,乙又单独做10天后,还剩下全部工作的11/30没有完成,甲单独完成全部工作要多少天?例11..一项工程,甲单独完成需12天,乙单独完成需9天。

若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?例11.一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?例12.一份稿件,甲、乙、丙三人单独打字需要的时间分别是20小时、24小时、30小时,现在三人合打,但甲因中途另有任务提前撤出,结果用12小时完成,甲只打了多少小时?例13.一项工程甲单独完成要30天,乙单独完成要45天,丙单独完成要90天。

六年级数学工程问题专项练习(含参考答案)

六年级数学工程问题专项练习(含参考答案)

六年级数学工程问题专项练习(含参考答案)1.一件工作,甲独做需要2天,乙单独做需要4天,两人合做几小时,可以完成这件工作的?2.一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?3.一水池装有一个进水管和一个排水管。

如果单开进水管,5小时可将空池灌满;如果单开排水管,7小时可将整池水排完。

现在先打开进水管,2小时后打开排水管。

请问:再过多长时间池内将恰好存有半池水?4.蓄水池有甲、乙两个进水管,单开甲管需12小时注满水,单开乙管需18小时注满水。

现要求10小时注水池,那么甲、乙两管至少要合开多长时间?5.修一条路,甲队每天修8小时,5天完成;乙队每天修10小时,6天完成。

两队合作,每天工作6小时,几天可以完成?6.甲、乙、丙三人同时分别在3个条件和工作量相同的仓库工作,搬完货物甲用10小时,乙用12小时,丙用15小时.第二天三人又到两个大仓库工作,这两个仓库的工作量相同.甲在A仓库,乙在B仓库,丙先帮甲后帮乙,用了16个小时将两个仓库同时搬完.丙在A仓库搬了多长时间?7.甲、乙合作一件工程,由于配合得好,甲的工作效率比单独做时提高,乙的工作效率比单独做时提高.甲、乙两人合作6小时,完成全部工作的,第二天乙又单独做了6小时,还留下这件工作的尚未完成,如果这件工作始终由甲一人单独来做,需要多少小时?8.有甲乙两个工程,张三单独做完甲工程需要12天,单独做完乙工程需要15天;李四单独做完甲工程需要8天,单独做完乙工程20天.张三李四二人共同完成这个工程最少需要多少天?9.单独完成一件工程,甲需要24天,乙需要32天.若甲先独做若干天后乙单独做,则共用26天完成工作.问甲做了多少天?10.一项工程,甲队单独做需30天完成,乙队单独做需40天完成。

甲队单独做若干天后,由乙队接着做,共用35天完成了任务。

甲、乙两队各做了多少天?11.甲、乙两人合作加工一批零件,8天可以完成。

六年级数学工程问题专项练习(含参考答案)

六年级数学工程问题专项练习(含参考答案)

六年级数学工程问题专项练习(含参考答案)1.一件工作,甲独做需要2天,乙单独做需要4天,两人合做几小时,可以完成这件工作的?2.一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?3.一水池装有一个进水管和一个排水管。

如果单开进水管,5小时可将空池灌满;如果单开排水管,7小时可将整池水排完。

现在先打开进水管,2小时后打开排水管。

请问:再过多长时间池内将恰好存有半池水?4.蓄水池有甲、乙两个进水管,单开甲管需12小时注满水,单开乙管需18小时注满水。

现要求10小时注水池,那么甲、乙两管至少要合开多长时间?5.修一条路,甲队每天修8小时,5天完成;乙队每天修10小时,6天完成。

两队合作,每天工作6小时,几天可以完成?6.甲、乙、丙三人同时分别在3个条件和工作量相同的仓库工作,搬完货物甲用10小时,乙用12小时,丙用15小时.第二天三人又到两个大仓库工作,这两个仓库的工作量相同.甲在A仓库,乙在B仓库,丙先帮甲后帮乙,用了16个小时将两个仓库同时搬完.丙在A仓库搬了多长时间?7.甲、乙合作一件工程,由于配合得好,甲的工作效率比单独做时提高,乙的工作效率比单独做时提高.甲、乙两人合作6小时,完成全部工作的,第二天乙又单独做了6小时,还留下这件工作的尚未完成,如果这件工作始终由甲一人单独来做,需要多少小时?8.有甲乙两个工程,张三单独做完甲工程需要12天,单独做完乙工程需要15天;李四单独做完甲工程需要8天,单独做完乙工程20天.张三李四二人共同完成这个工程最少需要多少天?9.单独完成一件工程,甲需要24天,乙需要32天.若甲先独做若干天后乙单独做,则共用26天完成工作.问甲做了多少天?10.一项工程,甲队单独做需30天完成,乙队单独做需40天完成。

甲队单独做若干天后,由乙队接着做,共用35天完成了任务。

甲、乙两队各做了多少天?11.甲、乙两人合作加工一批零件,8天可以完成。

国家开放大学《工程数学》综合练习题参考答案

国家开放大学《工程数学》综合练习题参考答案

A. a1 a2 a3 0
B. a1 a2 a3 0
C. a1 a2 a3 0
D. a1 a2 a3 0
28.设矩阵
A
1 1
1
1
的特征值为 0,2,则 3A 的特征值为
(D)

A.0,2 B.2,6 C.0,0 D.0,6 29.若事件 A 与 B 互斥,则下列等式中正确的是(A).
国家开放大学《工程数学》综合练习题参考答案
一、单项选择题
本套练习题包括题型:
一、单项选择题(40) 二、填空题(35) 三、计算题(28) 四、证明题(6)
1.设 A, B 均为 n 阶可逆矩阵,则下列等式成立的是(D). A. ( A B)1 A1 B 1 B. A B A B
C. 2AB 2n A B D. ( AB)1 B 1 A1
B. AB AB C. AB 1 B 1 A1 D. A B 1 A1 B 1
23.设 A , B 是两个随机事件,下列命题中不正确的是(B) . A. P( A B) P( A) P(B) P( AB) B. P( AB) P( A)P(B)
C. P( A) 1 P( A) D. P( A B) P( AB)
A. P( A B) P( A) P(B)
B. P(B) 1 P( A)
C. P( A) P( A B)
D. P( AB) P( A) P(B)
30.设 x1, x2 ,, xn 是来自正态总体 N (5,1) 的样本,则检验假设 H 0 : 5 采用统计 量 U =(C).
A. x 5 5
7.向量组 1 0, 0, 0, 2 1, 0, 0, 3 1, 2 , 0, 4 1, 2 , 3的极大线性无关

工程数学练习习题

工程数学练习习题

综合练习一、单项选择题1.设为阶矩阵,则下列等式成立的是().A.B.C.D.正确答案:A2.方程组相容的充分必要条件是(),其中,.A.B.C.D.正确答案:B3.下列命题中不正确的是().A.A与有相同的特征多项式B.若是A的特征值,则的非零解向量必是A对应于的特征向量C.若=0是A的一个特征值,则必有非零解D.A的特征向量的线性组合仍为A的特征向量正确答案:D4.若事件与互斥,则下列等式中正确的是().A.B.C.D.正确答案:A5.设是来自正态总体的样本,则检验假设采用统计量U =().A.B.C.D.正确答案:C6.若是对称矩阵,则等式()成立.A.B。

C.D。

正确答案:B7.( ).A。

B。

C。

D。

正确答案:D8.若()成立,则元线性方程组有唯一解.A。

B。

C。

D。

的行向量线性相关正确答案:A9. 若条件()成立,则随机事件,互为对立事件.A.或B。

或C。

且D。

且正确答案:C10.对来自正态总体(未知)的一个样本,记,则下列各式中()不是统计量.A。

B。

C.D.正确答案: C二、填空题1.设,则的根是.应该填写:1,—1,2,—22.设4元线性方程组AX=B有解且r(A)=1,那么AX=B的相应齐次方程组的基础解系含有个解向量.应该填写:33.设互不相容,且,则.应该填写:04.设随机变量X ~ B(n,p),则E(X)= .应该填写:np5.若样本来自总体,且,则.应该填写:6.设均为3阶方阵,,则.应该填写:87.设为n阶方阵,若存在数λ和非零n维向量,使得,则称为相应于特征值λ的特征向量.应该填写:8.若,则.应该填写:0.39.如果随机变量的期望,,那么.应该填写:2010.不含未知参数的样本函数称为.应该填写:统计量三、计算题1.设矩阵,求.解:由矩阵乘法和转置运算得利用初等行变换得即2.求下列线性方程组的通解.解利用初等行变换,将方程组的增广矩阵化成行简化阶梯形矩阵,即→→→方程组的一般解为:,其中,是自由未知量.令,得方程组的一个特解.方程组的导出组的一般解为:,其中,是自由未知量.令,,得导出组的解向量;令,,得导出组的解向量.所以方程组的通解为:,其中,是任意实数.3.设随机变量X ~ N(3,4).求:(1)P(1< X〈7);(2)使P(X〈a)=0。

高等工程数学练习题及答案

高等工程数学练习题及答案

高等工程数学练习题 (2012年12月16)1. n 位男士和n 位女士排成一行,要求男女相间,求有多少种不同的排法?把n 个男、n 个女分别进行全排列,然后按乘法法则放到一起,而男女分别在前面,应该再乘2,即方案数为2·(n!) 个2. n 个人围圆圈坐下做游戏,求不同的坐法数?若某两人不愿坐在一起,有多少种不同的坐法? 若有3人总是坐在一起,又有多少种不同的坐法? A: Q(n ,n)=(n-1)!;B: Q(n ,n)- Q(n-1,n-1) *2!=(n-1)!- (n-2)! *2! C: Q(n-2,n-2) *3!= (n-3)! *3!3. 书架上有一部24卷的百科全书,现要从中取出5本,使得没有两本书是连续的,问有多少种不同的取法? C(24-5+1,5)=C(20,5)4. 设{1,2,3,,(1)}.A n =+ (1)证明最大元素恰为j 的子集的个数是12j -;(2)证明:2112222 1.m m +++++=-A 、最大元素恰为j 的子集的个数,相当于前j-1个元素,每个元素出现或不出现的情况构成的所有子集的数量,每个元素出现或不出现2种可能,因此j-1个2相乘即为所有的情况,即12j -。

B:等比数列a1=2,q=2右侧为1+(2*(1-2^m )/1-2)=2^(m+1)-2+1=2^(m+1)-1=左侧5. 证明等式: 22222012n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭C(n 0)*C(n 0)=C(n 0)*C(n n); C(n 1)*C(n 1)=C(n 1)*C(n n-1); ……C(n k)*C(n k)=C(n k)*C(n n-k) ,K=0~nC(n k)相当于(0 0)到直线{(n 0)(0 n)}上的某点(n-k,k )的路径 C(n n-k) 相当于直线{(n 0)(0 n)}上的某点(n-k,k )到(n n )的路径根据乘法原理 C(n k)*C(n n-k)相当于(0 0)点通过直线{(n 0)(0 n)}上的某点(n-k,k )到(n n )的路径左侧为(0 0)点通过直线{(n 0)(0 n)}上所有点到(n n )的路径相加由于(0 0)点到达(n n )的所有路径均通过直线{(n 0)(0 n)},所以根据加法原理左侧为(0 0)点到(n n )的所有路径即等于(2n n ) 6. 证明恒等式: 11221011220n r n r n r n m r mn r m m m m m -+-+-+++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++=⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(-r-1,0)到(-1,i)路径为c(r+i,i)(-1,i)到(0,i)路径为1(0,i)到(n-m,m)路径为c(n-i.m-i)根据乘法原理,c(r+i,i) c(n-i.m-i)为(-r-1,0)经过(-1,i)到(0,i)再到(n-m,m)点的路径 左侧为i 取0至m ,(-r-1,0)经过(-1,i)到(0,i)再到(n-m,m)点的路径之和, 右侧围(-r-1,0)到(n-m,m)点的路径 左右相等7. 求不定方程123(,)n x x x x r n r Z +++++=∈的非负整数解的个数;设r n ≥,求不定方程的正整数解的个数. C (n+r-1,r )C(n+r-n-1,r-n)=c(r-1,r-n),相当于每盒先放一个球,球数量变成r-n ,再求解。

工程数学练习题

工程数学练习题

工程数学练习题一、 判断题1. 若A 为集合,则A Φ={ф} ( ) 2. 设A ,B 为集合。

若B ≠ф,则A —B ⊂A 。

( ) 3. 若R 为集合A 上的反对称关系,则R 2亦然。

( ) 4. 若R 1,R 2为集合A 上的相容关系,则R1·R2亦然。

( ) 5. 若g ·f 为内射且f 为满射,则g 为内射。

( )6. 若f:X →Y 且A ,B ⊆Y ,则f -1[A ⋂B ]=f -1[A] ⋂f -1[B] ( ) 7. 若P 为命题变元,则P ∧—P 为主合取范式。

( ) 8. 若P ,Q 为命题变元,则(P Q ) (-P Q )为可满足的。

( ) 9. 简单无向图的邻接矩阵是一个对角线元素全为“0”的0-1矩阵。

( ) 10.若V 为有向图G 的结点集,则∑∑∈-∈-=Vv Vv v G d v G d )()(。

( )11.π是无理数,并且如果3是无理数,则2也是无理数。

( ) 12.只有6能2整除,6才能被4整除。

( ) 13.用真值表判断下列公式类型1))(r q p p ∨∨→ ( ) 2)q p p 7)7(→→ ( ) 3)r r q ∧→)(7 ( ) 4))77()(p q q p →→→ ( ) 5))77()(q p r p ∧↔∧ ( ) 6))())()((r p r q q p →→→∧→ ( ) 7))()(s r q p ↔↔→ ( ) 14.判断下述命题的真假1))()()(C A B A C B A ⨯=⨯ ( ) 2))()()(C A B A C B A ⨯⨯=⨯⨯ ( ) 3)存在集合A 使得A A A ⨯⊆ ( ) 4))()()(A A P A P A P ⨯=⨯⨯ ( )二、单项选择题1.1、一个连通的无向图G ,如果它的所有结点的度数都是偶数,那么它具有一条 ( ) A 、汉密尔顿回路 B 、欧拉回路 C 、汉密尔顿通路D 、初级回路2、设G 是连通简单平面图,G 中有11个顶点5个面,则G 中的边是( ) A 、10 B 、12 C 、16 D 、143、设i 是虚数,·是复数乘法运算,则G=({}+--i i ,,1,1·)是群,下列是G 的子群是( )A 、({},1·)B 、({},1-·)C 、({},i ·)D 、({},i -·)4、设Z 为整数集,A 为集合,A 的幂集为P (A ),+、-、/为数的加、减、除运算, 为集合的交运算,下列系统中是代数系统的有( )A 、(Z , + , /)B 、(Z , /)C 、(z , -, /)D 、(P (A ), )5、设A=(1,2,3),A 上二元关系R 的关系图如下: R 具有的性质是 ( )A 、自反性B 、对称性C 、传递性D 、反自反性 6、设A=|a,b,c|A 上二元关系R=|〈a,a 〉〈b,b 〉〈a,c 〉|,则关系R 的对称闭包S (R )是( ) A 、R I A B 、R C 、R |〈c,a 〉| D 、R I A 7、设X=|a,b,c|,1X 上恒等关系,要使1X |〈a,b 〉,〈b,c 〉,〈c,a 〉, 〈b,a 〉| R 为X 上的等价关系,R 应取 ( ) A 、|〈c,a 〉, 〈a,c 〉| B 、|〈c,b 〉, 〈b,a 〉| C 、|〈c,a 〉, 〈b,a 〉| D 、|〈a,c 〉, 〈c,b 〉| 8、下列式子正确的是( )A 、Ø∈ØB 、Ø⊆ØC 、|Ø|⊆ ØD 、|Ø|∈Ø9、若P:他聪明:Q:他用功:则“他虽聪明,但不用功”,可符号化为 ( ) A 、PVQ B 、PA|Q C 、P ΓQ D 、PV –Q10、以下命题公式中,为永假式的是 ( ) A 、p →(pVqVr ) B 、(p →Γp )→Γp C 、|(q →p )∧pD 、|(pV Γp) →(p ∧Γp )11、M 未知时,求Q 2的置信区间,应选择统计量为( ) A .)1,0(/~N nQ M x -B .)1(/--n ~t nS M xC .)1,0(~N QMx - D .)1(122--n ~n x Q12、)3)(2)(1()(+++=S S S SS F 不解析点有( )个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)一、单项选择题(每小题2分,共12分) 1. 设四阶行列式bccad c d b b c a d dc b a D =,则=+++41312111A A A A ( ).A.abcdB.0C.2)(abcd D.4)(abcd2. 设(),0ij m n A a Ax ⨯==仅有零解,则 ( )(A) A 的行向量组线性无关; (B) A 的行向量组线性相关; (C) A 的列向量组线性无关; (D) A 的列向量组线性相关;3. 设8.0)(=A P ,8.0)|(=B A P ,7.0)(=B P ,则下列结论正确的是( ).A.事件A 与B 互不相容;B.B A ⊂;C.事件A 与B 互相独立;D.)()()(B P A P B A P +=Y4. 从一副52张的扑克牌中任意抽5张,其中没有K 字牌的概率为( ).A.552548C C B.5248 C.554855C D.5555485. 复数)5sin 5(cos5ππi z --=的三角表示式为( )A .)54sin 54(cos 5ππi +-B .)54sin 54(cos 5ππi -C .)54sin 54(cos 5ππi +D .)54sin 54(cos 5ππi --6. 设C 为正向圆周|z+1|=2,n 为正整数,则积分⎰+-c n i z dz1)(等于( )A .1;B .2πi ;C .0;D .iπ21 二、填空题(每空3分,共18分) 1. 设A 、B 均为n 阶方阵,且3||,2||==B A ,则=-|2|1BA .2. 设向量组()()()1231,1,1,1,2,1,2,3,TTTt α=α=α=则当t = 时,123,,ααα线性相关.3. 甲、乙向同一目标射击,甲、乙分别击中目标概率为0.8, 0.4,则目标被击中的概率为4. 已知()1,()3E X D X =-=,则23(2)E X ⎡⎤-=⎣⎦______.5. 设)(t f 是定义在实数域上的有界函数,且在0=t 处连续,则=⎰+∞∞-dt t f t )()(δ .6. 函数)2)(1(15)(-+-=s s s s F 的Laplace 逆变换为()f t = .三、计算题(每小题10分,共70分)1. 设423110123A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭, 而B 满足关系式2AB A B =+,试求矩阵B .2.当λ为何值时,⎪⎩⎪⎨⎧+=+++=++=+324622432132131λλλx x x x x x x x 无解,有解,并在有解时求出其解.3、设在15只同类型的零件中有两只是次品,在其中取3次,每次任取一只,作不放回抽样,以 X 表示取出次品的只数,求X 的分布律。

4(1)若设随机变量X 的分布律(2)若设随机变量X 的概率密度f (x)=⎪⎩⎪⎨⎧≤≤-<≤其他021210x x x x ,就情形(1)和(2)分别求E(X),D(X).5.已知调和函数 y x y x y x u 2),(22+-=,求函数 (,)v x y ,使函数 ()f z u i v =+ 解析且满足 i i f +-=1)(. . 6. 计算⎰-+=c z z z dzI )2)(1(3的值,其中C 为正向圆周.2,1,≠=r r z 。

7.用拉氏变换解方程组:⎩⎨⎧=='=''-=-'+''-'''.2)0(,1)0()0(,133y y y y y y y(二)一、选择题(每小题2分,共12分)1. 设A 为3阶方阵, 数2=λ, |A | =3, 则|λA | = ( )A .24;B .-24;C .6;D .-6.2.γβα,,均为三维列向量,),,(γβα=A ,γβα,,组成的向量组线性相关,||A 的值( ). A.大于0 B.等于0 C.小于0 D.无法确定3. 设随机变量X 的概率密度为 ⎩⎨⎧≤<+=.,0;10,)(其它x bx a x f 且 83}21{=≤X P ,则有( );.21,21)(;1,21)(;0,1)(;2,0)(========b a D b a C b a B b a A 4. 一射手向目标射击3 次,i A :第i 次击中)3,2,1(=i ,则3次至多2次击中目标表为( ): 321321321321)(;)(;)(;)(A A A D A A A C A A A B A A A A ⋃⋃⋃⋃5. 复数)0(sin )cos 1(πθθθ≤≤++=i z 的辐角为 ( )A . θB .2θ C .θπ- D .θ26. 设⎩⎨⎧>≤=111)(t t t f 则其傅氏变换为 ( ) A .ωωsin 2 B .ωω2sin C .⎩⎨⎧>≤11sin ωωωω D .不存在 二、填空题(每空格2分,共12分)1. 方程组⎩⎨⎧=+=++037032321x x x x x 的基础解系中向量的个数为2. 设⎪⎪⎭⎫ ⎝⎛=8453A ,则=-1A 3. .设某种产品的次品率为0.01,现从产品中任意抽取4个,则有1个次品的概率是_ 4. 随机变量X 与Y 相互独立,2)()(,)()(σμ====Y D X D Y E X E ,则2)(Y X E -=5. 设C 为正向圆周|z -i|=31,则积分⎰c zdz i)-z(z e π=_____________。

6. 1的拉氏变换为______________________。

三、计算题或证明(每小题10分,共70分)1. 已知平面上三条不同直线的方程分别为.032 :,032 :,032 :321=++=++=++b ay cx l a cy bx l c by ax l2. 设四维向量组11100⎛⎫ ⎪- ⎪α= ⎪ ⎪⎝⎭,21211-⎛⎫ ⎪ ⎪α= ⎪ ⎪-⎝⎭,30111⎛⎫ ⎪ ⎪α= ⎪ ⎪-⎝⎭,41321-⎛⎫ ⎪ ⎪α= ⎪ ⎪⎝⎭,52645-⎛⎫ ⎪ ⎪α= ⎪ ⎪⎝⎭,求该向量组的秩及一个极大线性无关组,并把其余向量用该极大线性无关组线性表示3. 据统计男性有5%是患色盲的,女性有0.25%的是患色盲的,今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?4. 设事件A 、B 满足条件41)(=A P ,21)|()|(==B A P A B P . 定义随机变量X 、Y 如下:⎩⎨⎧=,A A X 生不发 若,0 发生, 若,1 ⎩⎨⎧=,B B Y 生不发 若,0 发生,若,1 求二维随机变量(X ,Y )的联合分布律.5. 求22y -2x y x u +=的共轭调和函数v(x,y),并使v(0,0)=1;6. 求指数衰减函数⎩⎨⎧≥<=-000)(t et t f t β的Fourier 变换及其积分表达式。

7.用拉氏变换求解微分方程⎩⎨⎧-='='=+-''-''===++''+''1)0()0(sin )()()()(20)0()0(0)()()()(y x tt y t x t y t x y x t y t x t y t x试证:这三条直线交于一点的充分必要条件为c b a ++=0(一) 答案一、单项选择题(每小题2分,共12分)1. B2.C3. C4. A5.C6. C 二、填空题(每空3分,共18分) 1.123-⋅n ; 2. 2 ; 3. 0.88; 4. 6; 5.)0(f ; 6.t t e e 232+-三、计算题或证明(每小题10分,共70分) 1.解:2AB A B =+,(2)A E B A -=,1(2)B A E A -=-,2232110121A E ⎛⎫⎪-=- ⎪ ⎪-⎝⎭,223423110110121123⎛⎫⎪- ⎪ ⎪--⎝⎭1003860102960012129--⎛⎫ ⎪→-- ⎪ ⎪-⎝⎭, 所以1(2)B A E A -=-3862962129--⎛⎫ ⎪=--⎪ ⎪-⎝⎭. 2. 解:()101|412261423AA b λ⎛⎫ ⎪==λ+ ⎪ ⎪λ+⎝⎭%10101223001λ⎛⎫ ⎪→--λ ⎪ ⎪-λ⎝⎭, 当1≠λ时,()3,()2r Ar A ==%,线性方程组无解;当1=λ时2)()~(==A A r r ,方程组有无穷多解,且其通解为()()k k TT,1,2,10,1,1-+-=x 为任意常数3. 设X 为“取出的次品数”,则31221132********15151522121(0),(1),(2)353535C C C C C P X P X P X C C C ========= 4 (1) E (X)=0.5, D(X)=1.875 (2 ) E (X)=1, D(X)=1/6. 5. 1、(1) 由yvy x x u ∂∂=+=∂∂22,有)(2d )22(2x y y x y y x vϕ++=+=⎰,由)(222x y xv x y y u ϕ'--=∂∂-=+-=∂∂,有 x x 2)(-='ϕ, ⇒ c x x x x +-=-=⎰2d )2()(ϕ,即得 c x y xy y x v +-+=222),(,)2(2)(2222c x y y x i y x y x z f +-+++-=;(2) 由 i i f +-=1)( ⇒ 0=c ,6.(1) 当10<<r 时,设)2)(1(1)(-+=z z z f ,则)(z f 在C 内解析,0=z 在C 内,43])2)(1(1[!22)2)(1(103iz z i z dz z z I z c ππ-=''-+=⋅-+==⎰ (2)当21<<r时,作互不相交,互不包含的圆周321,,C C C 分别包围点0,-1,2,32)2)(1()2)(1(2133i z z z dzz z z dz I C C π=-++-+=⎰⎰(3)当r <2时,作互不相交,互不包含的圆周321,,C C C 分别包围点0,-1,2,12)2)(1()2)(1()2)(1(321333i z z z dzz z z dz z z z dz I C C C π=-++-++-+=⎰⎰⎰7. 在方程两边取拉氏变换,并用初始条件得 ))0()0()((3)0()0()0()(223y Sy S Y S y y S y S S Y S '---''-'--S S Y y S SY 1)())0()((3-=--+)3()33(211)()133(223-++-+-=-+-S S S SS Y S S S)1452(123-+-=S S S S 2)1)(12(1--=S S S 即111)1(12)(-+=--=S S S S S S Y故1)]([)(1+==-t e S Y t y L(二) 答案一、选择题(每小题2分,共12分)1. A2. B3. D4. C5. B6. A 二、填空题(每空格2分,共12分)1. 1;,2. ⎪⎪⎪⎪⎭⎫⎝⎛--431452, 3. 0.039 4.22σ ,5. π2-; 6、)0(Re 1>s s三、计算题或证明(每小题10分,共70分)1. 解:证明:必要性由123,,l l l 交于一点得方程组有非零解故231()()230()10231a b cb c R A R A b c a a b c c a c a ba b=⇒=⇒++=所以0a b c ++=充分性:0()a b c b a c ++=⇒=-+2222222()2[()][()]02a b ac b ac a c a c a c b c=-=-+=-++-≠。

相关文档
最新文档