工程数学基础第一次作业第一次答案

合集下载

工程数学基础第一次作业第一次答案

工程数学基础第一次作业第一次答案

⼯程数学基础第⼀次作业第⼀次答案《⼯程数学基础(Ⅰ)》第⼀次作业答案你的得分:100.0完成⽇期:2013年09⽉03⽇20点40分说明:每道⼩题括号⾥的答案是您最⾼分那次所选的答案,标准答案将在本次作业结束(即2013年09⽉12⽇)后显⽰在题⽬旁边。

⼀、单项选择题。

本⼤题共20个⼩题,每⼩题4.0 分,共80.0分。

在每⼩题给出的选项中,只有⼀项是符合题⽬要求的。

1.( D )A.(-6, 2, -4)B.(6, 2, 4)TC.(2, 6, 4)D.(3, 6, 4)T2.( D )A.B.C.D.3.设A为3x2矩阵,B为2x4矩阵,C为4x2矩阵,则可以进⾏的运算是 ( )( B )A.AC T BB.AC T B TC.ACB TD.ACB4.设A是可逆矩阵,且A+AB=I,则A-1 等于 ( )( C )A.BB.1+ BC.I + BD.(I-AB)-15. ( D )A.|A+B|=| A |+|B|B. | A B|=n| A||B|C. |kA|=k|A|D.|-kA|=(-k)n|A|6. ( D )A. 6B.-6C.8D.-87.设A B均为n阶⽅阵,则成⽴的等式是( )( B )A.|A+B|=| A |+|B|B.| A B|=| BA|C.(AB)T= A T B TD.AB= BA8.设A,B,C均为n阶⽅阵,下列各式中不⼀定成⽴的是 ( )( A )A.A(BC)=(AC)BB.(A+B)+C=A+(C+B)C.(A+B)C=AC+BCD.A(BC)=(AB)C9.设α1,α2,α3是3阶⽅阵A的列向量组,且齐次线性⽅程组Ax=b有唯⼀解,则 ( )( B )A.α1可由α2,α3线性表出B.α2可由α1,α3线性表出C.α3可由α1,α2线性表出D.A,B,C都不成⽴10.设向量组A是向量组B的线性⽆关的部分向量组,则 ( )( D )A.向量组A是B的极⼤线性⽆关组B.向量组A与B的秩相等C.当A中向量均可由B线性表出时,向量组A,B等价D.当B中向量均可由A线性表出时,向量组A,B等价11.设n阶⽅阵A的⾏列式|A|=0则A中( )( C )A.必有⼀列元素全为0B.必有两列元素对应成⽐例C.必有⼀列向量是其余向量线性表⽰D.任⼀向量是其余向量的线性组合12. ( A )A.B.C.D.13. ( A )A.B.C.D.14. ( C )A.0B.-1C. 2D.-215.( B )A.B.C.D.16. ( C )A.B.C.D.17.( B )A.有唯⼀解B.⽆解C.只有0解D.有⽆穷多解18.( A)A. 1B. 2C. 3D. 419.( D )A.B.C.D.20.( D )A.B.C.D.三、判断题。

国开电大 高等数学基础 形成性作业1-4答案

国开电大 高等数学基础 形成性作业1-4答案

高等数学基础形考作业1:第1章 函数 第2章 极限与连续(一) 单项选择题⒈下列各函数对中,(C )中的两个函数相等. A.2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C.3ln )(xx f =,x x g ln 3)(= D.1)(+=x x f ,11)(2--=x x x g ⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B.x 轴C. y 轴D. x y =⒊下列函数中为奇函数是(B ). A.)1ln(2x y += B. x x y cos =C.2x x a a y -+=D.)1ln(x y +=⒋下列函数中为基本初等函数是(C ). A.1+=x y B. x y -=C.2xy = D.⎩⎨⎧≥<-=0,10,1x x y ⒌下列极限存计算不正确的是(D ).A.12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C.0sin lim=∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量(C )是无穷小量. A. x x sin B. x 1C.xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。

A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C.)()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是()+∞,3.⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→xx x)211(lim 21e . ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=ke .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是0=x . ⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为时的无穷小量0x x →。

工程数学 (第一次)作业

工程数学  (第一次)作业

工程数学作业(第一次)(满分100分)第2章 矩阵(一)单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=( ).答案:DA. 4B. -4C. 6D. -6解:1231231231122331231231231231232323232320326a a a a a a a a a ab a b a b a a a b b bc c c c c c c c c ---=-=⋅-⋅=- ⒉若000100002001001a a =,则a =( ).答案:A A. 12 B. -1 C. -12 D. 1解:413100010000001(1)020(1)21,020*******100aa a a a a++=-=--===⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=( ).答案:CA. 1B. 7C. 10D. 8解:1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥=⎥⎦⎤⎢⎣⎡--10818226,1023=C ⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是(B ).答案:BA. A BAB +=+---111 B. ()AB BA --=11C. ()A B A B +=+---111 D. ()AB A B ---=111解:111)(,---==∴=BA ABAB BA AB⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ). A. A B A B +=+ B. AB n A B = C. kA k A = D. -=-kA k A n ()解: 因为 A B ,均为n 阶方阵,所以 -=-kA k A n ().⒍下列结论正确的是( ).答案:AA. 若A 是正交矩阵,则A -1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵D. 若A B ,均为n 阶非零矩阵,则AB ≠0注意:(1)两个对称阵的和是对称阵,但乘积不一定是对称阵,所以B 错;(2)两个非零矩阵的乘积可能是零矩阵,所以C,D 错。

土木工程施工第一次作业题及答案.doc

土木工程施工第一次作业题及答案.doc

第1次作业一、单项选择题(本大题共100分,共40小题,每小题2.5分)1.建筑基础砌筑中宜采用()。

A.水泥砂浆B.石灰砂浆C.混合砂浆D.粘土浆2.根据当地的历史气象资料,室外日平均气温连续()天稳定低于5° C时,进入冬期施工。

A.5天B.10 天C.15 天D.20 天3.现浇混凝土结构施工现场粗钢筋连接一般采用()。

A.机械连接B.电孤焊C.绑扎连接D.点焊4.施工时前进向上、强制切土的挖土机是()。

A.正铲挖土机B.反铲挖土机C.抓铲挖土机D.拉铲挖土机5.中级抹灰由()组成。

A.一层底层、一层中层、一层面层B.一层底层、数层中层、一层面层C.一层底层、一层面层D.—层底层、—层中层6.预制桩沉桩施工中,无振动、噪声、空气污染的方法是()法。

A.锤击沉桩B.振动沉桩C.静力压桩D.水冲7.为了保证砌体接槎部位的砂浆饱满,一般应留()。

A.斜槎B.直槎C.马牙槎D.直槎,但应加拉结筋8.当柱平放起吊抗弯强度不足时,柱的绑扎起吊方法应采用()。

A.斜吊法B.直吊法C.旋转法D.滑行法9.土进行工程分类的依据是土的()。

A.粒经大小和颗粒形状B.风化程度C.含水量D.开挖难易程度10.土方压实时,夯实适用于()。

A.大面积土方B.小面积土方C.非粘性± D.六类土11.不同透水层的土层分层填筑基坑时,应()。

A.将透水性小的土填在上层B.将透水性大的土填在上层C.将透水性小的土填在中层D.将透水性小的土填在下层12.先张法预应力混凝土施工时,对于数量较少的钢丝可采用()方法放张。

A.剪切、锯割B.预热放张C.千斤顶逐根循环D.砂箱整体放张13.关于施工缝的具体留置位置,以下说法不正确的是()。

A.柱宜留置在基础的顶面、梁或吊车梁牛腿的下面;B.单向板可留置在平行于板的短边的任何位置;C.双向受力楼板、大体积混凝土结构等,施工缝的位置应按设计要求留置;D.有主次梁的楼板宜顺着主梁方向浇筑,施工缝应留置在主梁跨度的中间1/3 范围内。

(完整版)2019年电大高数基础形考1-4答案

(完整版)2019年电大高数基础形考1-4答案

2019年电大高数基础形考1-4答案《高等数学基础》作业一第1章 函数第2章 极限与连续(一) 单项选择题⒈下列各函数对中,(C )中的两个函数相等.A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y = ⒊下列函数中为奇函数是(B ).A. )1ln(2x y += B. x x y cos =C. 2xx a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不正确的是(D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim =∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量(C )是无穷小量.A. x x sinB. x 1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。

A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是 {}|3x x > . ⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→xx x)211(lim . 1122211lim(1)lim(1)22x x x x e x x⨯→∞→∞+=+= ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 0x = .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为 0x x →时的无穷小量 .(二) 计算题 ⒈设函数⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -.解:()22f -=-,()00f =,()11f e e ==⒉求函数21lgx y x-=的定义域. 解:21lg x y x -=有意义,要求21x x x -⎧>⎪⎪⎨⎪≠⎪⎩解得1020x x x ⎧⎪⎪><⎨⎪≠⎪⎩或则定义域为1|02x x x ⎧⎫<>⎨⎬⎩⎭或⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解:DA RO h EB C设梯形ABCD 即为题中要求的梯形,设高为h ,即OE=h ,下底CD =2R 直角三角形AOE 中,利用勾股定理得AE =则上底=2AE =故((222hS R R h R =+=+ ⒋求xxx 2sin 3sin lim 0→.解:000sin3sin33sin3333lim lim lim sin 2sin 2sin 22222x x x x xxx x x x x x xx x→→→⨯==⨯⨯=133122⨯=⒌求)1sin(1lim 21+--→x x x .解:21111(1)(1)111limlim lim 2sin(1)sin(1)sin(1)11x x x x x x x x x x x →-→-→---+---====-++++ ⒍求x xx 3tan lim 0→.解:000tan3sin31sin311lim lim lim 3133cos33cos31x x x x x x x x x x x →→→==⨯⨯=⨯⨯=⒎求xx x sin11lim 20-+→.解:20001lim sin x x x x→→→-==()0lim0sin 1111)x xxx→===+⨯⒏求xx x x )31(lim +-∞→. 解:1143331111(1)[(1)]1lim()lim()lim lim 33311(1)[(1)]3x x x x x x x x x x x e x x x e x e x x x----→∞→∞→∞→∞--+--=====++++ ⒐求4586lim 224+-+-→x x x x x .解:()()()()2244442682422lim lim lim 54411413x x x x x x x x x x x x x →→→---+--====-+----⒑设函数⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f讨论)(x f 的连续性,并写出其连续区间. 解:分别对分段点1,1x x =-=处讨论连续性 (1)()()()1111lim lim 1lim lim 1110x x x x f x x f x x →-+→-+→--→--==-=+=-+=所以()()11lim lim x x f x f x →-+→--≠,即()f x 在1x =-处不连续 (2)()()()()()221111lim lim 2121lim lim 111x x x x f x x f x x f →+→+→-→-=-=-====所以()()()11lim lim 1x x f x f x f →+→-==即()f x 在1x =处连续由(1)(2)得()f x 在除点1x =-外均连续 故()f x 的连续区间为()(),11,-∞--+∞《高等数学基础》作业二第3章 导数与微分(一)单项选择题⒈设0)0(=f 且极限x x f x )(lim0→存在,则=→xx f x )(lim 0(C ).A. )0(fB. )0(f 'C. )(x f 'D. 0cvx⒉设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim000(D ). A. )(20x f '- B. )(0x f ' C. )(20x f ' D. )(0x f '-⒊设xx f e )(=,则=∆-∆+→∆xf x f x )1()1(lim 0(A ).A. eB. e 2C. e 21D. e 41⒋设)99()2)(1()(---=x x x x x f ,则=')0(f (D ).A. 99B. 99-C. !99D. !99- ⒌下列结论中正确的是( C ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.D. 若)(x f 在点0x 有极限,则在点0x 连续.(二)填空题⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x xx x f ,则=')0(f 0 . ⒉设x x x f e 5e )e (2+=,则=x x f d )(ln d xx x 5ln 2+. ⒊曲线1)(+=x x f 在)2,1(处的切线斜率是21=k⒋曲线x x f sin )(=在)1,4π(处的切线方程是)41(2222π-==x y ⒌设x x y 2=,则='y )ln 1(22x x x+⒍设x x y ln =,则=''y x1(三)计算题⒈求下列函数的导数y ':⑴xx x y e )3(+= x x e x e x y 212323)3(++='⑵x x x y ln cot 2+= x x x x y ln 2csc 2++-='⑶x x y ln 2= x xx x y 2ln ln 2+='⑷32cos x x y x += 4)2(cos 3)2ln 2sin (xx x x y x x +-+-=' ⑸x x x y sin ln 2-= xx x x x x x y 22sin cos )(ln )21(sin ---=' ⑹x x x y ln sin 4-= x x xx x y ln cos sin 43--='⑺xx x y 3sin 2+= x x x x x x x y 2233ln 3)(sin )2(cos 3+-+=' ⑻x x y x ln tan e += xx e x e y x x1cos tan 2++='⒉求下列函数的导数y ':⑴21ex y -=2112x xey x -='-⑵3cos ln x y =32233tan 33cos sin x x x xx y -=-=' ⑶x x x y =87x y = 8187-='x y⑷3x x y +=)211()(31213221--++='x x x y⑸xy e cos 2=)2sin(x x e e y -='⑹2ecos x y =22sin 2x x exe y -='⑺nx x y ncos sin =)sin(sin cos cos sin 1nx x n nx x x n y n n -='-⑻2sin 5x y =2sin 25cos 5ln 2x x x y ='⑼xy 2sin e=xxey 2sin 2sin ='⑽22ex x x y +=222)ln 2(x x xex x x x y ++='⑾xxxy e e e+=xe x x ee e x e xe x y x x++=')ln (⒊在下列方程中,是由方程确定的函数,求:⑴yx y 2ecos =y e x y x y y '=-'22sin cosye x xy y 22cos sin -=' ⑵x y y ln cos =xy x y y y 1.cos ln .sin +'=')ln sin 1(cos x y x yy +='⑶yx y x 2sin 2=222sin 2.cos 2y y x yx y y y x '-=+' y yyxy x y x y sin 22)cos 2(222-=+'22cos 2sin 22x y xy yy xy y +-='⑷y x y ln +=1+'='y y y1-='y y y⑸2e ln y x y =+ y y y e xy '='+21)2(1ye y x y -='⑹y y xsin e 12=+x x e y y y e y y .sin .cos 2+'='ye y ye y xx cos 2sin -='⑺3e e y x y -=y y e y e x y '-='2323y ee y y x+='⑻yx y 25+=2ln 25ln 5y x y y '+='2ln 215ln 5y x y -='⒋求下列函数的微分y d : ⑴x x y csc cot +=dx x xx dy )sin cos cos 1(22--= ⑵x x y sin ln =dx x x x x x dy 2sin cos ln sin 1-= ⑶x xy +-=11arcsindx x x x dx x x x xx dy 2222)1(11)1()1()1()11(11++-=+--+-+--=⑷311xxy +-= 两边对数得:[])1ln()1ln(31ln x x y +--=)1111(31x x y y +---=' )1111(11313xx x x y ++-+--='⑸xy e sin 2=dx e e dx e e e dy x x x x x)2sin(sin 23==⑹3e tan x y =xdx e x dx x e dy x x 2222sec 33sec 33==⒌求下列函数的二阶导数: ⑴x x y ln =x y ln 1=='xy 1=''⑵x x y sin =x x x y sin cos +=' x x x y cos 2sin +-=''⑶x y arctan =211x y +='22)1(2x xy +-='' ⑷23x y =3ln 322x x y =' 2233ln 23ln 3422x x x y ⋅+=''(四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数.证:因为f(x)是奇函数 所以)()(x f x f -=-两边导数得:)()()()1)((x f x f x f x f =-'⇒'-=--' 所以)(x f '是偶函数。

川大《工程数学基础(Ⅰ)2342》19春在线作业1参考答案

川大《工程数学基础(Ⅰ)2342》19春在线作业1参考答案
答案:D
7.设A,B,C均为n阶方阵,下列各式中不一定成立的是
A.
B.
C.
D.
答案:A
8.
A.4
B.-4
C.-6
D.6
答案:C
9.
A.1
B.2
C.3
D.4
答案:A
10.设A,B为n阶方阵,且r(A)= r(B),则
A.r(A-B)=0
B.r(A+B)=2 r(A)
C.r(A,B)=2 r(A)
D.
答案:D
其次,笔者认为对婚姻无效与被撤销后的财产分割应方式当加以丰富。我国现在的无效婚姻与可撤销婚姻制度的法律后果中对财产的规定非常单一,忽略了当事人在该婚姻因违法导致无效过程中的主观意志和责任程度,采取各打五十大板的做法不利于发挥法律惩恶扬善的功能。笔者认为在婚姻被撤销或被确认无效后的财产分配中应当参虑双方当事人的主观意志和责任程度,以此作出与之相匹配的分割方案。换句话说主要从“是否知道存在婚姻无效和可撤销的法定事由”和“对法定事由是否有过错”这两个维度来参虑财产的划分。
第一种情况,对于双方当事人都是既知道有违反婚姻生效的法定事由,又对此事由有过错的,适用现行的规定,即双方协商,协商不成的,由法院裁判。第二种情况,对于仅知道有违反婚姻生效事由但没有过错的当事人,在财产分配过程中应当少分,而不论是否属于弱国一方。因为这种情形下,当事人对社会公共利益和法律秩序的挑衅太严重,应当予以更加不利的法律后果。第三种情况,对于不知道存在违反婚姻生效法定事由但是有过错的当事人,境如当事人婚前不知自己患有禁止结婚的疾病而后导致婚姻可撤销,可以适用离婚时财产分割的相关规定。第四种情况,对于既不知道存在违反婚姻生效要件存在,对此又没有过错责任的当事人应当适用离婚时的财产分割规定。因为以上情形中,当事人对社会公益和法律秩序的破坏很小,甚至是无辜的,应当适用更为有利的法律制度。但是需要注意的时,当事人不知的状态需要一直持续到婚姻被确认无效或者被撤销,否者将构化为第一种或者第二种情况。最后,对于子女抚养在题一律适用与离婚时一样的对子女保护的相关规定。

工程数学基础2019级答案

工程数学基础2019级答案

2019–2020学年第二学期《工程数学基础》试卷标准答案及评分标准考试时间:2020-9-12一、判断题1.×2.×3.×4.5.×6.7.8.×9.×10. 11.×12. 13.×14. 15.×16. 17. 18.×19.×20.×二、填空题1.A c ∩B c 2.−3 3.Y 4.0 5.b−a 6.07.λ−18.09.110.2+√211.0cos x3−x2sin x3e x2x1e x2012.213.−2/5<α<014.16/4515.h2[f(a)+2∑n−1i=1f(x i)+f(b)]16.f(4)(ξ)4!x2(x−2)2,ξ∈(0,2)17.618.2126x+21319.15(b5−a5)20.(0,0.278]三、解:¯A=22−1141−10−14−2−1−8−→4−2−1−81−10−122−114(1分)−→4−2−1−80−1214103−1218−→4−2−1−803−12180−12141−→4−2−1−803−121800164(3分)回代解得x3=24,x2=10,x1=9,即x=(9,10,24)T.(4分)Jacobi迭代格式为x(k+1)1=14·(−2x(k)2−2x(k)3+1),x(k+1)2=12·(−x(k)1−x(k)3+3),x(k+1)3=12·(−x(k)1−x(k)2+7),k=0,1,···.(6分)Jacobi迭代矩阵为M=D−1(L+U)=141212·0−2−2−10−1−1−10=0−12−12−120−12−12−12,由|λE−M|=λ3−34+14=(λ+1)(λ−12)2=0解得M的特征值为λ1,2=12,λ3=−1,所以ρ(M)=1,从而Jocobi迭代发散.(8分)四、解:构造差商表如下(3分)表1:差商表x y 一阶差商二阶差商三阶差商012−3−23−4−1135234315三次Newton 插值多项式N 3(x )=1−2(x −0)+13(x −0)(x −2)+15(x −0)(x −2)(x −3)=15x 3−23x 2−2215x +1,(4分)Newton 插值公式的余项R 3(x )=f [0,2,3,5,x ]x (x −2)(x −3)(x −5).(6分)五、解:(1)λE −A =λ020λ−10−10λ−3−→ −10λ−30λ−10λ02 −→ −10λ−30λ−10002+(λ−3)·λ−→ 10λ−30λ−1000λ2−3λ+2,(4分)所以A 的最小多项式m (λ)=λ2−3λ+2=(λ−1)(λ−2),且J =200010001,C = 10000−2013.(7分)(2)由A 的最小多项式为φ(λ)=(λ−1)(λ−2),设e tA =a 0(t )+a 1(t )A =T (tA ),(2分)因为T (tA )与e tA 在σ(A )={1,2}上的值相同,故有a 0(t )+a 1(t )=e t ,a 0(t )+2a 1(t )=e 2t ,(4分)解得a 1(t )=e 2t −e t ,a 0(t )=2e t −e 2t ,所以e tA =(2e t −e 2t )E +(e 2t −e t )A=2e t −e 2t 02e t −2e 2t 0e t 0e 2t −e t2e 2t −e t(6分)所以初值问题的解e tA= 2e t −e 2t 02e t −2e 2t 0e t 0e 2t −e t 02e 2t −e t · 101= 4e t −3e 2t 03e 2t −2e t.(8分)六、解:做变换x =12(1+t ),t ∈[−1,1],故t =2x −1.代入得f (x )=14(1+t )2 φ(t ).(2分)对φ(t )在[−1,1]上用Legendre 多项式做最佳平方逼近,设其为¯S ∗1(t )=a 0P 0(t )+a 1P 1(t )则a 0=12∫1−114(t +1)2dt =13,a 1=32∫1−114(t +1)2·tdt =12,(4分)因此有¯S ∗1(t )=13+12t,S ∗1(x )=13+12(2x −1)=x −16.(6分)平方误差为δ2=12∥φ(t )−¯S ∗1(t )∥22=12∫11142(t +1)4dt −121∑k =022k +1a 2k =12(25−2·132−23·122)=1180≈5.56×10−3.(8分)七、解:S 22=4T 23−T 224−1,从而有1=T 23=(3S 22+T 22)/4≈0.401812.其它的有2=S 21=4T 22−T 214−1≈0.400432,3=C 21=42S 22−S 2142−1≈0.400053.八、解:令z =y ′,初值问题化为y ′=z,z ′=(1+x 2)y +1,(0<x ≤1),y (0)=1,z (0)=3.(2分)解此问题的标准Runge-Kutta 格式为y n +1=y n +h 6(k 1+2k 2+2k 3+k 4),z n +1=z n +h 6(l 1+2l 2+2l 3+l 4),k 1=z n ,l 1=(1+x 2n )y n +1,k 2=z n +h 2l 1,l 2=[1+(x n +h 2)2](y n +h2k 1)+1,k 3=z n +h 2l 2,l 2=[1+(x n +h 2)2](y n +h 2k 2)+1,k 4=z n +hl 3,l 4=[1+(x n +h )2](y n +hk 3)+1,y 0=1,z 0=3,(n =0,1,···,N −1)(6分)九、证明:(1)由于(x n )和(y n )都是X 中的Cauchy 序列,则对∀ε>0,∃N 1,N 2∈N ,使得当m,n >N 1时,∥x m −x n ∥<ε;当m,n >N 2时,∥y m −y n ∥<ε.令N =max {N 1,N 2},则当m,n >N 时,有|∥x m −y m ∥−∥x n −y n ∥|≤∥(x m −y m )−(x n −y n )∥≤∥x m −y m ∥+∥x n −y n ∥<ε2+ε2=ε这表明(∥x n −y n ∥)是R 中Cauchy 的序列,由R 的完备性知,数列(∥x n −y n ∥)收敛.(5分)(2)由A 为Hermite 正定矩阵知,存在n 阶酉矩阵U 使得U H AU =diag (λ1,···,λn ).由于A为正定矩阵,因此λi>0,i=1,···,n.令P1=U·diag(1/√λ1, (1)√λn),则P1非奇异,且P H1AP1=E.(3分)同时,显然P H1BP1是Hermite矩阵,因此存在n阶酉矩阵P2,使得P H 2(P H1BP1)P2=diag(µ1,µ2,···,µn),这里µ1,µ2,···,µn为Hermite矩阵P H1BP1的特征值,故为实数.(4分)令P=P1P2,则P非奇异,且P H AP=P H2(P H1AP1)P2=E,P H BP=P H2(P H1BP1)P2=diag(µ1,µ2,···,µn).(5分)。

工程数学基础(新版教材)习题解答

工程数学基础(新版教材)习题解答

, 即
E11
a
0c
0 T,
E12
a c
b 0 d 0
1 0
0 0
a
c
0E11
aE12
0E21
cE22
, 即
E12
0
a
0 c T,
E21
a c
b 0 d 1
0 0
b d
0
0
bE11
0E12
dE21
0E22
, 即
E21
b
0d
0 T,
3
E22
a c
b 0 d 0
0 1
d1() d2 () d3 () 1 , d 4 ( ) ( 1)4 .
00 1
2. 解 (1)∵ det A() ( 2)4 ,∴ D4 () ( 2)4 ,又∵ 0 1
1 2
2 1 0 , 0
∴ D3 () 1 ,从而 D1() D2 () 1 .于是不变因子为 d1() d 2 () d3 () 1 ,
3.满; 4. sup E 2 , inf E 3; 5. 0 ; 6.0; 7. n ; 8.Y .
B
1. 证 y f (A B) , x A B 使 得 y f (x) . 由 x A B , 得 x A , 且 x B 故 y f (x) f (A) 且 y f (B) ,即 y f (A) f (B) ,因此 f (A B) f (A) f (B) .
1
∴ A~ J i .
i
3 1 0 0 1 3 0 0
(3)∵ E A
4 7
1 0
0
1
1 2 1 1,2 1
4 7
0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《工程数学基础(Ⅰ)》第一次作业答案
你的得分:100.0
完成日期:2013年09月03日20点40分
说明:每道小题括号里的答案是您最高分那次所选的答案,标准答案将在本次作业结束(即2013年09月12日)后显示在题目旁边。

一、单项选择题。

本大题共20个小题,每小题4.0 分,共80.0分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.( D )
A.(-6, 2, -4)
B.(6, 2, 4)T
C.(2, 6, 4)
D.(3, 6, 4)T
2.( D )
A.
B.
C.
D.
3.设A为3x2矩阵,B为2x4矩阵,C为4x2矩阵,则可以进行的运算是 ( )
( B )
A.AC T B
B.AC T B T
C.ACB T
D.ACB
4.设A是可逆矩阵,且A+AB=I,则A-1 等于 ( )( C )
A.B
B.1+ B
C.I + B
D.(I-AB)-1
5. ( D )
A.|A+B|=| A |+|B|
B. | A B|=n| A||B|
C. |kA|=k|A|
D.|-kA|=(-k)n|A|
6. ( D )
A. 6
B.-6
C.8
D.-8
7.设A B均为n阶方阵,则成立的等式是( )( B )
A.|A+B|=| A |+|B|
B.| A B|=| BA|
C.(AB)T= A T B T
D.AB= BA
8.设A,B,C均为n阶方阵,下列各式中不一定成立的是 ( )( A )
A.A(BC)=(AC)B
B.(A+B)+C=A+(C+B)
C.(A+B)C=AC+BC
D.A(BC)=(AB)C
9.设α1,α2,α3是3阶方阵A的列向量组,且齐次线性方程组Ax=b有唯一解,
则 ( )( B )
A.α1可由α2,α3线性表出
B.α2可由α1,α3线性表出
C.α3可由α1,α2线性表出
D.A,B,C都不成立
10.设向量组A是向量组B的线性无关的部分向量组,则 ( )( D )
A.向量组A是B的极大线性无关组
B.向量组A与B的秩相等
C.当A中向量均可由B线性表出时,向量组A,B等价
D.当B中向量均可由A线性表出时,向量组A,B等价
11.设n阶方阵A的行列式|A|=0则A中( )( C )
A.必有一列元素全为0
B.必有两列元素对应成比例
C.必有一列向量是其余向量线性表示
D.任一向量是其余向量的线性组合
12. ( A )
A.
B.
C.
D.
13. ( A )
A.
B.
C.
D.
14. ( C )
A.0
B.-1
C. 2
D.-2
15.( B )
A.
B.
C.
D.
16.
( C )
A.
B.
C.
D.
17.( B )
A.有唯一解
B.无解
C.只有0解
D.有无穷多解
18.
( A)
A. 1
B. 2
C. 3
D. 4
19.
( D )
A.
B.
C.
D.
20.
( D )
A.
B.
C.
D.
三、判断题。

本大题共5个小题,每小题4.0 分,共20.0分。

1.设4阶行列式D的第i行第j列的元素为a ij,则D的展开式中, a12a23a31a44符号
为负
(错误)
2.设A,B,C,D都是n阶方阵,且ABCD=E,则一定有CDAB=E
(正确)
3.
(错误)
4.若α1,α2,α3,α4都是3维向量,则α1,α2,α3,α4必线性相关
(正确)
5.若A是6×4矩阵,则齐次线性方程组Ax=0必有非零解
(错误)。

相关文档
最新文档