工程数学试卷及标准答案

合集下载

大学工程数学考试题及答案

大学工程数学考试题及答案

大学工程数学考试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是微积分的基本定理?A. 积分中值定理B. 洛必达法则C. 牛顿-莱布尼茨公式D. 泰勒级数展开答案:C2. 在概率论中,随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)等于多少?A. 2B. 3C. 4D. 5答案:A3. 线性代数中,一个矩阵A可逆的充分必要条件是什么?A. 行列式非零B. 秩等于A的阶数C. A的所有特征值非零D. 所有选项都是答案:D4. 在复数域中,下列哪个表达式表示复数的共轭?A. z + z*B. z - z*C. |z|^2D. z * z*答案:B5. 傅里叶级数在工程数学中的应用之一是?A. 信号处理B. 量子力学C. 统计物理D. 所有选项都是答案:A二、填空题(每题3分,共15分)6. 函数f(x) = sin(x)的一阶导数是_________。

答案:cos(x)7. 矩阵的特征值是_________。

答案:λ8. 拉普拉斯变换的逆变换通常使用_________。

答案:拉普拉斯逆变换9. 随机变量X和Y相互独立,且P(X=x) = 2x,P(Y=y) = 3y,则P(X+Y=4)等于_________。

答案:1/410. 曲线y = x^2在点(1,1)处的切线斜率是_________。

答案:2三、解答题(共75分)11. (15分)证明函数f(x) = e^x在实数域上是单调递增的。

答案:由于f'(x) = e^x > 0对于所有实数x,因此f(x)在实数域上是单调递增的。

12. (20分)解线性方程组:\[\begin{align*}x + 2y &= 5 \\3x - y &= 4\end{align*}\]答案:使用高斯消元法或克拉默法则,解得 \( x = 2, y = 1.5 \)。

13. (20分)计算下列定积分:\[\int_{0}^{1} x^2 dx\]答案:使用基本积分公式,得到 \( \frac{1}{3}x^3 \) 在0到1的积分为 \( \frac{1}{3} \)。

本科工程数学试题及答案

本科工程数学试题及答案

本科工程数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是微积分基本定理的一个表述?A. 导数的存在性B. 积分的可加性C. 牛顿-莱布尼茨公式D. 函数的连续性答案:C2. 在复数域中,以下哪个表达式表示复数的模?A. |z|B. z^2C. Re(z)D. Im(z)答案:A3. 线性代数中,一个矩阵A是可逆的,当且仅当:A. A的行列式不为零B. A的主对角线元素都不为零C. A的所有元素都不为零D. A的秩等于A的阶数答案:D4. 以下哪个函数是周期函数?A. f(x) = x^2B. f(x) = sin(x)C. f(x) = e^xD. f(x) = ln(x)答案:B5. 多元函数在某点连续的充分必要条件是:A. 该点的所有偏导数存在B. 该点的所有偏导数连续C. 该点的函数值由极限唯一确定D. 该点的函数值由路径无关答案:C二、填空题(每题3分,共15分)6. 如果函数f(x)在点x=a处可导,那么f'(a)等于______。

答案:函数在点x=a的导数7. 微分方程dy/dx = x^2 + y^2的通解是______。

答案:y^2 + x^2 = C(C为任意常数)8. 对于二阶常系数线性齐次微分方程ay'' + by' + cy = 0,其特征方程为______。

答案:ar^2 + br + c = 09. 在概率论中,随机变量X的概率密度函数f(x)满足的条件是______。

答案:非负且积分为110. 线性代数中,若向量v1和v2线性无关,则它们构成的矩阵的行列式______。

答案:不为零三、解答题(共75分)11. (15分)计算定积分∫[0,1] (2x^2 + 3x) dx,并给出其几何意义。

答案:首先计算原函数F(x) = (2/3)x^3 + (3/2)x^2 + C。

然后计算F(1) - F(0) = (2/3) + (3/2) = 7/6。

工程数学本科试题及答案

工程数学本科试题及答案

工程数学本科试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是微分方程 \( y'' - y' - 2y = e^{2x} \) 的一个解?A. \( y = e^{-x} \)B. \( y = e^{2x} \)C. \( y = e^{x} \)D. \( y = e^{3x} \)2. 在复数域中,下列哪个表达式是正确的?A. \( |z|^2 = z \cdot \bar{z} \)B. \( |z|^2 = z + \bar{z} \)C. \( |z|^2 = z - \bar{z} \)D. \( |z|^2 = z / \bar{z} \)3. 对于向量 \( \mathbf{A} = (2, -3, 4) \) 和 \( \mathbf{B} = (1, 2, -1) \),它们的点积 \( \mathbf{A} \cdot \mathbf{B} \) 等于:A. 1B. 2C. 3D. 54. 在 \( z = x^2 + y^2 \) 中,如果 \( \frac{\partialz}{\partial x} = 2x \),那么 \( \frac{\partial z}{\partial y} \) 等于:A. \( 2y \)B. \( -2y \)C. \( 2x \)D. \( -2x \)5. 一个函数 \( f(x) \) 在点 \( x = a \) 处连续的充分必要条件是:A. \( \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) \)B. \( \lim_{x \to a} f(x) = f(a) \)C. \( f(a) \) 存在D. \( f(x) \) 在 \( x = a \) 处可导6. 微分方程 \( y' = y^2 \) 的解的形式是:A. \( y = Ce^x \)B. \( y = \frac{1}{Ce^x + 1} \)C. \( y = Ce^{-x} \)D. \( y = \frac{1}{Cx + 1} \)7. 傅里叶级数中的 \( a_n \) 系数是由以下哪个积分计算得出的?A. \( a_n = \frac{2}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)B. \( a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)C. \( a_n = \frac{2}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)D. \( a_n = \frac{1}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)8. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( |A| \) 等于:A. 7B. 2C. 1D. -29. 函数 \( f(x) = x^3 - 6x^2 + 11x - 6 \) 的零点个数是:A. 1B. 2C. 3D. 410. 拉普拉斯变换 \( \mathcal{L} \{ f(t) \} \) 的定义是:A. \( \mathcal{L} \{ f(t) \} = \int_{0}^{\infty} e^{-st} f(t) dt \)B. \( \mathcal{L} \{ f(t) \} = \int_{-\infty}^{\infty} e^{-st} f(t) dt \)C. \( \mathcal。

工程数学试题及参考答案

工程数学试题及参考答案

工程数学试题B一、单项选择题(每小题3分,本题共21分) 1.设B A ,为n 阶矩阵,则下列等式成立的是( ). (A) BA AB = (B) T T T )(B A AB = (C) T T T )(B A B A +=+ (D) AB AB =T )(2.设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4321432143214321A ,则=)(A r ( ). (A) 0 (B) 1 (C) 3 (D) 43.设B A ,为n 阶矩阵,λ既是A 又是B 的特征值,x 既是A 又是B 的特征向量,则结论( )成立.(A) λ是B A +的特征值 (B) λ是B A -的特征值 (C) x 是B A +的特征向量 (D) λ是AB 的特征值 4.设A B ,为随机事件,下列等式成立的是( ).(A) )()()(B P A P B A P -=- (B) )()()(B P A P B A P +=+ (C) )()()(B P A P B A P +=+ (D) )()()(AB P A P B A P -=- 5.随机事件A B ,相互独立的充分必要条件是( ). (A) )()()(B P A P AB P = (B) )()(A P B A P =(C) 0)(=AB P (D) )()()()(AB P B P A P B A P -+=+ 6.设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有=≤<)(b X a P ( ). (A)⎰b ax x F d )( (B) ⎰bax x f d )((C) )()(a f b f - (D) )()(b F a F -7. 对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,∑==3131i i X X ,则下列各式中( )不是统计量.(A) X (B)∑=31i iX(C) ∑=-312)(31i i X μ (D) ∑=-312)(31i i X X二、填空题(每小题3分,共15分)1.设B A ,均为3阶矩阵,2=A ,3=B ,则=--1T 3B A .2.线性无关的向量组的部分组一定 .3.已知5.0)(,3.0)(=-=A B P A P ,则=+)(B A P .4.设连续型随机变量X 的密度函数是)(x f ,则=)(X E .5.若参数θ的估计量θˆ满足θθ=)ˆ(E ,则称θˆ为θ的 估计. 三、计算题(每小题10分,共60分)1.设矩阵⎥⎦⎤⎢⎣⎡=3021A ,求A 的特征值与特征向量. 2.线性方程组的增广矩阵为 求此线性方程组的全部解.3.用配方法将二次型322322213216537),,(x x x x x x x x f +++=化为标准型,并求出所作的满秩变换.4.两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。

工程数学试题及答案

工程数学试题及答案

工程数学试题及答案《工程数学试题及答案》1. 数列与级数问题:找出以下等差数列的通项公式,并计算前n项和。

1) 3, 6, 9, 12, ...2) 1, 5, 9, 13, ...答案:1) 通项公式为a_n = 3 + 3(n-1),前n项和为S_n = n(6 + 3(n-1))/2。

2) 通项公式为a_n = 1 + 4(n-1),前n项和为S_n = n(2 + 4(n-1))/2。

2. 三角函数问题:求解以下方程在给定区间内的所有解。

1) sin(x) = 0.5,其中0 ≤ x ≤ 2π。

2) cos(2x) = 0,其中0 ≤ x ≤ π。

答案:1) 解为x = π/6, 5π/6。

根据周期性,可加2πn得到无穷解。

2) 解为x = π/4, 3π/4。

根据周期性,可加πn得到无穷解。

3. 极限与连续性问题:计算以下极限。

1) lim(x→0) (3x^2 + 2x) / x。

2) lim(x→∞) (e^x + 2x) / e^x。

答案:1) 极限等于2。

2) 极限等于2。

4. 微分与积分问题:求以下函数的导数和不定积分。

1) f(x) = 3x^2 + 4x + 1。

2) g(x) = sin(x) + cos(x)。

答案:1) f'(x) = 6x + 4,∫f(x)dx = x^3 + 2x^2 + x + C。

2) g'(x) = cos(x) - sin(x),∫g(x)dx = -cos(x) - sin(x) + C。

5. 偏导数与多重积分问题:计算以下偏导数和二重积分。

1) 求f(x, y) = x^3 + 2xy - y^2的偏导数∂f/∂x和∂f/∂y。

2) 计算∬(x^2 + y^2)dA,其中积分范围为R = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 2}。

答案:1) ∂f/∂x = 3x^2 + 2y,∂f/∂y = 2x - 2y。

自考工程数学试题及答案

自考工程数学试题及答案

自考工程数学试题及答案一、选择题(每题2分,共10分)1. 下列函数在x=0处不可导的是()。

A. y = x^2B. y = |x|C. y = sin(x)D. y = e^x2. 微分方程dy/dx + 2y = 3x的通解中,若y(0)=1,则y(x)为()。

A. y = (3/2)x - (1/2)x^2 + 1B. y = (3/2)x + (1/2)x^2 + 1C. y = (3/2)x - (1/2)x^2D. y = (3/2)x + (1/2)x^23. 若矩阵A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix},则矩阵A的特征值为()。

A. 1, -1B. 5, 3C. 2, 3D. 5, -34. 在概率论中,随机变量X服从二项分布B(n, p),若n=10,p=0.1,则P(X=2)为()。

A. 0.0456B. 0.0486C. 0.0554D. 0.04865. 利用傅里叶变换求解偏微分方程时,通常需要满足的充分条件是()。

A. 函数在无穷远处趋于零B. 函数在有限区间内连续C. 函数在整个实数域上可积D. 函数及其所有导数在无穷远处连续二、填空题(每题3分,共15分)1. 若函数f(x) = ∫(0, x) e^t dt,则f'(x) = ____________。

2. 向量v = \begin{bmatrix} 2 \\ -1 \end{bmatrix}和向量w = \begin{bmatrix} 3 \\ 4 \end{bmatrix}的点积为 ____________。

3. 若随机变量X服从正态分布N(μ, σ^2),则其期望E(X) =____________。

4. 函数y = ln(x^2 + 1)的最小值是 ____________。

5. 若矩阵B是矩阵A的逆矩阵,则AB = ____________。

工程数学试卷及答案

工程数学试卷及答案

一、 选择填空题1. 某数x 的有四位有效数字且绝对误差限是4105.0-⨯的近似值是(A ) (A )0.693 (B)0.6930 (C )0.06930 (D)0.006930 2. n 次拉格朗日插值多项式的余项是( A)(A))()!1()()(1)1(x n f x R n n n +++=ωξ (B)()()()()!n n n f R x x n ξω= (C))!1()()()1(+=+n f x R n n ξ (D)()()()!n n f R x n ξ=3. 求积公式)1()1()(11f f dx x f +-≈⎰-具有(A )次代数精度(A )1 (B )2 (C )4 (D )34. 用牛顿法计算)0(>a a n ,构造迭代公式时,下列方程不可用的是(A )(A )0)(=-≡n a x x f (B )0)(=-≡n a x x f (C )0)(=-≡nx a x f (D )01)(=-≡nx ax f 5. 由数据0051152252171 022 42......x y --- 所确定的插值多项式是次数不大于( D )的多项式.(A )二次 (B )三次 (C )四次 (D )五次 6. 在牛顿—柯特斯公式()()()()nbn i i ai f x dx b a C f x =≈-∑⎰中,当系数()n i C 有负值时,公式的稳定性不能保证,所以实际应用中,当n ( B )时的牛顿—柯特斯公式不使用。

(A )10≥ (B )8≥ (C )6≥ (D )4≥ 7. 经过点)3,2(),2,1(),1,0(C B A 的插值多项式=)(x P ( B ) 8. (A )x (B ) 1+x (C )12+x (D )12+x 9. 给定向量Tx )4,3,2(-=,则∞xx x,,21分别为( A )(A )4,29,9 (B )5,29,9 (C )4,29,5.8 (D )5,29,5.8 10. 精确值x =36.85用四舍五入保留三位有效数字的近似数为 36.9 。

工程数学试卷及答案

工程数学试卷及答案

工程数学试题一、单项选择题(每小题3分)1.设B A ,为n 阶矩阵,则下列等式成立的是( ). A .BA AB = B .B A B A +=+ C .111)(---+=+B A B A D .111)(---=B A AB2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( ),其中0≠i a ,)3,2,1(=i .A .0321=++a a aB .0321=-+a a aC .0321=+-a a aD .0321=++-a a a3.下列命题中不正确的是( ). A .A 与A '有相同的特征多项式 B .若λ是A 的特征值,则O X A I =-)(λ的非零解向量必是A 对应于λ的特征向量 C .若λ=0是A 的一个特征值,则O AX =必有非零解 D .A 的特征向量的线性组合仍为A 的特征向量4.若事件与互斥,则下列等式中正确的是( ). A . B . C .D .5.设n x x x ,,,21 是来自正态总体)1,5(N 的样本,则检验假设5:0=μH 采用统计量U =( ). A .55-x B .5/15-xC .nx /15- D .15-x二、填空题(每小题3分)1.设22112112214A x x =-+,则0A =的根是 .2.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 个解向量.3.设互不相容,且,则 .4.设随机变量X ~ B (n ,p ),则E (X )= .5.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x n x 11,则~x .三、计算题(每小题16分)1.设矩阵100111101A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,求1()AA -'.2.求下列线性方程组的通解.123412341234245353652548151115x x x x x x x x x x x x -++=⎧⎪-++=⎨⎪-++=⎩ 3.设随机变量X ~ N (3,4).求:(1)P (1< X < 7);(2)使P (X < a )=0.9成立的常数a . (已知8413.0)0.1(=Φ,9.0)28.1(=Φ,9773.0)0.2(=Φ).4.从正态总体N (μ,4)中抽取容量为625的样本,计算样本均值得x = 2.5,求μ的置信度为99%的置信区间.(已知 576.2995.0=u )四、证明题(本题6分)4.设n 阶矩阵A 满足0))((=+-I A I A ,则A 为可逆矩阵.工程数学(本)11春模拟试卷参考解答一、单项选择题(每小题3分,共15分) 1.A 2.B 3.D 4.A 5.C 二、填空题(每小题3分,共15分)1.1,-1,2,-2 2.3 3.0 4.np 5.)1,0(nN 三、(每小题16分,共64分) 1.解:由矩阵乘法和转置运算得100111111111010132101011122AA --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥'=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦………6分利用初等行变换得10020001112011101⎡⎤⎢⎥→⎢⎥⎢⎥-⎣⎦100201011101001112⎡⎤⎢⎥→---⎢⎥⎢⎥⎣⎦即 1201()011112AA -⎡⎤⎢⎥'=⎢⎥⎢⎥⎣⎦………16分7-2.解 利用初等行变换,将方程组的增广矩阵化成行简化阶梯形矩阵,即245353652548151115-⎛⎫ ⎪- ⎪ ⎪-⎝⎭→245351201000555-⎛⎫ ⎪-- ⎪ ⎪⎝⎭ →120100055500555--⎛⎫ ⎪ ⎪ ⎪⎝⎭→120100011100000--⎛⎫ ⎪ ⎪ ⎪⎝⎭方程组的一般解为:1243421x x x x x =+⎧⎨=-+⎩,其中2x ,4x 是自由未知量. ……8分令042==x x ,得方程组的一个特解0(0010)X '=,,,. 方程组的导出组的一般解为:124342x x x x x =+⎧⎨=-⎩,其中2x ,4x 是自由未知量. 令12=x ,04=x ,得导出组的解向量1(2100)X '=,,,; 令02=x ,14=x ,得导出组的解向量2(1011)X '=-,,,. ……13分 所以方程组的通解为:22110X k X k X X ++=12(0010)(2100)(1011)k k '''=++-,,,,,,,,,, 其中1k ,2k 是任意实数. ……16分 3.解:(1)P (1< X < 7)=)23723231(-<-<-X P =)2231(<-<-X P =)1()2(-Φ-Φ= 0.9773 + 0.8413 – 1 = 0.8186 ……8分 (2)因为 P (X < a )=)2323(-<-a X P =)23(-Φa = 0.9 所以28.123=-a ,a = 3 + 28.12⨯ = 5.56 ……16分 4.解:已知2=σ,n = 625,且nx u σμ-=~ )1,0(N ……5分因为 x = 2.5,01.0=α,995.021=-α,576.221=-αu206.06252576.221=⨯=-nuσα ……10分所以置信度为99%的μ的置信区间为: ]706.2,294.2[],[2121=+---nux nux σσαα. ……16分四、(本题6分)证明: 因为 0))((2=-=+-I A I A I A ,即I A =2.所以,A 为可逆矩阵. ……6分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。

A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发 2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。

A. X 和Y 独立。

B. X 和Y 不独立。

C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。

A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。

B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)6. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。

7.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。

8.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正常工作的概率为 。

9.设随机变量X 的概率密度函数为其它Ax x x f <<⎩⎨⎧=002)(,则概率=≥)21(X P 。

10.设二维连续型随机变量),(Y X 的联合概率密度函数为其它当0,00),()43(>>⎩⎨⎧=+-y x ke y x f y x ,则系数=k 。

11.求函数t e t f β-=)(的傅氏变换 (这里0>β),并由此证明:二、填空题(每空3分,共15分)三、计算题(每小题10分,共50分)te d t ββπωωβω-+∞=+⎰2cos 02212.发报台分别以概率0.6和0.4发出信号“1”和“0”。

由于通讯系统受到干扰,当发出信号“1”时,收报台未必收到信号“1”,而是分别以概率0.8和0.2收到信号“1”和“0”;同时,当发出信号“0”时,收报台分别以概率0.9和0.1收到信号“0”和“1”。

求 (1)收报台收到信号“1”的概率;(2)当收报台收到信号“1”时,发报台确是发出信号“1”的概率。

13.设二维随机变量),(Y X 的联合概率函数是其它0,00),()42(>>⎩⎨⎧=+-y x ce y x f y x求:(1)常数c ;(2)概率P (X ≥Y );(3)X 与Y 相互独立吗?请说出理由。

14.将n个球随机的放入N个盒子中去,设每个球放入各个盒子是等可能的,求有球盒子数X的数学期望。

15.设一口袋中依此标有1,2,2,2,3,3数字的六个球。

从中任取一球,记随机变量X为取得的球上标有的数字,求(1)X的概率分布律和分布函数。

(2)EX12n )T,a1≠0,其长度为║a║,又A=aa T,(1)证明A2=║a║2A;(2)证明a是A的一个特征向量,而0是A的n-1重特征值;(3)A能相似于对角阵Λ吗?若能,写出对角阵Λ.四、证明题(共10分)五、应用题(共10分)17.设在国际市场上每年对我国某种出口商品的需求量X是随机变量,它在[2000,4000]( 单位:吨 )上服从均匀分布,又设每售出这种商品一吨,可为国家挣得外汇3万元,但假如销售不出而囤积在仓库,则每吨需保养费1万元。

问需要组织多少货源,才能使国家收益最大。

参考答案及评分标准一、 选择题(每小题3分,共15分)1.B 2.C 3.D 4.A 5.A 二、 填空题(每小题3分,共15分)6. 97. 18. 1–(1–P)39. 3/4 10. 12 三、计算题(每题10分,共50分) 11.解答:函数f(t)的付氏变换为:F (w )=dt e dt edt eeet j tj tj t t ⎰⎰⎰+∞--+∞+--+∞∞---+==ℜ0)(0)(||||][ϖβϖβϖββ (3分)=22211ϖββϖβϖβ+=-++j j (2分)由付氏积分公式有f(t)=[1-ℜF(w )]=ϖϖπϖd e F tj ⎰+∞∞-)(21(2分) =ϖϖϖϖββπd t j t ⎰+∞∞-++)sin (cos 22122 ==ϖϖβϖπβϖϖϖββπd td t ⎰⎰+∞+∞∞-+=+02222cos 2cos 221(2分) 所以 te d t ββπωωβω-+∞=+⎰2cos 022 (1分)12.解答:设 A1=“发出信号1”,A0=“发出信号0”,A=“收到信号1” (2分)(1)由全概率公式 (1分) 有 P(A)=P(A|A1)P(A1)+P(A|A0)P(A0) (2分) =0.8x 0.6+0.1 x0.4=0.52 (1分) (2)由贝叶斯公式 (1分) 有 P(A1|A)=P(A|A1)P(A1)/ P(A) (2分) =0.8x 0.6/0.52=12/13 (1分)13.解答:(1) 由联合概率密度的性质有⎰⎰+∞∞-+∞∞-=1),(dy y x f dx即⎰⎰+∞+-+∞=0)42(01dy cedx y x (2分)从而 c =8 (2分)(2)⎰⎰≥==≥yx dxdy y x f Y X P ),()(⎰⎰=+-+∞xy x dy e dx 0)42(0328 (2分) (3) 当x >0时, ⎰⎰∞∞-∞-+-===2)42(28),()(x y x X e dy edy y x f x f (2分)当x <=0时, 0)(=x f X同理有 其它04)(4>⎩⎨⎧=-y e y f y Y (1分)因 y x y f x f y x f Y X ,)()(),(∀=故X 与Y 相互独立 (1分)14.解答:设 否则个盒子有球第i X i ⎩⎨⎧=01i =1,2,…,N (2分)则 ∑==Ni iXX 1(1分)因 nni N N X P )1()0(-== (2分)nni i NN X P X P )1(1)0(1)1(--==-== (2分) 因而 nni i i N N X P X P EX )1(1)1(1)0(0--==⋅+=⋅= (2分)所以 ))11(1(1nNi iNN EXEX --==∑= (2分) 15.解答:(1)随机变量X 的取值为1,2,3。

(1分)依题意有:62)3(;63}2{;61}1{======X P X P X P (3分) X 的分布函数}{)(x X P x F ≤= (1分) 由条件知:当1<x 时,;0(=)x F (1分)当21<≤x 时,;61)1((===X P x F ) (1分)当32<≤x 时,;32)2()1((==+==X P X P x F ) (1分)当3≥x 时,;1(=)x F (1分)(2)EX=1 x 1/6+2 x 3/6+3 x 2/6= 13/6 (1分)四、证明题(共10分)(1) A 2=aa T ·aa T =a T a ·aa T =║a ║2A (2分)(2)因 Aa= aa T ·a=a T a ·a= ║a ║2a (2分)故a 是A 的一个特征向量。

又A 对称,故A 必相似于对角阵 (1分) 设A ∽ diag(λ1,λ2,…,λn )=B, 其中λ1,λ2,…,λn 是A 的特征值 (1分) 因rank(A)=1, 所以 rank(B)=1 (1分) 从而λ1,λ2,…,λn 中必有n-1个为0, 即0是A 的n-1重特征值 (1分) (3) A 对称,故A 必相似于对角阵Λ,Λ=diag(║a ║2, 0,…,0) (2分)五、应用题(共10分) 解答:设y 为预备出口的该商品的数量,这个数量可只介于2000与4000之间,用Z 表示国家的收益(万元), (1分) 则有 yX y X X y X y X g Z <≥⎩⎨⎧--==)(33)( (4分)因 X 服从R(2000,4000), 故有其它4000200002000/1)(<<⎩⎨⎧=x x f X (1分)所以dx ydx x y x dx x f x g EZ yy X ⎰⎰⎰+--==∞∞-40002000200032000)(3)()( =–( y 2 –7000y + 4•106 ) /1000 (3分) 求极值得 y=3500 (吨) (1分)。

相关文档
最新文档