2020届中考复习河北省中考数学模拟试题(有配套答案)(word版)
2020年河北省中考模拟考试(一)数学试题及参考答案与解析(word版)

2020年河北省初中毕业生升学文化课模拟考试(一)数学试卷本试卷分卷I和卷II两部分;卷I为选择题,卷1I为非选择题.本试卷满分120分,考试时间为120分钟.卷I(选择题,共42分)注意事项:1.答卷I前.考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑答在试卷上无效.一、选择题(本大题共16个小题,共42分,1~I 0小题各3分;11~16小题各2分.在每小题给出的四个选项中只有项是符合题目要求的)1.下列各数中,比-2大2的数是()A.0 B.-4 C.2 D.42.把一个三角板按下图所示位置放置,∠1=40°,∠2=()A.40°B.45°C.50°D.60°3.下图中几何体的主视图是()A.B.C.D.4.下列对代数式1ab-的描述,正确的是()A.a与b的相反数的差B.a与b的差的倒数C.a与b的倒数的差D.a的相反数与b的差的倒数5.如图,直线a∥b∥c,45AB BC=,若DF=9,则EF的长度为()A .9B .5C .4D .3 6.下列变形正确的是( ) A .-2(a+2)=a -2 B .()121212a a --=-+ C .-a+1=-(a -1) D .1-a=-(a+1) 7.关于x 的一元二次方程2104ax x -+=有两个不相等的实数根,则a 的取值范围是( ) A .a >0 B .a >-1 C .a <1 D .a <1且a ≠08.在新型冠状病毒防控期间,小静坚持每天测量自己的体温,并把5次的体温(单位:℃)分别写在5张完全相同的卡片上:,把这5张卡片背面朝上洗匀后,从中随机抽取一张卡片,已知P (一次抽到36)=25,这5张卡片上数据的方差为( ) A .35.9 B .0.22 C .0.044 D .09.如图,五边形ABCDE 中,AE ∥BC ,BE 交于点O ,四边形OCDE 是平行四边形,若△ABE 的面积是5,四边形OCDE 的面积是6,则△AOE 的面积是( )A .2B .2.5C .3D .410.如图,点A (0,4),B (3,4),以原点O 为位似中心,把线段AB 缩短为原来的一半,得到线段CD ,其中点C 与点A 对应,点D 与点B 对应,则点D 的横坐标...为( )A .2B .2或-2C .32 D .32或32- 11.如图,在△ABC 中,AB <BC ,在BC 上取一点P ,使得PC=BC -PA .根据圆规作图的痕迹,可以用直尺成功找到点P 的是( )A.B.C.D.12.如图,四边形ABCD中,AD∥BC,AD=12BC,CD=BC,点E,F分别是BD,CD的中点,连接AE,EF,AF,若BC=2,AF=85,则BD=()A.35B.95C.125D.313.关于x方程2311x mx-=-的解是正数,m的值可能是()A.23B.12C.0 D.-114.如图,在6×6的正方形网格中,经过格点A,B,C,⊙O点P是ACB上任意一点,连接AP,BP,则tan∠APB的值为()A .12B C D 15.点(a ,b )是反比例函数2y x=-的图象上一点,若a <2,则b 的值不可能...是( ) A .-2 B .13- C .2 D .316.如图,在等边△ABC 中,AB=D 在△ABC 内或其边上,AD=2,以AD 为边向右作等边△ADE ,连接CD ,CE ,设CE 的最小值为m ;当ED 的延长线经过点B 时,∠DEC=n °,则m ,n 的值分别为( )A B C .2,55 D .2,60卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题共3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分) 17.若单项式212xyx 与n x y -是同类项,则n 的值为 . 18.定义新运算:对于任意实数a ,b ,都有a ⊕b=a (b+1)-b ,等式右边是通常的加法、减法及乘法运算,比如:3⊕2=3(2+1)-2=9-2=7. (1)2⊕(-3)= ;(2)若(-2)⊕x 的值等于-5,则x= .19.如图,ABCD 中,AB=7,BC=5,CH ⊥AB 于点H ,CH=4,点P 从点D 出发,以每秒1个单位长度的速度沿DC —CH 向点H 运动,到点H 停止,设点P 的运动时间为t .(1)AH= ;(2)若△PBC 是等腰三角形,则t 的值为 .三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别为a,b,c,已知bc<0.(1)请说明原点在第几部分;(2)若AC=5,BC=3,b=-1,求a;(3)若点B到表示1的点的距离与点C到表示1的点的距离相等,且a-b-c=-3,求-a+3b-(b -2c)的值.21.(本小题满分9分)发现:小明经过计算总结出两位数乘11的速算方法:头尾一拉,中间相加,满十进一.例1.计算:32×11=352.方法:32头尾拉开,中间相加,即3+2=5,计算结果为352.例2.计算:57×11=627.方法:57头尾拉开,中间相加,即5+7=12,满十进一,计算结果为627.尝试:(1)43×11=;(2)69×11=;(3)98×(-11)=.探究:一个两位数,十位上的数字是m,个位上的数字为n,这个两位数乘11.(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是什么?请通过计算加以验证.(2)若m+n≥10,直接写出....计算结果中十位上的数字.22.(本小题满分9分)自2020年初的新型冠状病毒疫情爆发以来,疫悄时时刻刻都在牵动全国人民的心.小明在做好自我防控的同时,也从数据分析的角度去看待疫情动态,他从2月10日起,连续7天记录了全国每天新增确诊病例人数,并绘制了如图所示的折线统计图.(注:本题所考查的人数均保留整数)(1)①小明关注这7天每天新增确诊病例人数的最高值、最低值和中位数,井计算了平均数.其中中位数是人,平均数是人;②上述哪个统计量能反映这7天新增确诊病例人数的一般水平?(2)小明又接着记录了连续5天的全国新增确诊病例人数,如下表:①请在图中补画出这5天每天新增确诊病例人数的折线统计图;②求2月10日至2月21日每天新增确诊病例人数的中位数.(3)请你分别通过对上述两个中位数的比较和全部折线图来说明每天新增确诊病例人数的升降趋势.23.(本小题满分9分)如图,Rt△ABC中,∠C=90°,AC=BC=4,P是BC上一点(不与B,C重合),连接AP,将AP绕点A逆时针旋转90°得到AQ,连接BQ,分别交AC,AP于点D,E,作QF⊥AC于点F.(1)求证:QF=AC;(2)若P是BC的中点,求tan∠ADQ的值;(3)若△AEQ的内心在QF上,直接写出....BP的长.24.(本小题满分10分)学校计划拿出一笔钱给一些班级配置篮球和排球.若给每班1个篮球和2个排球,花完这笔钱刚好配置30个班;若给每班2个篮球和1个排球,花完这笔钱刚好配置20个班.设每个篮球a元,每个排球b元.(1)用含b的代数式表示a;(2)现在给每班x个篮球和y个排球,花完这笔钱刚好配置10个班.①求y与x的函数解析式;②怎样的配置方案,可以使每班配置的排球最少?25.(本小题满分10分)如图,正方形ABCD中,AB=3,P使BC边上一点(不包括B,C),连接AP,点E,B关于直线AP对称,连接DE并延长交AP的延长线于点F,以点B为圆心,BF长为半径作圆,与BE交于点G.(1)当∠PAB=26°时,∠AED=°;(2)求证:直线DF时⊙B的切线;(3)当时,求GF的长;(4)若DE=4,直接写出....EF的长.26.(本小题满分12分)如图,抛物线y=ax2+bx+3经过点A(-3,0),B(1,0),顶点为点M,与y轴交于点C,点P是抛物线上一点,PH⊥y轴于点H,射线PH交抛物线的对称轴于点D.(1)求抛物线的解析式及顶点M的坐标;(2)若点P在第四象限,OH=5,求PD的长;(3)m>0,点E(m,y1),F(-1-m,y2)均在抛物线上,比较y1,y2的大小,并说明理由;(4)若点P在第二象限,连接PA,PC,AC,直接写出....△PAC面积的最大值.。
2020年河北省中考仿真模拟考试数学试题含答案

0!-$.
1!-&.
'!2$.
3!4$.
#!在下列各组图形中'是相似图形的是
,!现在电子显微镜最大放大倍率超过!&$$万倍!数据)!&$$万*可用科学记数法表示为"5!$#
的形式'其中
0!"6!&$$
1!"6!7&
'!#6,
+!不考虑颜色'对如图所示的图形的对称性描述正确的是
3!#6"
0!只是中心对称图形
"##当"%*6!时'求这三个数字组成的最大三位数!
!数学试卷!第!, 页"共"页#$
%#$%$&%'(!!&)%
#!!"本小题满分4分#观察一组有规律的数&%!'#'"'2'%!"',#',! "!#根据规律'可知"6!!!!! "##若三个相邻的数的和是#$##'请求这三个数!
##!"本小题满分4分#复学前为加强学生对新型冠状病毒防护知识的了解'某学校通过钉钉群 宣传新型冠状病毒防护知识'并要求学生在线作答-新型冠状病毒防护考试."满分!$$分#! 安全办工作人员随机抽取了若干名学生的成绩'并根据得到的数据绘制了如下统计表&
5 "4(3,5 "3#……………………………………………………………………… /分 "%(3! (3! 当(3$时6"4#4(3,"%(3! 5"3!#3#! ……………………………………………………………………………… 0分 综上所述它们组成的最大三位数是#!$!………………………………………………… 1分 #!!解!%"! ………………………………………………………………………………… ,分 #设这三个数的第!个数为$第#个数为%#$第,个数为"$ 由题意可得$%#$4"$3#$## ………………………………………………………… &分
2020年河北省中考数学模拟试题及参考答案(word版)

2020年河北省中考数学模拟试题及参考答案(满分120分,考试时间120分钟)卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在数轴上,若点B 表示一个负数,则原点可以是( )A .点EB .点DC .点CD .点A2.要将等式112x -=进行一次变形,得到x=-2,下列做法正确的是( ) A .等式两边同时加32x B .等式两边同时乘以2C .等式两边同时除以-2D .等式两边同时乘以-23.如图,在△ABC 中,∠ACB=90°,D 是AB 的中点,则下列结论不一定正确的是( )A .CD=BDB .∠A=∠DCAC .BD=ACD .∠B+∠ACD=90° 4.下列计算,正确的是( ) A .()32628aa -= B .7a -4a=3 C .633x x x ÷= D .211224-⨯=5.下列由一个正方形和两个相同的等腰直角三角形组成的图形中,为中心对称图形的是( )A .B .C .D .6.世界上最薄的纳米材料其理论厚度是{0.00...034a m 个,该数据用科学记数法表示为63.1410m -⨯,则a 的值为( )A .4B .5C .6D .77.对于n (n >3)个数据,平均数为50,则去掉最小数据10和最大数据90后得到一组新数据的平均数( )A .大于50B .小于50C .等于50D .无法确定 8.已知实数m ,n 互为倒数,且|m|=1,则m 2-2mn+n 2的值为( ) A .1 B .2 C .0 D .-29.如图是某河坝横断面示意图,AC为迎水坡,AB为背水坡,过点A作水平面的垂线AD,BD=2CD,设斜坡AX的坡度为i AC,坡角为∠ACD,斜坡AB的坡度为i AB,坡角为∠ABD,则下列结论正确的是()A.i AC=2i AB B.∠ACD=2∠ABD C.2i AC=i AB D.2∠ACD=∠ABD10.如图,已知点D、E分别在∠CAB的边AB、AC上,若PD=6,由作图痕迹可得,PE的最小值是()A.2 B.3 C.6 D.1211.已知b=a+c(a,b,c均为常数,且c≠0),则一元二次方程cx2-bx+a=0根的情况是()A.有两个不相等的实数根B.有两个实数根C.有两个相等的实数根D.无实数根12.若2111xx x+--的值小于-6,则x的取值范围为()A.x>-7 B.x<-7 C.x>5 D.x>-513.如图,在2×2的正方形网格中,每个小正方形的边长均为1,四边形ABCD的周长记为c,若a-1<c<a(a为正整数),则a的值为()A.4 B.5 C.6 D.714.如图为由若干个大小相同的正方体组成的几何体的左视图和俯视图,则它的主视图不可能是()15.如图,已知点O是△ABC的外心,连接AO并延长交BC于点D,若∠B=40°,∠C=68°,则∠ADC的度数为()A .52°B .58°C .60°D .62°16.对于题目:在平面直角坐标系中,直线445y x =-+分别与x 轴、y 轴交于A 、B 两点,过点A 且平行y 轴的直线与过点B 且平行x 轴的直线相交于点C ,若抛物线y=ax 2-2ax -3a (a ≠0)与线段BC 有唯一公共点,求a 的取值范围.甲的计算结果是13a ≥;乙的计算结果是43a -<,则( ) A .甲的结果正确 B .乙的结果正确C .甲与乙的结果合在一起正确D .甲与乙的结果合在一起也不正确卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分)17= .18.观察下列一组数据,其中绝对值依次增大2,且每两个正数之间有两个负数:1,-3,-5,7,-9,-11,13,-15,…;则第10个数是 ;第3n 个数是 (n 为正整数). 19.如图,过正六边形ABCDEF 的顶点D 作一条直线l ⊥AD 于点D ,分别延长AB 、AF 交直线l 于点M 、N ,则∠AMN= ;若正六边形ABCDEF 的面积为6,则△AMN 的面积为 .三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)在实数范围内,对于任意实数m 、n (m ≠0)规定一种新运算:3n m n m mn ⊗=+-,例如:232332312⊗=+⨯-=.(1)计算:()()21-⊗-; (2)若127x ⊗=-,求x 的值;(3)若()2y -⊗的最小值为a ,求a 的值. 21.(本小题满分9分)在证明定理“三角形的中位线平行于第三边,且等于第三边的一半”时,小明给出如下部分证明过程.已知:在△ABC中,D、E分别是边AB、AC的中点.求证:.证明:如图,延长DE到点F,使EF=DE,连接CF,……(1)补全求证;(2)请根据添加的辅助线,写出完整的证明过程;(3)若CE=3,DF=8,求边AB的取值范围.22.(本小题满分9分)在抗击新型冠状病毒肺炎战役中,某市党员积极响应国家号召参加志愿者活动,为人民服务,现随机抽查部分党员一个月来参加志愿者活动的次数,并绘制成如下尚不完整的条形统计图(图1)和扇形统计图(图2).(1)“4次”所在扇形的圆心角度数是,请补全条形统计图;(2)若从抽查的党员中随机选择一位接受媒体的采访,求该党员一个月来参加志愿者活动次数不少于3次的概率;(3)设随机抽查的党员一个月来参加志愿者活动次数的中位数为a,若去掉一部分党员参加志愿者活动的次数后,得到一组新数据的众数为b,当b>a时,求最少去掉了几名党员参加志愿者活动的次数.23.(本小题满分9分)如图,在矩形ABCD中,点E是边BC上一点(不与点B、C重合),点F是BC延长线上一点,且CF=BE,连接AE、DF.(1)求证:△ABE≌△DCF;(2)连接AC,其中AC=43,BC=6.①当四边形AEFD是菱形时,求线段AE与线段DF之间的距离;②若点I是△DCF的内心,连接CI、FI,直接写出∠CIF的取值范围.24.(本小题满分10分)在平面直角坐标系中,我们定义:横坐标与纵坐标均为整数的点为整点.如图,已知双曲线k yx =(x>0)经过点A(2,2),记双曲线与两坐标轴之间的部分为G(不含双曲线与坐标轴).(1)求k的值;(2)求G内整点的个数;(3)设点B(m,n)(m>3)在直线y=2x-4上,过点B分别作平行于x轴、y轴的直线,交双曲线kyx=(x>0)于点C、D,记线段BC、BD、双曲线所围成的区域为W,若W内部(不包括边界)不超过8个整点,求m的取值范围.25.(本小题满分10分)如图1,在正方形ABCD中,AB=10,点O、E在边CD上,且CE=2,DO=3,以点O为圆心,OE为半径在其左侧作半圆O,分别交AD于点G,交CD的延长线于点F.(1)AG=;(2)如图2,将半圆O绕点E逆时针旋转α(0°<α<180°),点O的对应点为O′,点F的对应点为F′;设M为半圆O′上一点.①当点F′落在AD边上时,求点M与线段BC之间的最短距离;②当半圆O′,交BC于P、R两点时,若»PR的长为53π,求此时半圆O′与正方形ABCD重叠部分的面积;③当半圆O′与正方形ABCD的边相切时,设切点为N,直接写出tan∠END的值.26.(本小题满分12分)某公司为了宣传一种新产品,在某地先后举行40场产品促销会,已知该产品每台成本为10万元,设第x场产品的销售量为y(台),在销售过程中获得以下信息:信息1:已知第一场销售产品49台,然后每增加一场,产品就少卖出1台;信息2:产品的每场销售单价p(万元)由基本价和浮动价两部分组成,其中基本价保持不变,第1场——第20场浮动价与销售场次x成正比,第21场——第41场浮动价与销售场次x成反比,经过统计,得到如下数据:(1)求y与x之间满足的函数关系式;(2)当产品销售单价为13万元时,求销售场次是第几场?(3)在这40场产品促销会中,哪一场获得的利润最大,最大利润是多少?参考答案与解析卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. D 【分析与解答】在数轴上,正数在原点的右侧,负数在原点的左侧,点B 表示一个负数,∴原点在点B 的右侧,只有点A 符合.2. D 【分析与解答】将等式-12x =1两边同除以系数-12,即同乘以系数的倒数-2,可得到x =-2.3. C 【分析与解答】∵△ABC 是直角三角形,D 是AB 的中点,∴AD =CD =BD ,A 选项正确;∵AD =CD ,∴∠A =∠DCA ,B 选项正确;∵∠ACB =90°,∴∠A +∠B =90°.又∵∠A =∠ACD ,∴∠ACD +∠B =90°,D 选项正确;BD 与AC 的关系无法确定,C 选项错误.4. C 【分析与解答】逐项分析如下:5. C 【分析与解答】把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,只有C 选项符合.A 、D 为轴对称图形,B 既不是轴对称图形,也不是中心对称图形.6. B 【分析与解答】科学记数法表示为a ×10n ,其中1≤|a |<10,n 为整数,对于绝对值大于0且小于1的数,n 是负整数,n 的绝对值等于原数左起第一个非零数前所有零的个数(包含小数点前的零),∴|-6|=a +1,∴a =5.7. C 【分析与解答】由题意得,n 个数据的总和为50n ,去掉最小数据10和最大数据90后的新数据总和为50n -100,且这组新数据的个数为n -2,则新数据的平均数为50n -100n -2=50.8. C 【分析与解答】∵|m |=1,且m ,n 互为倒数,∴m -n =0,∴m 2-2mn +n 2=(m -n )2=0.【一题多解】∵m 、n 互为倒数,且|m |=1,∴m 2=n 2=1,mn =1.∴m 2-2mn +n 2=1-2+1=0.9. A 【分析与解答】∵AD ⊥BC ,∴i AC =AD CD ,i AB =AD BD ,∵BD =2CD ,∴i AB =AD 2CD =12·ADCD=12i AC,∴i AC =2i AB . 10. C 【分析与解答】当PE 与AC 垂直时,PE 有最小值,由作图痕迹可知P A 平分∠CAB ,PD ⊥AB 于点D ,由角平分线的性质定理可得PE 的最小值等于PD ,∵PD =6,∴PE 的最小值为6.11. B 【分析与解答】∵Δ=b 2-4ac =(a +c )2-4ac =(a -c )2≥0,∴方程有两个实数根. 12. C 【分析与解答】原式=x 21-x -11-x =x 2-11-x =(x +1)(x -1)1-x =-x -1,由题意得,-x -1<-6,解得x >5.13. C 【分析与解答】由勾股定理得,AB =BC =CD =DA =2,∴c =42=32,∵25<32<36,∴5<c <6,∵a -1<c <a ,∴a =6.14. B 【分析与解答】由左视图和俯视图可得几何体如解图所示,对应的主视图可以是A 、C 、D ,∴主视图不可能是选项B .第14题解图15. D 【分析与解答】如解图①,连接OB 、OC ,∵点O 是△ABC 的外心,∴OA =OB =OC ,∴∠OAB =∠OBA ,∠OBC =∠OCB ,∠OAC =∠OCA ,∵∠BAC +∠ABC +∠ACB =180°,∴∠OAB +∠OCA +∠OCB =90°,∵∠ACB =68°, ∴∠OAB =22°.∵∠ABC =40°, ∴∠ADC =∠ABC +∠OAB =62°.【一题多解】如解图②,作△ABC 的外接圆⊙O ,延长AD 交⊙O 于点E ,连接BE ,∵AE 为⊙O 的直径,∴∠ABE =90°,∵∠ABC =40°,∴∠CBE =50°,∵∠BCA =68°,∴∠BEA =∠BCA =68°,∴∠ADC =∠BDE =180°-∠CBE -∠BEA =180°-50°-68°=62°.第15题解图① 第15题解图②16. D 【分析与解答】∵抛物线y =ax 2-2ax -3a =a (x 2-2x -3)=a (x -3)(x +1),∴抛物线与x 轴恒交于(-1,0),(3,0)两点,对称轴恒为直线x =1,∵直线y =-45x +4与x 轴、y 轴交于点A 、B .∴点A (5,0),点B (0,4).点C (5,4),①a >0时,如解图①,当抛物线经过点C 时,将x =5代入抛物线得y =12a ,∴12a ≥4,∴a ≥13;②a <0时,分两种情况.情况一:如解图②,当抛物线经过点B 时,将x =0代入抛物线得y =-3a ,∵抛物线与线段BC 有唯一公共点,∴-3a >4,∴a <-43;情况二:当抛物线的顶点在线段BC 上时,则顶点为(1,4),如解图③,将点(1,4)代入抛物线得4=a -2a -3a ,解得a =-1.综上可得,a 的取值范围为a <-43或a =-1或a ≥13.图① 图② 图③第16题解图卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分)17. 6 【分析与解答】原式=23×3=6.18. 19,-6n +1 【分析与解答】观察数据1,-3,-5,7,-9,-11,13,-15,…;发现第n (n 为正整数)个数的绝对值是2n -1,若n 被3除余1则为正号,否则为负号,∵10÷3=3……1,2×10-1=19,∴第10个数为19,∵3n ÷3=n ,2×3n -1=6n -1,∴第3n 个数为-6n +1.19. 30°;16 【分析与解答】∵正六边形的每一个内角为120°,∴∠BAD =∠F AD =60°,∵l ⊥AD ,∴∠AMN =30°.如解图,取正六边形的中心为O ,连接CO ,易得△COD 是等边三角形,S 正六边形ABCDEF =6S △COD =6×34CD 2=332CD 2=6,∴CD 2=433,∵AD =2CD ,∴MN =2DM =2tan 60°×AD =43CD ,∴S △AMN =12AD ×MN =12×2CD ×43CD =43CD 2=16.第19题解图三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20. 解:(1)(-2)⊗(-1)=(-2)-1+(-2)×(-1)-3(1分) =-32;(3分)(2) 由题意得,x ⊗1=x +x -3=-27,(4分) 解得x =-12;(6分)(3)(-y )⊗2=y 2-2y -3=(y -1)2-4.∵(y -1)2-4的最小值为-4,(7分) ∴a 的值为-4.(8分)21. 解:(1)DE ∥BC ,且DE =12BC ;(2分)(2)∵点E 是AC 的中点,∴AE =CE ,又∵EF =ED ,∠AED =∠CEF ,∴△ADE ≌△CFE .(3分)∴AD =CF ,∠A =∠ECF ,∴AD ∥CF ,∴AB ∥CF ,∵点D 是AB 的中点,∴AD =BD ,∴BD =CF ,∴四边形BDFC 是平行四边形,∴DE ∥BC ,DF =BC .(5分) ∵DE =FE ,∴DE =12BC .(6分)(3)∵DF =8,∴BC =8,∵CE =3,∴AC =6.(7分) ∴BC -AC <AB <BC +AC ,即2<AB <14.(9分) 22. 解:(1)72°,(1分)补全条形统计图如解图所示;(2分)第22题解图【解法提示】由题意可得,“4次”所在扇形的圆心角度数为360°×20%=72°,此次随机抽查党员的人数为10÷20%=50(人),∴“3次”的人数为50-4-14-10-8=14(人).(2)∵随机抽查的党员人数为10÷20%=50(人),其中参加志愿者活动次数不少于3次的有14+10+8=32(人),(4分)∴P (该党员一个月来参加志愿者活动次数不少于3次)=3250=1625;(5分)(3)将参加次数按由小到大进行排列,可得中位数为第25、26个数的平均数,由题意得a =3+32=3,(6分)∵去掉一部分党员参加志愿者活动的次数后,得到一组新数据的众数为b ,且b >a , ∴b =4或5.当b =4时,最少需去掉10名党员参加志愿者活动的次数,即去掉5个参加志愿者活动次数为2次的和5个参加志愿者活动次数为3次的;当b =5时,最少需去掉17名党员参加志愿者活动的次数,即去掉7个参加活动为2次的,7个参加活动为3次的,3个参加活动为4次的,∵10<17,∴b =4.(7分)这时最少去掉了10名党员这一个月来参加志愿者活动的次数,即去掉5个参加志愿者活动次数为2次的和5个参加志愿者活动次数为3次的.(9分)23. (1)证明:∵四边形ABCD 是矩形, ∴AB =DC ,∠B =∠BCD =90°, ∴∠B =∠DCF =90°,(2分)∵BE =CF ,∴△ABE ≌△DCF ;(3分)(2)解:①∵四边形AEFD 是菱形, ∴AE =EF =DF =AD ,设平行线AE 与DF 之间的距离为x ,有AE ·x =EF ·CD , ∴x =CD .(4分) ∵AC =43,BC =6,∴AB =AC 2-BC 2=23,(5分) ∴x =CD =AB =23.∴线段AE 与线段DF 之间的距离为23;(6分) ②90°<∠CIF <120°.(9分) 【解法提示】∵tan ∠BAC =BC AB =623=3,∴∠BAC =60°. ∵点E 是边BC 上一点(不与点B 、C 重合),∴0°<∠BAE <60°. ∵点I 是△CDF 的内心,第23题解图∴∠ICF =12∠DCF ,∠IFC =12∠DFC ,∴∠CIF =180°-∠ICF -∠IFC =180°-12∠DCF -12∠DFC=180°-12(180°-∠CDF )=90°+12∠CDF .∵△ABE ≌△DCF ,∴∠CDF =∠BAE , ∴∠CIF =90°+12∠BAE ,∴90°<∠CIF <120°.24. 解:(1)∵y =k x 经过点A (2,2),∴2=k2,∴k =4;(2分)(2)对于双曲线y =4x ,当x =1时,y =4,∴在直线x =1上,当0<y <4时,有整点(1,1),(1,2),(1,3),(3分) 当x =2时,y =2,∴在直线x =2上,当0<y <2时,有整点(2,1);(4分) 当x =3时,y =43,∴在直线x =3上,当0<y <43时,有整点(3,1);(5分)当x =4时,y =1,∴在直线x =4上,当0<y <1时,没有整点.∴G 内整点的个数为5个;(6分)(3)如解图,当m =4时,点B (4,4),点C (1,4),此时在区域W 内(不包含边界)有(2,3)、(3,2)、(3,3)共3个整点.线段BD 上有4个整点,线段BC 上有4个整点.∵点(4,4)重合,点(4,1)、(1,4)在边界上,∴当m >4时,区域W 内至少有3+4+4-3=8个整点.当m =4.5时,B ′(4.5,5),C ′(45,5),线段B ′C ′上有4个整点,此时区域W 内整点个数为8个.当m >4.5时,区域W 内部整点个数增加.∴若W 内部(不包括边界)不超过8个整点,3<m ≤4.5.(10分)第24题解图25. 解:(1)6;(2分)【解法提示】如解图①,连接GO ,由题意可得,DC =AD =AB =10,∵CE =2,OD =3,∴OE =OG =5,∴GD =OG 2-DO 2=4,∴AG =AD -GD =6.第25题解图①(2)①如解图②,过点O ′作O ′H ⊥BC 于点H ,交半圆O ′于点M ,反向延长HO ′交AD 于点Q ,则∠QHC =90°,根据三点共线及垂线段最短可得此时点M 到BC 的距离最短,(3分) ∵∠C =∠D =∠QHC =90°, ∴四边形QHCD 是矩形, ∴HQ =CD =10,HQ ∥CD .∵点O ′是EF ′的中点,∴点Q 是DF ′的中点, ∵DE =8,∴O ′Q =12DE =4,∴O ′H =6,∵CE =2,DO =3,∴OE =10-2-3=5,即半圆O 的半径为5,∴MH =1,即点M 到BC 的最短距离为1;(5分)第25题解图②由①可知半圆O 的半径为5,如解图③,设∠PO ′R 的度数为β,由题意得,PR ︵的长为=β180π×5=53π,(6分) ∴∠PO ′R =60°,∴∠F ′O ′P +∠EO ′R =120°, ∴S 扇形F ′O ′P +S 扇形EO ′R =120360π×52=253π.(7分) ∵O ′R = PO ′,∴△O ′RP 是等边三角形,∴S △O ′RP =2534, ∴此时半圆O ′与正方形ABCD 重叠部分的面积为2534+253π;(8分)【一题多解】如解图③,设∠PO ′R 的度数为β,由题意得,PR ︵的长为β180π×5=53π,(6分)∴∠PO ′R =60°,∴S 扇形PO ′R =60360π×52=256π.(7分) ∵O ′R = PO ′,∴△O ′RP 是等边三角形,∴S △O ′RP =2534, ∵半圆O ′的面积为180360π×52=252π,∴此时半圆O ′与正方形ABCD 重叠部分的面积为S 半圆O ′-S 扇形PO ′R +S △O ′RP =252π-256π+2534=2534+253π;(8分) ③89或45.(10分) 【解法提示】①如解图④,当半圆O ′与BC 相切于点N 时,连接O ′N ,过点E 作ET ⊥O ′N 于点T ,连接EN ,则TN =EC =2,∵O ′N =O ′E =5,∴O ′T =3,∴ET =4,∴CN =4,∴EN =25,DN =229, 过点E 作EK ⊥DN 于点K , ∵EK ·DN =CN ·DE ,∴EK =162929. ∵tan ∠NDC =CN DC =25=EK DK ,∴DK =402929,∴NK =182929,∴tan ∠END =EK NK =89;图④ 图⑤第25题解图②如解图⑤,(ⅰ)若半圆O ′与AB 相切于点N , ∵EN ⊥AB ,∴四边形ANED 是矩形, 连接DN ,tan ∠END =45;(ⅱ)若半圆O ′与CD 相切于点N ,此时点N 与点E 重合.∠END 不存在. 综上所述,tan ∠END 的值为89或45.26. 解:(1)y 与x 的函数关系式为y =50-x ;(2分)(2)设基本价为b ,第1场—第20场,设p 与x 的函数关系式为p =ax +b ;依题意得⎩⎪⎨⎪⎧10.6=3a +b ,12=10a +b ,解得⎩⎪⎨⎪⎧a =15,b =10,∴p =15x +10(1≤x ≤20).(3分)第21场—第40场,设p 与x 的函数关系式为p =mx+b ,当x =25时,有14.2=m 25+10,解得m =105,∴p =105x +10(21≤x ≤40).(4分)当1≤x ≤20时,令p =15x +10=13,解得x =15.(5分)当21≤x ≤40时,p =105x+10=13,解得x =35.(6分)∴当产品销售单价为13万元时,销售场次是第15场和第35场;(7分) (3)设每场获得的利润为w (万元),当1≤x ≤20时,w =(50-x )(15x +10-10)=-15x 2+10x =-15(x -25)2+125;∵w 随x 的增大而增大,∴当x =20时,w 最大,最大利润为120万元;(10分) 当21≤x ≤40时,w =(50-x )(105x +10-10)=5250x -105,∵w 随x 的增大而减小,∴当x =21时,w 最大,最大利润为145万元,(11分) ∵120<145,∴在这40场产品促销会中,第21场获得的利润最大,最大利润为145万元.(12分)。
河北省2020年中考模拟数学试卷含有答案

1
河北省2020年中考模拟试卷
数学试卷
本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题。
题号 一 二 20 21 22 23 24 25 26 得分
注意事项:1.答卷前将密封线左侧的项目填写清楚。
2.答案须用蓝色、黑色钢笔或圆珠笔书写。
卷I (选择题,共42分)
一、选择题(本大题共16个小题,1~10题,每小题3分;11~16小题,每小题2分, 共42分,在每小题给出的四个选项中,只有一项符合题目要求的) 1.在-3,0,1,-2四个数中,最小的数为( ) A .-3
B .0
C .1
D .-2 2.695.2亿用科学记数法表示为( ) A .6.952×106
B .6.952×108
C .6.952×1010
D .695.2×108
3.下列手机屏幕解锁图案中,不是轴对称图形的是( )
4.下面运算结果为a 6的是( ) A .a 3+a 3 B .a 8÷a 2 C .a 2·a 3 D .(-a 2)3
5.如图是五个棱长为“1”的立方块组成的一个几何体,不是三视图之一的是( )
6.在△ABC 中,AB <BC ,用尺规作图在BC 上取一点P ,使PA+PC=BC ,则下列作法 正确的是( )
7.设○□△分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示, 总 分
核分人
P P A P
B C A
B C B C A A . B . C . D .
B C A
P A . B . C . D .
A .
B .
C .
D .。
2020年河北省石家庄市中考数学模拟试卷 (解析版)

2020年中考数学模拟试卷一、选择题1.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B..C..D..2.第十三届全运会将于2017年8月在天津举行,其中足球项目承办场地为团泊足球场,该足球场占地163000平方米,将163000用科学记数法表示应为()A.163×103B.16.3×104C.1.63×105D.0.163×106 3.如图,在同一直角坐标系中,函数y=kx与y=(k≠0)的图象大致是()A.①②B.①③C.②④D.③④4.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1 5.下列图形中,是中心对称图形的是()A.B.C.D.6.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.17.计算的结果为()A.B.C.D.8.抛物线y=﹣(x+2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(﹣2,0)9.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm 10.如图,在正方形ABCD中,E位DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为()A.15°B.10°C.20°D.25°11.如图,⊙O的直径CD经过弦EF的中点G,∠DCF=20°,则∠EOD等于()A.30°B.40°C.35°D.45°12.已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二.填空题(本大题共6小题,每小题3分,共18分)13.计算:3x2•5x3的结果为.14.已知点P(a,﹣6)与点Q(﹣5,3b)关于原点对称,则a+b=.15.如图,坡角为30°的斜坡上两树间的水平距离AC为2m,则两树间的坡面距离AB为16.若关于x、y的方程组的解是,则mn的值为.17.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.18.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,且过点(3,0),则下列结论:①abc<0;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0.其中正确结论的序号是.三.解答题(本大题共5小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C处测得教学横顶部D 处的仰角为18°,教学楼底部B处的俯角为20°,教学楼的高BD=21m,求实验楼与教学楼之间的距离AB(结果保留整数).(参考数据:tan18°≈0.32,tan20°≈0.36)21.如图1,在△ABC中,AC=BC,以BC为直径的⊙O交AB于点D.(1)求证:点D是AB的中点;(2)如图2,过点D作DE⊥AC于点E,求证:DE是⊙O的切线.22.每年十月的第二个周四是世界爱眼日,为预防近视,超市决定对某型号护眼台灯进行降价销售.降价前,进价为50元的护眼台灯以80元售出,平均每月能售出120盏,调查表明:这种护眼台灯每盏售价每降低1元,其月平均销售量将增加10盏.(1)写出月销售利润y(单位:元)与销售价x(单位:元/盏)之间的函数表达式:(2)当销售价定为多少元时,所得月利润最大?最大月利润为多少元?23.如图,已知抛物线y=﹣x2+bx+c(b,c是常数)经过A(0,2)、B(4,0)两点.(Ⅰ)求该抛物线的解析式和顶点坐标;(Ⅱ)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这条抛物线于N,求当t取何值时,MN有最大值?最大值是多少?(Ⅲ)在(Ⅱ)的情况下,以A、M、N、D为顶点作平行四边形,请直接写出第四个顶点D的所有坐标(直接写出结果,不必写解答过程).四.选做题(本题不计入总成绩)24.如图所示,在平面直角坐标系中A(0,2),点B(﹣3,0).△AOB绕点O逆时针旋转30°得到△A1OB1.(1)直接写出点B1的坐标;(2)点C(2,0),连接CA1交OA于点D,求点D的坐标.参考答案一、选择题1.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B..C..D..【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:该立体图形主视图的第1列有1个正方形、第2列有1个正方形、第3列有2个正方形,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.第十三届全运会将于2017年8月在天津举行,其中足球项目承办场地为团泊足球场,该足球场占地163000平方米,将163000用科学记数法表示应为()A.163×103B.16.3×104C.1.63×105D.0.163×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将163000用科学记数法表示为:1.63×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,在同一直角坐标系中,函数y=kx与y=(k≠0)的图象大致是()A.①②B.①③C.②④D.③④【分析】利用反比例函数的图象及正比例函数的图象分别判断后即可确定正确的选项.解:当k>0时,反比例函数的图象位于一、三象限,正比例函数的图象位于一三象限,②正确;当k<0时,反比例函数的图象位于二、四象限,正比例函数的图象位于二四象限,④正确;故选:C.【点评】本题考查了反比例函数及正比例函数的图象,属于函数的基础知识,难度不较大.4.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1【分析】方程利用完全平方公式变形即可得到结果.解:用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.5.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念即可求解.解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.【点评】本题考查了中心对称的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合,难度一般.6.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.1【分析】直接利用特殊角的三角函数值分别代入求出答案.解:2sin30°﹣2cos60°+tan45°=2×﹣2×+1=1﹣1+1=1.故选:D.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.7.计算的结果为()A.B.C.D.【分析】根据分式的运算法则即可求出答案.【解答】原式==,故选:A.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型8.抛物线y=﹣(x+2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(﹣2,0)【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答.解:抛物线y=﹣(x+2)2﹣3的顶点坐标是(﹣2,﹣3),向右平移3个单位后,所得抛物线的顶点坐标是(﹣2+3,﹣3),即(1,﹣3).故选:B.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.9.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm 【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.【点评】本题考查了比较线段的长短,注意点的位置的确定,利用图形结合更易直观地得到结论.10.如图,在正方形ABCD中,E位DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为()A.15°B.10°C.20°D.25°【分析】由旋转前后的对应角相等可知,∠DFC=∠BEC=60°;一个特殊三角形△ECF 为等腰直角三角形,可知∠EFC=45°,把这两个角作差即可.解:∵△BCE绕点C顺时针方向旋转90°得到△DCF,∴CE=CF,∠DFC=∠BEC=60°,∠EFC=45°,∴∠EFD=60°﹣45°=15°.【点评】本题考查旋转的性质和正方形的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.如图,⊙O的直径CD经过弦EF的中点G,∠DCF=20°,则∠EOD等于()A.30°B.40°C.35°D.45°【分析】先撸垂径定理的推论得到CD⊥EF,再根据垂径定理得到=,然后利用圆周角定理确定∠EOD的度数.解:∵直径CD经过弦EF的中点G,∴CD⊥EF,∴=,∴∠EOD=2∠DCF=2×20°=40°.故选:B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.12.已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∴m=2.∴M(2,﹣8).故选:C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二.填空题(本大题共6小题,每小题3分,共18分)13.计算:3x2•5x3的结果为15x5.【分析】直接利用单项式乘以单项式运算法则求出即可.解:3x2•5x3=15x5.故答案是:15x5.【点评】此题主要考查了整式的乘法运算,熟练掌握相关运算法则是解题关键.14.已知点P(a,﹣6)与点Q(﹣5,3b)关于原点对称,则a+b=7.【分析】直接利用关于原点对称点的性质得出a,b的值,即可得出答案.解:∵点P(a,﹣6)与点Q(﹣5,3b)关于原点对称,∴a=5,3b=6,解得:b=2,故a+b=7.故答案为:7.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.15.如图,坡角为30°的斜坡上两树间的水平距离AC为2m,则两树间的坡面距离AB为m【分析】根据余弦的定义计算,得到答案.解:在Rt△ABC中,cos A=,∴AB==,故答案为:m.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度坡角的概念、锐角三角函数的定义是解题的关键.16.若关于x、y的方程组的解是,则mn的值为﹣2.【分析】将代入方程组即可求出m与n的值.解:将代入,∴,∴,∴mn=﹣2,故答案为:﹣2.【点评】本题考查二元一次方程组,解题的关键是正确理解二元一次方程组的解的定义,本题属于基础题型.17.如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.【分析】设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.解:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴,解得:x=,则EH=.故答案为:.【点评】此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.18.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,且过点(3,0),则下列结论:①abc<0;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0.其中正确结论的序号是①②③.【分析】由抛物线对称轴的位置确定ab的符号,由抛物线与y轴的交点在x轴上方得c >0,则可对A进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),则可对B选项进行判断;由对称轴公式可结C进行判断;由于x=2时,函数值大于0,则有4a+2b+c>0,于是可对D选项进行判断.解:①∵抛物线与y轴的交点在x轴上方,∴c>0,∵对称轴为直线x=1,∴ab<0,∴abc<0,所以此选项正确;②∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;所以此选项正确;③∵对称轴为直线x=1,∴﹣=1,b=﹣2a,∴2a+b=0,所以此选项正确;④∵当x=2时,y>0,∴4a+2b+c>0,所以此选项错误;其中正确结论的序号是①②③;故答案为:①②③.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c),熟练掌握二次函数的性质是关键.三.解答题(本大题共5小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤2;(Ⅱ)解不等式②,得x>﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣1<x≤2.【分析】先求出不等式组中的每一个不等式的解集,然后取其交集即为不等式组的解集;最后根据在数轴上表示不等式的解集的方法将其表示在数轴上.解:(Ⅰ)解不等式①,得x≤2;(Ⅱ)解不等式②,得x>﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣1<x≤2.故答案为:x≤2;x>﹣1;﹣1<x≤2.【点评】本题考查了在数轴上表示不等式的解集、解一元一次不等式组.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C处测得教学横顶部D 处的仰角为18°,教学楼底部B处的俯角为20°,教学楼的高BD=21m,求实验楼与教学楼之间的距离AB(结果保留整数).(参考数据:tan18°≈0.32,tan20°≈0.36)【分析】作CM⊥BD,在Rt△CDM中DM=CM tan∠DCM,在Rt△BCM中BM=CM tan ∠BCM,根据DM+BM=BD可得CM tan18°+CM tan20°=21,解之即可得.解:过点C作CM⊥BD于点M,在Rt△CDM中,∵tan∠DCM=,∴DM=CM tan∠DCM=CM tan18°;在Rt△BCM中,∵tan∠BCM=,∴BM=CM tan∠BCM=CM tan20°,∵DM+BM=BD,∴CM tan18°+CM tan20°=21,解得:CM=≈31(m),则AB=31m,答:AB的长约为31m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.21.如图1,在△ABC中,AC=BC,以BC为直径的⊙O交AB于点D.(1)求证:点D是AB的中点;(2)如图2,过点D作DE⊥AC于点E,求证:DE是⊙O的切线.【分析】(1)由于AC=AB,如果连接CD,那么只要证明出CD⊥AB,根据等腰三角形三线合一的特点,我们就可以得出AD=BD,由于BC是圆的直径,那么CD⊥AB,由此可证得.(2)连接OD,再证明OD⊥DE即可.【解答】证明:(1)如图1,连接CD,∵BC为⊙O的直径,∴CD⊥AB.∵AC=BC,∴AD=BD.(2)如图2,连接OD;∵AD=BD,OB=OC,∴OD是△BCA的中位线,∴OD∥AC.∵DE⊥AC,∴DF⊥OD.∵OD为半径,∴DE是⊙O的切线.【点评】本题主要考查了切线的判定,等腰三角形的性质等知识点.要注意的是要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.22.每年十月的第二个周四是世界爱眼日,为预防近视,超市决定对某型号护眼台灯进行降价销售.降价前,进价为50元的护眼台灯以80元售出,平均每月能售出120盏,调查表明:这种护眼台灯每盏售价每降低1元,其月平均销售量将增加10盏.(1)写出月销售利润y(单位:元)与销售价x(单位:元/盏)之间的函数表达式:(2)当销售价定为多少元时,所得月利润最大?最大月利润为多少元?【分析】(1)根据“总利润=单件利润×销售量”可得;(2)利用配方法求出二次函数最值即可得出答案.解:(1)设售价为x元/盏,月销售利润y元,根据题意得:y=(x﹣50)[120+10(80﹣x)]=﹣10x2+1420x﹣46000;(2)∵y=﹣10x2+1420x﹣46000=﹣10(x﹣71)2+96410,∴当销售价定为71元时,所得月利润最大,最大月利润为96410元.【点评】此题主要考查了二次函数的应用以及二次函数最值求法,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.23.如图,已知抛物线y=﹣x2+bx+c(b,c是常数)经过A(0,2)、B(4,0)两点.(Ⅰ)求该抛物线的解析式和顶点坐标;(Ⅱ)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这条抛物线于N,求当t取何值时,MN有最大值?最大值是多少?(Ⅲ)在(Ⅱ)的情况下,以A、M、N、D为顶点作平行四边形,请直接写出第四个顶点D的所有坐标(直接写出结果,不必写解答过程).【分析】(Ⅰ)把A、B两点坐标代入抛物线y=﹣x2+bx+c得关于b、c方程组,则解方程组即可得到抛物线解析式;然后把一般式配成顶点式得到抛物线的顶点坐标;(Ⅱ)先利用待定系数法求出直线AB的解析式为y=﹣x+2,设N(t,﹣t2+t+2)(0<t<4),则N(t,﹣t+2),则MN=﹣t2+t+2﹣(﹣t+2),然后利用二次函数的性质解决问题;(Ⅲ)由(Ⅱ)得N(2,5),M(2,1),如图,利用平行四边形的性质进行讨论:当MN为平行四边形的边时,利用MN∥AD,MN=AD=4和确定定义D点坐标,当MN为平行四边形的对角线时,利用AN∥MN,AN=MD和点平移的坐标规律写出对应D点坐标.解:(Ⅰ)把A(0,2)、B(4,0)代入抛物线y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2+x+2;∵y=﹣x2+x+2=﹣(x﹣)2+,∴抛物线的顶点坐标为(,);(Ⅱ)设直线AB的解析式为y=mx+n,把A(0,2)、B(4,0)代入得,解得,∴直线AB的解析式为y=﹣x+2,设N(t,﹣t2+t+2)(0<t<4),则N(t,﹣t+2),∴MN=﹣t2+t+2﹣(﹣t+2)=﹣t2+4t=﹣(t﹣2)2+4,当t=2时,MN有最大值,最大值为4;(Ⅲ)由(Ⅱ)得N(2,5),M(2,1),如图,当MN为平行四边形的边时,MN∥AD,MN=AD=4,则D1(0,6),D2(0,﹣2),当MN为平行四边形的对角线时,AN∥MN,AN=MD,由于点A向右平移2个单位,再向上平移3个单位得到N点,则点M向右平移2个单位,再向上平移3个单位得到D 点,则D3的坐标为(4,4),综上所述,D点坐标为(0,6)或(0,﹣2)或(4,4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求函数解析式;会利用点平移的坐标规律求平行四边形第四个顶点的坐标;理解坐标与图形性质;会运用分类讨论的思想解决思想问题.四.选做题(本题不计入总成绩)24.如图所示,在平面直角坐标系中A(0,2),点B(﹣3,0).△AOB绕点O逆时针旋转30°得到△A1OB1.(1)直接写出点B1的坐标;(2)点C(2,0),连接CA1交OA于点D,求点D的坐标.【分析】(1)过点B1作B1E⊥y轴于点E,根据△AOB绕点O逆时针旋转30°得到△A1OB1,即可求出点B1坐标;(2)根据题意可得OA1=OC=2,由旋转可得∠AOA1=30°,进而得∠A1OC=120°,所以可得∠A1CO=30°.从而可求出OD的长,即可得点D的坐标.解:(1)如图,过点B1作B1E⊥y轴于点E,∵△AOB绕点O逆时针旋转30°得到△A1OB1,∴∠BOB1=30°,∴∠B1OE=60°,∵B(﹣3,0),∴OB=OB1=3,∴OE=,B1E=,∴点B1的坐标为:(﹣,﹣);(2)∵点C(2,0),∴OC=2,∵A(0,2),∴OA=OA1=2,∴OA1=OC=2,∵∠AOA1=30°,∠DOC=90°,∴∠A1OC=120°,∴∠A1CO=30°.∴OD=OC•tan30°=2×=.∴点D的坐标为:(0,).【点评】本题考查了坐标与图形变化﹣旋转,解决本题的关键是掌握旋转的性质.。
2020年河北省中考数学模拟试卷及答案

2020年河北省中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共14小题,共42分)1.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A. 三角形B. 四边形C. 五边形D. 六边形2.如果零上2℃记作+2℃,那么零下3℃记作()A. 3B. -3C. -3℃D. +3℃3.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30°,B村的俯角为60°(如图)则A,B两个村庄间的距离是()米.A. 300B. 900C. 300D. 3004.7x+1是不小于-3的负数,表示为()A. -3≤7x+1≤0B. -3<7x+1<0C. -3≤7x+1<0D. -3<7x+1≤05.如图,在菱形ABCD中,AB=2,∠ABC=120°,则对角线BD等于()A. 2B. 4C. 6D. 86.要使(y2-ky-2y)(-y)的展开式中不含y2项,则k的值为()A. -2B. 0C. 2D. 37.如图所示,点E在BC的延长线上,下列条件中,①∠2=∠5;②∠3=∠4;③∠ACE+∠E=180°;④∠B=∠3,能判断AC∥DE的有()A. ①②B. ②④C. ①③D. ③④8.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A. 3.2×107B. 3.2×108C. 3.2×10-7D. 3.2×10-89.如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD是轴对称图形.其中正确结论的个数为()A. 1个B. 2个C. 3个D. 410.钝角三角形的外心在__________.A. 三角形的内部B. 三角形的外部C. 三角形的钝角所对的边上D. 以上都有可能11.在扇形统计图中,各扇形面积之比为5:4:3:2:1,其中最大扇形的圆心角为()A. 150°B. 120°C. 100°D. 90°12.点A(-1,1)是反比例函数y=的图象上一点,则m的值为()A. 0B. -2C. -1D. 113.计算-的结果是()A. B. C. D.14.如图,已知矩形ABCD的对角线AC,BD交于点O,则下列结论不一定成立的是()A. ∠ABC=90°B. AC=BDC. AB=BCD. ∠DBC=∠CAD二、填空题(本大题共3小题,共10分)15.计算(-2)0+= ______ ;计算:20112-2010×2012= ______ .16.已知a=1,,,则代数式的值为______ .17.若直角三角形的斜边长为25 cm,一条直角边的长为20 cm,则它的面积为____ cm2,斜边上的高为____ cm.三、计算题(本大题共1小题,共8分)18.计算:(1)-13-(1+0.5)×(-4)(2)-36×()四、解答题(本大题共6小题,共60分)19.已知n为正整数,且(x n)2 =9,求-3(x2)2n的值.20.某校九年级两个班,各选派10名学生参加学校举行的“诗词大赛”预赛.参赛选手的成绩如下(单位:分)九(1)班:88,91,92,93,93,93,94,98,99,100九(2)班:89,93,93,93,95,96,96,96,98,99.(1)九(2)班的平均分是______分;九(1)班的众数是______分;(2)若从两个班成绩最高的5位同学中选2人参加市级比赛,则这两个人来自不同班级的概率是多少?21.在⊙O中,点C是上的一个动点(不与点A,B重合),∠ACB=120°,点I是△ABC的内心,CI的延长线交⊙O于点D,连结AD,BD.(1)求证:AD=BD;(2)猜想线段AB与DI的数量关系,并说明理由.(3)在⊙O的半径为2,点E,F是的三等分点,当点C从点E运动到点F时,求点I随之运动形成的路径长.22.一名司机驾驶汽车从甲地去乙地,以80 km/h的平均速度用了6 h到达乙地.(1)当他按原路返回时,求汽车平均速度υ(km/h)与时间t(h)之间的函数表达式;(2)如果该司机返回时用了4.8 h,求汽车返回时的平均速度.23.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为,sin A=,求BH的长.24.已知:抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴,M为它的顶点(1)求抛物线的函数关系式;(2)求△MCB的面积;(3)设点P是直线l上的一个动点,当PA+PC最小时,求点P的坐标.2020年河北省中考数学模拟试卷参考答案1. D2. C3. D4. C5. A6. A7. C8. C9. C10. B11. B12. C13. C14. C15. 10;116.17. 150;1218. 解:(1)-13-(1+0.5)×(-4)=-1-=-1+=-;(2)-36×()=(-18)+20+(-30)+21=-7.19. 解:∵(x n)2 =9,∴x2n=9,∴原式=(x2n)3-3(x2n)2=×93-3×92=-162.20. 94.8;9321. (1)证明:∵点I是△ABC的内心,∴CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=×120°=60°,∴∠ABD=∠ACD=60°,∠BAD=∠BCD=60°,∴△ADB为等边三角形,∴AD=BD;(2)解:AB=DI.理由如下:连接AI,∵点I是△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,∵∠DAI=∠DAB+∠BAI=60°+∠BAI,∠DIA=∠ICA+∠CAI=60°+∠CAI,∴∠DAI=∠DIA,∴DA=DI,∵△ADB为等边三角形,∴AB=AD,∴AB=DI;(3)由(2)得AD=DI=DB,∴点I在以D点为圆心,DA为半径,圆心角为60°的弧上,连接DE、DF交此弧于点I′、I″,如图,∴当点C从点E运动到点F时,点I随之运动形成的路径长为弧I′I″的长,∵点E,F是的三等分点∴∠ADE=∠EDF+∠FDB=20°,连接OA,作OH⊥AD于H,则AH=DH,∵△ADB为等边三角形,∴∠OAH=30°,∴OH=OA=1,AH=OH=,∴AD=2,∴弧I′I″的长度==π,即点I随之运动形成的路径长为π.22. 解:(1)由已知得:vt=80×6,;(2)当t=4.8时,(千米/小时).答:返回时的速度100千米/小时.23. (1)证明:如图1中,∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;(2)证明:连接AC,如图2所示:∵OF⊥BC,∴=,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴=,∴CE2=EH•EA;(3)解:连接BE,如图3所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为,sin∠BAE=,∴AB=5,BE=AB•sin∠BAE=5×=3,∴EA==4,∵=,∴BE=CE=3,∵CE2=EH•EA,∴EH=,∴在Rt△BEH中,BH===.24. 解:(1)∵抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,∴,∴,∴抛物线的函数关系式为y=-x2+2x+3;(2)如图1,由(1)知,抛物线的函数关系式为y=-x2+2x+3;∴抛物线的对称轴为x=1,M(1,4),∵B(3,0)、C(0,3),∴直线BC解析式为y=-x+3,当x=1时,y=2,∴N(1,2).∴MN=2,OB=3,∴S△MCB=S△MNC+S△MNB=MN×OB=×2×3=3;(3)如图2,∵直线l是抛物线的对称轴,且A,B是抛物线与x轴的交点,∴点A,B关于直线l对称,∴PA+PC最小时,点P就是直线BC与直线l的交点,由(2)知,抛物线与直线BC的交点坐标为(1,2),∴点P(1,2).。
河北省2020年中考数学模拟试卷及答案

中考冲刺数学试卷一、选择题(共12小题,每小题3分,共36分)1.下列各数中,最大的是( ) A .-3 B .0 C .1 D .2 2.式子1-x 在实数范围内有意义,则x 的取值范围是( )A .x <1B .x ≥1C .x ≤-1D .x <-1 3.不等式组⎩⎨⎧≤-≥+0102x x 的解集是( )A .-2≤x ≤1 B .-2<x <1C .x ≤-1D .x ≥24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球.B .摸出的三个球中至少有一个球是白球.C .摸出的三个球中至少有两个球是黑球.D .摸出的三个球中至少有两个球是白球.5.若1x ,2x 是一元二次方程0322=--x x 的两个根,则21x x 的值是( ) A .-2 B .-3 C .2 D .36.如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( )A .18° B .24° C .30° D .36° 7.如图,是由4个相同小正方体组合而成的几何体,它的主视图是( )第6题图D CBAA .B . C. D .8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有( )A .21个交点B .18个交点C .15个交点D .10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计。
图(1)与图(2)是整理数据后绘制的两幅不完整的统计图。
以下结论不正..确.的是( )第9题图(2)第9题图(1)30%其它10%科普常识漫画小说3060书籍人数A .由这两个统计图可知喜欢“科普常识”的学生有90人.B .若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360个.C .由这两个统计图不能确定喜欢“小说”的人数.D .在扇形统计图中,“漫画”所在扇形的圆心角为72°. 10.如图,⊙A 与⊙B 外切于点D ,PC ,PD ,PE 分别是圆的切线,C ,D ,E 是切点, 若∠CED =x °,∠ECD =y °,⊙B 的半径为R ,则⋂DE 的长度是( ) A .()9090Rx -π B .()9090Ry -π C .()180180R x -πD .()180180R y -π第II 卷(非选择题 共84分)二、填空题(共4小题,每小题3分,共12分) 11.计算︒45cos = .12.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是 .13.太阳的半径约为696 000千米,用科学记数法表示数696 000为 .EPA BCD第10题图14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前然后甲车继续前行,乙车向原地返回.设千米,y 关于x /秒.15.如图,已知四边形ABCD 是平行四边形,BC =2AB ,A ,B 两点的坐标分别是(-1,0),(0,2),C ,D 两点在反比例函数)0(<=x xk y 的图象上,则k 的值等于 .16.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是 .第16题图HGF E DCBA三、解答题(共9小题,共72分) 17.(本题满分6分)解方程:xx 332=-.18.(本题满分6分)直线b x y +=2经过点(3,5),求关于x 的不等式b x +2≥0的解集.19.(本题满分6分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .第19题图A BCD EF求证:∠A =∠D .20.(本题满分7分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果; (2)求一次打开锁的概率.21.(本题满分7Rt △ABC 的三个顶点分别是A (-3,2C (0,2). (1)将△ABC 以点C 为旋转中心旋转转后对应的△11B A C ;平移△ABC ,若A 的坐标为(0,4),画出平移后对应的△(2)若将△11B A C 请直接写出旋转中心的坐标; (3)在x 轴上有一点P ,使得PA+PB 的值最小,请直 接写出点P 的坐标.第21题图22.(本题满分8分)如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中点,连接PA ,PB ,PC . (1)如图①,若∠BPC =60°,求证:AP AC 3=; (2)如图②,若2524sin =∠BPC ,求PAB ∠tan 的值.23.(本题满分10分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):温度x /℃ …… -4-224 4.5……植物每天高度增长量y /mm……414949412519.75 …… 由这些数据,科学家推测出植物每天高度增长量y 是温度x 的函数,且这种函数是反比例函数、一次函数和二次函数中的一种. (1)请你选择一种适当的函数,求出它的函数关系式,并简要说明OP第22题图①CBA第22题图②OPCBA不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个范围内选择?请直接写出结果.24.(本题满分12分)如图,点P 是直线l :22--=x y 上的点,过点P 的另一条直线m 交抛物线2x y =于A 、B 两点.(1)若直线m 的解析式为2321+-=x y ,求A 、B 两点的坐标;(2)①若点P 的坐标为(-2,t ),当PA =AB 时,请直接写出点A 的坐标;②试证明:对于直线l 上任意给定的一点P ,在抛物线上都能找到点A ,使得PA =AB 成立.(3)设直线l 交y 轴于点C ,若△AOB 的外心在边AB 上,且∠BPC=∠OCP ,求点P 的坐标.x y第25(1)题图O lmP BA x ylO 第25(2)题图xy Clm PAOB 第25(3)题图一、选择题二、填空题 11.22 12.28 13.51096.6⨯ 14.20 15.-12 16.15-三、解答题17.(本题满分6分)解:方程两边同乘以()3-x x ,得()332-=x x 解得9=x .经检验, 9=x 是原方程的解. 18.(本题满分6分)解:∵直线b x y +=2经过点(3,5)∴b +⨯=325.∴1-=b .即不等式为12-x ≥0,解得x ≥21.19.(本题满分6分)证明:∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE . 在△ABF 和△DCE 中,⎪⎩⎪⎨⎧=∠=∠=CE BF C B DC AB∴△ABF ≌△DCE , ∴∠A =∠D . 20.(本题满分7分)解:(1)设两把不同的锁分别为A 、B ,能把两锁打开的钥匙分别为a 、b ,其余两把钥匙分别为m 、n ,根据题意,可以画出如下树形图:由上图可知,上述试验共有8种等可能结果.(列表法参照给分)(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.∴P (一次打开锁)=4182=.21.(本题满分7分)(1)画出△A 1B 1C 如图所示: (2)旋转中心坐标(23,1-);ab m nn m b A B a第21题图(3)点P 的坐标(-2,0).22.(本题满分8分)(1)证明:∵弧BC =弧BC ,∴∠BAC =∠BPC =60°.又∵AB =AC ,∴△ABC 为等边三角形∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°, 又∠APC =∠ABC =60°,∴AC =3AP .(2)解:连接AO 并延长交PC 于F ,过点E 作EG ⊥AC 于G ,连接OC .∵AB =AC ,∴AF ⊥BC ,BF =CF .∵点P 是弧AB 中点,∴∠ACP =∠PCB ,∴EG =EF . ∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC=2524.设FC =24a ,则OC =OA =25a , ∴OF =7a ,AF =32a .在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40在Rt △AGE 和Rt △AFC 中,sin ∠FAC =ACAEEG =, ∴aaEG a EG 402432=-,∴EG =12a .∴tan ∠PAB =tan ∠PCB=212412==aa CFEF .23.(本题满分10分)第22(2)题图解:(1)选择二次函数,设c bx ax y ++=2,得⎪⎩⎪⎨⎧=++=+-=4124492449c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=4921c b a∴y 关于x 的函数关系式是4922+--=x x y . 不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数.(2)由(1),得4922+--=x x y ,∴()5012++-=x y , ∵01<-=a ,∴当1-=x 时,y 有最大值为50. 即当温度为-1℃时,这种植物每天高度增长量最大. (3)46<<-x .24.(本题满分12分)解:(1)依题意,得⎪⎩⎪⎨⎧=+-=.,23212x y x y 解得⎪⎪⎩⎪⎪⎨⎧=-=492311y x ,⎩⎨⎧==1122y x∴A (23-,49),B (1,1).(2)①A 1(-1,1),A 2(-3,9).②过点P 、B 分别作过点A 且平行于x 轴的直线的垂线,垂足分别为G 、H.设P (a ,22--a ),A (m ,2m ),∵PA =PB ,∴△PAG≌△BAH ,∴AG =AH ,PG =BH ,∴B (a m -2,2222++a m ),将点B 坐标代入抛物线2x y =,得0224222=--+-a a am m , ∵△=()()081816168228162222>++=++=---a a a a a a ∴无论a 为何值时,关于m 的方程总有两个不等的实数解,即对于任意给定的点P ,抛物线上总能找到两个满足条件的点A .(3)设直线m :()0≠+=k b kx y 交y 轴于D ,设A (m ,2m ),B (n ,2n ).过A 、B 两点分别作AG 、BH 垂直x 轴于G 、H . ∵△AOB 的外心在AB 上,∴∠AOB =90°, 由△AGO ∽△OHB ,得BHOH OGAG =,∴1-=mn .联立⎩⎨⎧=+=2xy b kx y 得02=--b kx x ,依题意,得m 、n 是方程02=--b kx x 的两根,∴b mn -=,∴1-=b ,即D (0,1). ∵∠BPC =∠OCP ,∴DP =DC =3.P设P (a ,22--a ),过点P 作PQ ⊥y 轴于Q ,在Rt △PDQ 中,222PD DQ PQ =+,∴()2223122=---+a a .∴01=a (舍去),5122-=a ,∴P (512-,514).∵PN 平分∠MNQ ,∴PT =NT ,∴()t t t -=+-22212,。
2020河北省中考数学模拟试题(含答案)

2020河北省中考数学模拟试卷时间:120 分钟 满分:120 分一、选择题(本大题共有 16 个小题,共 42 分,1~10 小题各 3 分,11~16 小题各 2 分)1.下列英文字母中,是中心对称图形的是( ) A.B.C..D.2.下列实数中的无理数是( )A .31-B .ΠC .0.57D .7223.成人每天维生素 D 的摄入量约为 0.0000046克.数据“0.0000046”用科学记数法表示为( )A .46×10-7B .4.6×10-7C .4.6×10-6D .0.46×10-5 4.下列运算正确的是( )A .-3-2=-5B . 4=±2C . 3-6=-3D .1553x x x =•5.由若干个大小形状完全相同的小立方块所搭几何体的俯视图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )A .B .C .D .6.计算1212+++a a a 的结果是( ) A .1 B .2a +2 C .2 D .14+a a7.如图,小明从 A 处沿北偏东 40°方向行走至点 B 处,又从点 B 处沿南偏东 70°方向行走至点 C 处,则∠ABC 等于( )A .100°B .110°C .120°D .130° 8.解不等式组⎪⎩⎪⎨⎧->+≥-②①3213243x x x 时,不等式①②的解集在同一条数轴上表示正确的是( ) A . B .C .D .9.如图,双曲线x6的一个分支为( )A .①B .②C .③D .④10.如图,一块直角三角板的 30°角的顶点 P 落在⊙O 上,两边分别交⊙O 于 A 、B 两点,若⊙O 的直径为 8,则弦 AB 长为( )A .8B .4C .22D .3211.下列说法正确的是( )A .检测某批次灯泡的使用寿命,适宜用全面调查B .“367人中有 2人同月同日生”为必然事件C .可能性是 0.1%的事件在一次试验中一定不会发生D .数据 3,5,4,1,-2的中位数是 412.如图,在△ABC 中,AB =AC ,以点 C 为圆心,CB 长为半径画弧,交 AB 于点 B 和点 D ,再分别以点B ,D 为圆心,大于21BD 长为半径画弧,两弧相交于点 M ,作射线 CM 交 AB 于点 E .若 AE =2,BE =1,则 EC 的长度是( )A .5B .3C .3D .213.甲、乙二人做某种机械零件,已知每小时甲比乙少做 8个,甲做 120个所用的时间与乙做 150个所用的时间相等,设甲每小时做 x 个零件,下列方程正确的是( ) A .8150120-=x x B .xx 1508120=+ C .xx 1508120=- D .8150120+=x x 14.如图,点 P 是正六边形 ABCDEF 内部一个动点, AB =1cm ,则点 P 到这个正六边形六条边的距离之和为( )cm .A .6B .3C .33D . 3615.图 1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图2的新几何体,则该新几何体的体积为( )A .40πcm 3B .60πcm 3C .70πcm 3D .80πcm 316.从地面竖直向上抛出一小球,小球的高度 h(单位:m)与小球运动时间 t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是 40m ; ②小球运动的时间为 6 s ; ③小球抛出 3秒时,速度为 0;④当 t =1.5s 时,小球的高度 h =30m . 其中正确的是( ) A .①④B .①②C .②③④D .②④二、填空题(本题共 10 分)17.(1)若a -b =3,a +b =-2,则= a 2-b 2= .(2)如图,矩形 ABCD 的顶点 A ,B 在数轴上,CD =6,点 A 对应的数为-1,则点 B 所对应的数为 .17(2) 17(3)(3)如图,已知点 A 坐标为( 3,1),B 为 x 轴正半轴上一动点,则∠AOB 度数为 ,在点 B 运动的过程中 AB +21OB 的最小值为 ____________. 三、解答题18.(本小题满分 8分)解密数学魔术:魔术师请观众心想一个数,然后将这个数按以下步骤操作:魔术师能立刻说出观众想的那个数.(1)如果小玲想的数是-3,请你通过计算帮助她告诉魔术师的结果;(2)如果小明想了一个数计算后,告诉魔术师结果为 85,那么魔术师立刻说出小明想的那个数是;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数.若设观众心想的数为 a,请你按照魔术师要求的运算过程列代数式并化简,再用一句话说出这个魔术的奥妙.四、解答题19.(本小题满分 9 分)定义新运算:对于任意实数,a、b,都有 a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2(2-5)+1=2×(-3)+1=-6+1=-5(1)求x⊕(-4)= 6,求x的值;(2)若 3⊕a的值小于 10,请判断方程:22x-b x-a=0的根的情况.20.(本小题满分 9 分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为每次连续接球 10个,每垫球到位 1个记 1分.运动员丙测试成绩统计表(1)成绩表中的 a=,b=;(2)若在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?请用你所学过的统计量加以分析说明(参考数据:三人成绩的方差分别为 S甲2=0.81、S乙2=0.4、S丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球从乙手中传出,球传一次甲得到球的概率是.21.(本小题满分 9分)如图,在△ABC中,AD是 BC边上的中线,点 E是 AD的中点,过点 A作AF∥BC交 BE的延长线于 F,BF交 AC于 G,连接 CF.(1)求证:△AEF ≌△DEB;(2)若∠BAC=90°,①试判断四边形 ADCF的形状,并证明你的结论;②若 AB=8,BD=5,直接写出线段 AG的长.七、解答题22.(本题 10分)有甲乙两个玩具小汽车在笔直的 240米跑道 MN上进行折返跑游戏,甲从点 M出发,匀速在 M、N之间折返跑,同时乙从点 N出发,以大于甲的速度匀速在 N、M之间折返跑.在折返点的时间忽略不计.(1)若甲的速度为v,乙的速度为 3v,第一次迎面相遇的时间为t,则t与v的关系式;(注释:当两车相向而行时相遇是迎面相遇,当两车在 N点相遇时也视为迎面相遇)(2)如图 1,①若甲乙两车在距 M 点 20米处第一次迎面相遇,则他们在距 M点米第二次迎面相遇;②若甲乙两车在距 M 点 50米处第一次迎面相遇,则他们在距 M点米第二次迎面相遇;(3)设甲乙两车在距 M 点x米处第一次迎面相遇,在距 M点y米处第二次迎面相遇.某同学发现了 y 与 x 的函数关系,并画出了部分函数图象(线段 OA ,不包括点 O ,如图 2所示).①则 a = ,并在图 2中补全 y 与 x 的函数图象(在图中注明关键点的数据); ②分别求出各部分图象对应的函数表达式;八、解答题23.(本小题满分 10分)如图,抛物线 L :()22++--=t t x y ,直线 l :t x 2=:与抛物线、x 轴分别相交于Q 、P . (1)t =1时,Q 点的坐标为 ; (2)当 P 、Q 两点重合时,求 t 的值; (3)当 Q 点达到最高时,求抛物线解析式;(4)在抛物线 L 与 x 轴所围成的封闭图形的边界上,我们把横坐标是整数的点称为“可点”,直接写出2≤t时“可点”的个数为___________.1≤九、解答题24.(本小题满分 13分)如图,在∠DAM内部做 Rt△ABC,AB平分∠DAM,∠ACB=90°,AB=10,AC=8,点 N为 BC的中点;动点 E由 A出发,沿 AB运动,速度为每秒 5个单位,动点 F由 A出发,沿 AM运动,速度为每秒 8个单位,当点 E到达点 B时,两点同时停止运动;过 A、E、F作⊙O;(1)判断△AEF的形状为___________,并判断 AD与⊙O的位置关系为___________;(2)求 t为何值时,EN与⊙O相切?求出此时⊙O的半径,并比较半径与劣弧长度的大小;(3)直接写出△AEF的内心运动的路径长为___________;(注:当 A、E、F重合时,内心就是 A点)(4)直接写出线段 EN与⊙O有两个公共点时,t的取值范围为___________.(参考数据:25774cos ,252474sin ,72474tan ,4337tan ,5337sin ≈︒≈︒≈︒=︒=︒)24题图 备用题1 备用图2参考答案一、选择题1-5 DBCAA 6-10 CBCDB 11-16 BADCB C二、填空题17.(1)-6 (2)5 (3)30°, 3三、解答题18.【解答】解:(1)(-3×3-6)÷3+7=2(2)设这个数为 x ,(3x -6)÷3+7=85;解得:x =80;(3)设观众想的数为 a . .因此,魔术师只要将最终结果减去 5,就能得到观众想的数了.19. 解:(1)x ⊕(-4)+1=6x [x -(-4)]+1=65,1054212-===-+x x x x(2)3⊕a <10,3(3-a)+1<1010-3a <10a >0,()08822>+=+-b a b ,所以该方程有两个不相等的实数根20.解:(1)a =7,b =7(2) 乙 (3)21 21.证明:(1)∵AF ∥BC ,∴∠AFE =∠DBE ,在△AEF 和△DEB 中,∴△AEF ≌△DEB(AAS);分(2)解:四边形 ADCF 是菱形, 理由如下:∵△AEF ≌△DEB , ∴AF =BD ,∵BD =DC ,∴AF =DC = 21BC ,又 AF ∥BC , ∴四边形 ADCF 是平行四边形,∵∠BAC =90°,AD 是 BC 边上的中线, ∴AD =DC ,∴四边形 ADCF 是菱形;(3)∵AF ∥BC∴△AFG ∽△CBG∴GC AG BC AF = ∴ 21=GC AG ∴GC =2AG =2 22. (1)vt 60= (2) ①60②150(3) ①80当800≤<x 时,x y 3= 当12080≤<x ,x y 3480-= 23.24.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形 B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C. =2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A. =﹣5 B. =+5 C. =8x﹣5 D. =8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A .66°B .104°C .114°D .124°14.a ,b ,c 为常数,且(a ﹣c )2>a 2+c 2,则关于x 的方程ax 2+bx+c=0根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .无实数根 D .有一根为015.如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .16.如图,∠AOB=120°,OP 平分∠AOB ,且OP=2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .1个B .2个C .3个D .3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m ﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A 出发后射向OB 边.若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A=90°﹣7°=83°.当∠A <83°时,光线射到OB 边上的点A 1后,经OB 反射到线段AO 上的点A 2,易知∠1=∠2.若A 1A 2⊥AO ,光线又会沿A 2→A 1→A 原路返回到点A ,此时∠A=______°. …若光线从A 点出发后,经若干次反射能沿原路返回到点A ,则锐角∠A 的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P;1,并指出她与嘉嘉落回到圈A的可能性一(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2样吗?24.某商店通过调低价格的方式促销n 个不同的玩具,调整后的单价y (元)与调整前的单价x (元)满足一次函数关系,如表:第1个第2个 第3个 第4个 … 第n 个 调整前的单价x (元) x 1 x 2=6 x 3=72 x 4 … x n 调整后的单价y (元) y 1y 2=4y 3=59y 4…y n已知这个n 玩具调整后的单价都大于2元.(1)求y 与x 的函数关系式,并确定x 的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n 个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程. 25.如图,半圆O 的直径AB=4,以长为2的弦PQ 为直径,向点O 方向作半圆M ,其中P 点在上且不与A点重合,但Q 点可与B 点重合. 发现:的长与的长之和为定值l ,求l :思考:点M 与AB 的最大距离为______,此时点P ,A 间的距离为______;点M 与AB 的最小距离为______,此时半圆M 的弧与AB 所围成的封闭图形面积为______; 探究:当半圆M 与AB 相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L :y=﹣(x ﹣t )(x ﹣t+4)(常数t >0)与x 轴从左到右的交点为B ,A ,过线段OA 的中点M 作MP ⊥x 轴,交双曲线y=(k >0,x >0)于点P ,且OA •MP=12, (1)求k 值;(2)当t=1时,求AB 的长,并求直线MP 与L 对称轴之间的距离;(3)把L 在直线MP 左侧部分的图象(含与直线MP 的交点)记为G ,用t 表示图象G 最高点的坐标; (4)设L 与双曲线有个交点的横坐标为x 0,且满足4≤x 0≤6,通过L 位置随t 变化的过程,直接写出t 的取值范围.河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.1【考点】相反数.【分析】直接利用相反数的定义得出答案.【解答】解:﹣(﹣1)=1.故选:D.【点评】此题主要考查了相反数的定义,正确把握定义是解题关键.2.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5D.2a2•a﹣1=2a【考点】单项式乘单项式;幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】根据零指数幂的性质,幂的乘方和积的乘方的计算法则,单项式乘以单项式的法则计算即可.【解答】解:A、(﹣5)0=1,故错误,B、x2+x3,不是同类项不能合并,故错误;C、(ab2)3=a3b6,故错误;D、2a2•a﹣1=2a故正确.故选D.【点评】本题考查了零指数幂的性质,幂的乘方和积的乘方的计算法则,单项式乘以单项式的法则,熟练掌握这些法则是解题的关键.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【点评】本题主要考查的是轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的特点是解题的关键.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.【考点】分式的混合运算.【分析】根据分式的基本性质和运算法则分别计算即可判断.【解答】解:A、1﹣=,故此选项错误;B、原式=•=x﹣1,故此选项正确;C、原式=•(x﹣1)=,故此选项错误;D、原式==x+1,故此选项错误;故选:B.【点评】本题主要考查分式的混合运算,熟练掌握分式的运算顺序和运算法则是解题的关键.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.【考点】一次函数的图象.【分析】当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.【解答】解:因为b<0时,直线与y轴交于负半轴,故选B【点评】本题考查一次函数的图象,关键是根据一次函数的图象是一条直线解答.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形 B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形【考点】平行四边形的性质.【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项A、B、D错误,C正确;即可得出结论.【解答】解:∵▱ABCD中,AB⊥BC,∴四边形ABCD是矩形,不一定是菱形,选项A错误;∵▱ABCD中,AC⊥BD,∴四边形ABCD是菱形,不一定是正方形,选项B错误;∵▱ABCD中,AC=BD,∴四边形ABCD是矩形,选项C正确;∵▱ABCD中,AB=AD,∴四边形ABCD是菱形,不一定是正方形,选项D错误;故选:C.【点评】本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C. =2D.在数轴上可以找到表示的点【考点】实数.【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.【解答】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.【点评】本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④【考点】展开图折叠成几何体.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选:A.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心【考点】三角形的内切圆与内心;三角形的外接圆与外心.【分析】根据网格得出OA=OB=OC,进而判断即可.【解答】解:由图中可得:OA=OB=OC=,所以点O在△ABC的外心上,故选B【点评】此题考查三角形的外心问题,关键是根据勾股定理得出OA=OB=OC.10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:A、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.B、错误.CA不一定平分∠BDA.C、错误.应该是S△ABC=•BC•AH.D、错误.根据条件AB不一定等于AD.故选A.【点评】本题考查作图﹣基本作图、线段的垂直平分线的性质等知识,解题的关键是掌握证明线段垂直平分线的证明方法,属于基础题,中考常考题型.11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁【考点】绝对值;数轴.【分析】根据有理数的加法法则判断两数的和、差及积的符号,用两个负数比较大小的方法判断.【解答】解:甲:由数轴有,0<a<3,b<﹣3,∴b﹣a<0,甲的说法正确,乙:∵0<a<3,b<﹣3,∴a+b<0乙的说法错误,丙:∵0<a<3,b<﹣3,∴|a|<|b|,丙的说法正确,丁:∵0<a<3,b<﹣3,∴<0,丁的说法错误.故选C【点评】此题考查了绝对值意义,比较两个负数大小的方法,有理数的运算,解本题的关键是掌握有理数的运算.12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A. =﹣5 B. =+5 C. =8x﹣5 D. =8x+5【考点】由实际问题抽象出分式方程.【分析】根据题意知:8x的倒数+5=3x的倒数,据此列出方程即可.【解答】解:根据题意,可列方程: =+5,故选:B.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找到3x的倒数与8x的倒数间的等量关系,列出方程.13.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【考点】平行四边形的性质.【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为0【考点】根的判别式.【分析】利用完全平方的展开式将(a﹣c)2展开,即可得出ac<0,再结合方程ax2+bx+c=0根的判别式△=b2﹣4ac,即可得出△>0,由此即可得出结论.【解答】解:∵(a﹣c)2=a2+c2﹣2ac>a2+c2,∴ac<0.在方程ax2+bx+c=0中,△=b2﹣4ac≥﹣4ac>0,∴方程ax2+bx+c=0有两个不相等的实数根.故选B.【点评】本题考查了完全平方公式以及根的判别式,解题的关键是找出△=b2﹣4ac>0.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式的符号,得出方程实数根的个数是关键.15.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.【考点】相似三角形的判定.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选C.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上【考点】等边三角形的判定.【分析】如图在OA、OB上截取OE=OF=OP,作∠MPN=60°,只要证明△PEM≌△PON即可推出△PMN是等边三角形,由此即可对称结论.【解答】解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON.∴PM=PN,∵∠MPN=60°,∴△POM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选D.【点评】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的性质等知识,解题的关键是正确添加辅助线,构造全等三角形,属于中考常考题型.二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是 2 .【考点】立方根.【专题】计算题.【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.18.若mn=m+3,则2mn+3m﹣5mn+10= 1 .【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式合并后,将已知等式代入计算即可求出值.【解答】解:原式=﹣3mn+3m+10,把mn=m+3代入得:原式=﹣3m﹣9+3m+10=1,故答案为:1【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.如图,已知∠AOB=7°,一条光线从点A 出发后射向OB 边.若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A=90°﹣7°=83°.当∠A <83°时,光线射到OB 边上的点A 1后,经OB 反射到线段AO 上的点A 2,易知∠1=∠2.若A 1A 2⊥AO ,光线又会沿A 2→A 1→A 原路返回到点A ,此时∠A= 76 °. …若光线从A 点出发后,经若干次反射能沿原路返回到点A ,则锐角∠A 的最小值= 6 °.【考点】三角形的外角性质;直角三角形的性质. 【专题】规律型.【分析】根据入射角等于反射角得出∠1=∠2=90°﹣7°=83°,再由∠1是△AA 1O 的外角即可得∠A 度数;如图,当MN ⊥OA 时,光线沿原路返回,分别根据入射角等于反射角和外角性质求出∠5、∠9的度数,从而得出与∠A 具有相同位置的角的度数变化规律,即可解决问题. 【解答】解:∵A 1A 2⊥AO ,∠AOB=7°, ∴∠1=∠2=90°﹣7°=83°, ∴∠A=∠1﹣∠AOB=76°, 如图:当MN ⊥OA 时,光线沿原路返回, ∴∠4=∠3=90°﹣7°=83°,∴∠6=∠5=∠4﹣∠AOB=83°﹣7°=76°=90°﹣14°, ∴∠8=∠7=∠6﹣∠AOB=76°﹣7°=69°, ∴∠9=∠8﹣∠AOB=69°﹣7°=62°=90°﹣2×14°, 由以上规律可知,∠A=90°﹣n •14°,当n=6时,∠A 取得最小值,最下度数为6°, 故答案为:76,6.【点评】本题主要考查直角三角形的性质和三角形的外角性质及入射角等于反射角,根据三角形的外角性质及入射角等于反射角得出与∠A 具有相同位置的角的度数变化规律是解题的关键.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.【考点】有理数的混合运算.【分析】(1)将式子变形为(1000﹣1)×(﹣15),再根据乘法分配律计算即可求解;(2)根据乘法分配律计算即可求解.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)+15=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×(118﹣﹣18)=999×100=99900【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.【考点】全等三角形的判定与性质.【分析】(1)先证明BC=EF,再根据SSS即可证明.(2)结论AB∥DE,AC∥DF,根据全等三角形的性质即可证明.【解答】(1)证明:∵BF=CE,∴BF+FC=FC+CE,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).(2)结论:AB∥DE,AC∥DF.理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴AB∥DE,AC∥DF.【点评】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形的条件,记住平行线的判定方法,属于基础题,中考常考题型.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.【考点】多边形内角与外角.【分析】(1)根据多边形内角和公式可得n边形的内角和是180°的倍数,依此即可判断,再根据多边形内角和公式即可求出边数n;(2)根据等量关系:若n边形变为(n+x)边形,内角和增加了360°,依此列出方程,解方程即可确定x.【解答】解:(1)∵360°÷180°=2,630°÷180°=3…90°,∴甲的说法对,乙的说法不对,360°÷180°+2=2+2=4.答:甲同学说的边数n是4;(2)依题意有(n+x﹣2)×180°﹣(n﹣2)×180°=360°,解得x=2.故x的值是2.【点评】考查了多边形内角与外角,此题需要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.;(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1,并指出她与嘉嘉落回到圈A的可能性一(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2样吗?【考点】列表法与树状图法;概率公式.【分析】(1)由共有4种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵共有4种等可能的结果,落回到圈A的只有1种情况,∴落回到圈A的概率P=;1(2)列表得:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)∵共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(4,4),∴最后落回到圈A的概率P2==,∴她与嘉嘉落回到圈A的可能性一样.【点评】此题考查了列表法或树状图法求概率.注意随机掷两次骰子,最后落回到圈A,需要两次和是4的倍数.24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.【考点】一次函数的应用.【分析】(1)设y=kx+b,根据题意列方程组即可得到结论,再根据已知条件得到不等式于是得到x的取值范围是x>;(2)将x=108代入y=x﹣1即可得到结论;(3)由(1)得y1=x1﹣1,y2=x2﹣2,…yn=xn﹣1,根据求平均数的公式即可得到结论.【解答】解:(1)设y=kx+b,由题意得x=6,y=4,x=72,y=59,∴,解得,∴y与x的函数关系式为y=x﹣1,∵这个n玩具调整后的单价都大于2元,∴x﹣1>2,解得x>,∴x的取值范围是x>;(2)将x=108代入y=x﹣1得y=×108﹣1=89,108﹣89=19,答:顾客购买这个玩具省了19元;(3)=﹣1,推导过程:由(1)得y1=x1﹣1,y2=x2﹣1,…yn=xn﹣1,∴=(y1+y2+…+yn)= [(x1﹣1)+(x2﹣1)+…+(xn﹣1)]= [(x1+x2+…+xn)﹣n]=×﹣1=﹣1.【点评】本题考查了一次函数的应用,求函数的解析式,熟记一次函数的性质是解题的关键.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A 点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为,此时点P,A间的距离为 2 ;点M与AB的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为﹣;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)【考点】圆的综合题.【分析】(1)半圆O的长度是固定不变的,由于PQ也是定值,所以的长度也是固定值,所以与的长之和为定值;(2)过点M作MC⊥AB于点C,当C与O重合时,M与AB的距离最大,此时,∠AOP=60°,AP=2;当Q与B 重合时,M与AB的距离最小,此时围成的封闭图形面积可以用扇形DMB的面积减去△DMB的面积即可;(3)当半圆M与AB相切时,此时MC=1,且分以下两种情况讨论,当C在线段OA上;当C在线段OB上,然后分别计出的长.【解答】解:发现:如图1,连接OP、OQ,∵AB=4,.. ∴OP=OQ=2,∵PQ=2,∴△OPQ是等边三角形,∴∠POQ=60°,∴==,又∵半圆O的长为:π×4=2π,∴+=2π﹣π=,∴l=π;思考:如图2,过点M作MC⊥AB于点C,连接OM,∵OP=2,PM=1,∴由勾股定理可知:OM=,当C与O重合时,M与AB的距离最大,最大值为,连接AP,此时,OM⊥AB,∴∠AOP=60°,∵OA=OP,∴△AOP是等边三角形,∴AP=2,如图3,当Q与B重合时,连接DM,∵∠MOQ=30°,∴MC=OM=,此时,M与AB的距离最小,最小值为,设此时半圆M与AB交于点D,DM=MB=1,∵∠ABP=60°,∴△DMB是等边三角形,∴∠DMB=60°,∴扇形DMB的面积为: =,△DMB的面积为: MC•DB=××1=,∴半圆M的弧与AB所围成的封闭图形面积为:﹣;探究:当半圆M与AB相切时,此时,MC=1,如图4,当点C在线段OA上时,在Rt△OCM中,由勾股定理可求得:OC=,∴cos∠AOM==,∴∠AOM=35°,∵∠POM=30°,∴∠AOP=∠AOM﹣∠POM=5°,∴==,当点C在线段OB上时,此时,∠BOM=35°,∵∠POM=30°,∴∠AOP=180°﹣∠POM﹣∠BOM=115°∴==,综上所述,当半圆M与AB相切时,的长为或.【点评】本题考查圆的综合问题,解题关键是根据题意画出图形分析,涉及勾股定理,弧长公式,圆的切线性质等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.26.如图,抛物线L :y=﹣(x ﹣t )(x ﹣t+4)(常数t >0)与x 轴从左到右的交点为B ,A ,过线段OA 的中点M 作MP ⊥x 轴,交双曲线y=(k >0,x >0)于点P ,且OA •MP=12,(1)求k 值;(2)当t=1时,求AB 的长,并求直线MP 与L 对称轴之间的距离;(3)把L 在直线MP 左侧部分的图象(含与直线MP 的交点)记为G ,用t 表示图象G 最高点的坐标;(4)设L 与双曲线有个交点的横坐标为x 0,且满足4≤x 0≤6,通过L 位置随t 变化的过程,直接写出t 的取值范围.【考点】二次函数综合题.【分析】(1)设点P (x ,y ),只要求出xy 即可解决问题.(2)先求出A 、B 坐标,再求出对称轴以及点M 坐标即可解决问题.(3)根据对称轴的位置即可判断,当对称轴在直线MP 左侧,L 的顶点就是最高点,当对称轴在MP 右侧,L 于MP 的交点就是最高点.(4)画出图形求出C 、D 两点的纵坐标,利用方程即可解决问题.【解答】解:(1)设点P (x ,y ),则MP=y ,由OA 的中点为M 可知OA=2x ,代入OA •MP=12,得到2x •y=12,即xy=6.∴k=xy=6.(2)当t=1时,令y=0,0=﹣(x ﹣1)(x+3),解得x=1或﹣3,∵点B 在点A 左边,∴B (﹣3,0),A (1,0).∴AB=4,∵L 是对称轴x=﹣1,且M 为(,0),∴MP 与L 对称轴的距离为.(3)∵A (t ,0),B (t ﹣4,0),∴L 的对称轴为x=t ﹣2,又∵MP 为x=,当t ﹣2≤,即t ≤4时,顶点(t ﹣2,2)就是G 的最高点.当t >4时,L 与MP 的解得(,﹣ t 2+t )就是G 的最高点.(4)结论:5或78+.理由:对双曲线,当4≤x 0≤6时,1≤y 0≤,即L 与双曲线在C (4,),D (6,1)之间的一段有个交点.①由=﹣(4﹣t )(4﹣t+4)解得t=5或7.②由1=﹣(4﹣t )(4﹣t+4)解得t=8﹣和8﹣.随t 的逐渐增加,L 的位置随着A (t ,0)向右平移,如图所示,当t=5时,L右侧过过点C.当t=8﹣<7时,L右侧过点D,即5≤t.当8﹣<t<7时,L右侧离开了点D,而左侧未到达点C,即L与该段无交点,舍弃.当t=7时,L左侧过点C.当t=8+时,L左侧过点D,即7≤t≤8+.【点评】本题考查二次函数综合题、待定系数法、平移等知识,解题的关键是理解题意,学会利用图形信息解决问题,学会用方程的思想思考问题,考虑问题要全面,属于中考常考题型.。