河北中考数学试题(含答案)
2022年河北省中考数学试题(含答案解析)

机密★启用前2022年河北省初中毕业生升学文化课考试数 学 试 卷注意事项:1.本试卷共8页,总分120分,考试时间120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡的相应位置.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效. 答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔将答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题. 5.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共16个小题。
1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算3a a ÷得?a ,则“?”是A .0B .1C .2D .32.如图,将ABC ∆折叠,使AC 边落在AB 边上,展开后得到折痕l ,则l 是ABC ∆的 A .中线 B .中位线C .高线D .角平分线3.与132-相等的是A .132--B .132-C .132-+D .132+4.下列正确的是A .4923+=+B .4923⨯=⨯C .4293=D . 4.90.7=5.如图,将三角形纸片剪掉一角得四边形,设ABC ∆与四边形BCDE 的外角和的度数分别为α,β,则 正确的是A .0αβ-=B .0αβ-<C .0αβ->D .无法比较α与β的大小6.某正方形广场的边长为2410m ⨯,其面积用科学记数法表示为A .42410m ⨯B .421610m ⨯C .521.610m ⨯D .421.610m ⨯7.①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择( )A .①③B .②③C .③④D .①④8.依据所标数据,下列一定为平行四边形的是A .B .C .D .9.若x 和y 互为倒数,则11()(2)x y yx+-的值是( )A .1B .2C .3D .410.某款“不倒翁”(图3-1)的主视图是图3-2,PA ,PB 分别与AMB 所在圆相切于点A ,B .若该圆半径是9cm ,40P ∠=︒,则AMB 的长是A .11cm πB .112cm π C .7cm πD .72cm π11.要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):图4-1图4-2对于方案Ⅰ、Ⅱ,说法正确的是A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行12.某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(,)m n,在坐标系中进行描点,则正确的是A.B.C.D.13.平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是A.1B.2C.7D.814.五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是A.只有平均数B.只有中位数C.只有众数D.中位数和众数15.“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是A.依题意3120120⨯=-xB.依题意203120(201)120+⨯=++x xC.该象的重量是5040斤D.每块条形石的重量是260斤16.题目:“如图,45=,BC=,在射线BM上取一点A,设AC dB∠=︒,2若对于d的一个数值,只能作出唯一一个ABC∆,求d的取值范围.”对于其答案,甲答:2d,乙答: 1.6d=,则正确的是d=,丙答:2A.只有甲答的对B.甲、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分,19小题每空1分)17.如图,某校运会百米预赛用抽签方式确定赛道.若琪琪第一个抽签,她从1~8号中随机抽取一签,则抽到6号赛道的概率是.18.如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A,B的连线与钉点C,D的连线交于点E,则(1)AB与CD是否垂直?(填“是”或“否”);(2)AE=.19.如图,棋盘旁有甲、乙两个围棋盒.(1)甲盒中都是黑子,共10个.乙盒中都是白子,共8个.嘉嘉从甲盒拿出a 个黑子放入乙盒,使乙盒棋子总数是甲盒所剩棋子数的2倍,则a = ; (2)设甲盒中都是黑子,共(2)m m >个,乙盒中都是白子,共2m 个.嘉嘉从甲盒拿出 (1)a a m <<个黑子放入乙盒中,此时乙盒 棋子总数比甲盒所剩棋子数多 个; 接下来,嘉嘉又从乙盒拿回a 个棋子放 到甲盒,其中含有(0)x x a <<个白子,此 时乙盒中有y 个黑子,则yx的值 为 .三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分9分)整式13()3m -的值为P . (1)当2m =时,求P 的值;(2)若P 的取值范围如图所示,求m 的负整数值.21.某公司要在甲、乙两人中招聘一名职员,对两人的学历,能力、经验这三项进行了测试.各项满分均为10分,成绩高者被录用.图12-1是甲、乙测试成绩的条形统计图,(1)分别求出甲、乙三项成绩之和,并指出会录用谁;(2)若将甲、乙的三项测试成绩,按照扇形统计图(图12-2)各项所占之比,分别计算 两人各自的综合成绩,并判断是否会改变 (1)的录用结果.发现 两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证 如,22(21)(21)10++-=为偶数.请把10的一半表示为两个正整数的平方和; 探究 设“发现”中的两个已知正整数为m ,n ,请论证“发现”中的结论正确.23.(本小题满分10分)如图,点(,3)P a 在抛物线2:4(6)C y x =--上,且在C 的对称轴右侧. (1)写出C 的对称轴和y 的最大值,并求a 的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P 及C 的一段,分别记为P ',C '.平移该胶片,使C '所在抛物线对应的函数恰为269y x x =-+-.求点P '移动的最短路 程.24.(本小题满分10分)如图,某水渠的横断面是以AB 为直径的半圆O ,其中水面截线//MN AB .嘉琪在A 处测得垂直站立于B 处的爸爸头顶C 的仰角为14︒,点M 的俯角为7︒.已知爸爸的身高为1.7m .(1)求C ∠的大小及AB 的长;(2)请在图中画出线段DH ,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan76︒取4 4.1)如图,平面直角坐标系中,线段AB的端点为(8,19)A-,(6,5)B.(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数(0,0)=+≠中,分别输入m和n的值,使得到射线CD,其中y mx n m yC c.当2(,0)c=时,会从C处弹出一个光点P,并沿CD飞行;当2c≠时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系;②当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光.求此时整数m的个数.如图1,四边形ABCD中,//∠=︒,3⊥CAD=,AB=DH BCAD BC,90ABC∠=︒,30于点H.将PQM∆与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中90∠=︒,30Q∠=︒,PM=.QPM(1)求证:PQM CHD∆≅∆;(2)PQM∆从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50︒时停止.①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;②如图2,点K在BH上,且9∆右移的速度为每秒1个单位长,BK=-若PQM绕点D旋转的速度为每秒5︒,求点K在PQM∆区域(含边界)内的时长;③如图3,在PQM∆旋转过程中,设PQ,PM分别交BC于点E,F,若BE d=,直接写出CF的长(用含d的式子表示).2022年河北省初中毕业生升学文化课考试数学试题参考答案一、 选择题二、 填空题17.1818.(1)是;(2)4√5519.(1)4;(2)m + 2a 1 三、解答题20.解:(1)P = 1−3m当m = 2 时,P = 1 – 3×2 = −5(2)依题意得,1−3m ≤ 7,解得2m -,∴m 的负整数值为−1和−2. 21.解:(1)甲:95923++=(分). 乙:89522++=(分).∵23 > 22,∴会录用甲.(2)由扇形图得,学历、能力、经验所占之比为:甲:1203601206060959360360360--⨯+⨯+⨯7=(分), 乙:1203601206060895360360360--⨯+⨯+⨯8=(分), ∵8 > 7,∴会录用乙.∴会改变(1)的录用结果.22.解:验证:12×10 = 5 = 22 + 12 =5探究:22()()m n m n ++-222222m mn n m mn n =+++-+ 2222m n =+222()m n =+,∵m 、n 为正整数,∴m 2 + n 2为整数. ∴(m + n )2 + (m − n )2一定是偶数.∴该偶数的一半为12 [(m + n )2 + (m − n )2]= m 2 + n 2数学试题第11页(共11页)。
2022年河北省中考数学真题试题及答案

三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)
20.
(1)解:∵
当 时,
;
(2) ,由数轴可知 ,
即 ,
,
解得 ,
的负整数值为 .
21.
(1)解:甲三项成绩之和为:9+5+9=23;
乙三项成绩之和为:8+9+5=22;
∴23>22
录取规则是分高者录取,所以会录用甲.
同理:可得
综上所述: .
A cmB. cmC. cmD. cm
11.要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()
A. Ⅰ可行、Ⅱ不可行B. Ⅰ不可行、Ⅱ可行C. Ⅰ、Ⅱ都可行D. Ⅰ、Ⅱ都不可行
12.某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对 ,在坐标系中进行描点,则正确的是()
(2)“能力”所占比例为: ;
“学历”所占比例为: ;
“经验”所占比例为: ;
∴“能力”、“学历”、“经验”的比为3:2:1;
甲三项成绩加权平均为: ;
乙三项成绩加权平均为: ;
∴8>7
所以会录用乙.
∴会改变录用结果
22.证明:验证:10的一半为5, ;
设“发现”中的两个已知正整数为m,n,
∴ ,其中 为偶数,
2022年河北省中考数学真题试题及答案
2022年河北省初中毕业生升学文化课考试
数学试卷
一、选择题(本大题共16个小题.1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)
河北中考数学试题及答案doc

河北中考数学试题及答案doc一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.5D. 3/4答案:B2. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角是多少度?A. 60°B. 90°C. 120°D. 150°答案:A3. 将下列哪个数列按从小到大的顺序排列?A. 3, 2, 1B. 1, 2, 3C. 3, 1, 2D. 2, 3, 1答案:B4. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C5. 以下哪个图形是轴对称图形?A. 等边三角形B. 矩形C. 圆D. 所有选项答案:D6. 一个数的绝对值是5,这个数可能是多少?A. 5B. -5C. 5或-5D. 以上都不是答案:C7. 以下哪个表达式的结果是一个正数?A. -2 + 3B. 2 - 5C. -3 × 2D. 1 ÷ (-1)答案:A8. 一个圆的半径是5厘米,那么这个圆的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:B9. 一个数的立方是-8,这个数是多少?A. 2B. -2C. 8D. -8答案:B10. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:B二、填空题(每题3分,共30分)11. 一个数的相反数是-4,这个数是________。
答案:412. 如果一个数的绝对值是7,那么这个数可能是________或________。
答案:7或-713. 一个等腰三角形的底角是45°,那么顶角是________度。
答案:9014. 一个数的平方根是2,那么这个数是________。
答案:415. 一个圆的直径是10厘米,那么这个圆的半径是________厘米。
答案:516. 一个数的立方根是-2,那么这个数是________。
2020年河北省中考数学试卷(含答案)

2020年河北省中考数学试卷(含答案)一、选择题1. 如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2. 墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.−C.×D.÷3. 对于①x−3xy=x(1−3y),①(x+3)(x−1)=x2+2x−3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,①是乘法运算D.①是乘法运算,①是因式分解4. 如图所示的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是() A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5. 如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9B.8C.7D.66. 如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b>12DE的长C.a有最小限制,b无限制D.a≥0,b<12DE的长7. 若a≠b,则下列分式化简正确的是()A.a+2b+2=abB.a−2b−2=abC.a2b2=abD.12a12b=ab8. 在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQB.四边形NPMRC.四边形NHMQD.四边形NHMR9. 若(92−1)(112−1)k=8×10×12,则k=()A.12B.10C.8D.610. 如图,将△ABC绕边AC的中点O顺时针旋转180∘.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“① CB =AD,”和“① 四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CDC.应补充:且AB // CDD.应补充:且OA=OC k个k 等于()11. 若k为正整数,则(k+k+⋯+k)k⏟A.k2kB.k2k+1C.2k kD.k2+k12. 如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是() A.从点P向北偏西45∘走3km到达lB.公路l的走向是南偏西45∘C.公路l的走向是北偏东45∘D.从点P向北走3km后,再向西走3km到达l13. 已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或714. 有一题目:“已知:点O为△ABC的外心,∠BOC=130∘,求∠A.”嘉嘉的解答为:画△ABC 以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130∘,得∠A=65∘.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115∘B.淇淇说的不对,∠A就得65∘C.嘉嘉求的结果不对,∠A应得50∘D.两人都不对,∠A应有3个不同值15. 如图,现要在抛物线y=x(4−x)上找点P(a, b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是() A.乙错,丙对 B.甲和乙都错 C.乙对,丙错 D.甲错,丙对16. 如图,是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按如图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4二、填空题17.已知:√18−√2=a√2−√2=b√2,则ab=________.18.正六边形的一个内角是正n边形一个外角的4倍,则n=________.19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记(x<0)的图象为曲线L.作T m(m为1∼8的整数).函数y=kx(1)若L过点T1,则k=________;(2)若L过点T4,则它必定还过另一点T m,则m=________;(3)若曲线L使得T1∼T8这些点分布在它的两侧,每侧各4个点,则k的整数值有________个.三、解答题20.已知两个有理数:−9和5.(1)计算:(−9)+5;2(2)若再添一个负整数m,且−9,5与m这三个数的平均数仍小于m,求m的值.21.有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和−16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.22.如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD. 以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆. 点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)求证:△AOE≅△POC;(2)写出∠1,∠2和∠C三者间的数量关系,并说明理由.230.用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚−W薄.①求Q与x的函数关系式;①x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]24.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l′.x−10y−21(1)求直线l的解析式;(2)请在图上画出直线l′(不要求列表计算),并求直线l′被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.25.如图,甲、乙两人(看成点)分别在数轴−3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;①若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;①若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.26.如图1和图2,在△ABC中,AB=AC,BC=8,tanC=3.点K在AC边上,点M,N分别在4AB,BC上,且AM=CN=2.点P从点M出发沿折线MB−BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=9,请直接写出点K被扫描到的总时长.4参考答案:一、1-5 DDCDB 6-10 BDADB 11-15 AACAC 16 B 二、17.618.1219.−1657三、20.(−9)+52=−42=−2;根据题意得,−9+5+m3<m,① −4+m<3m,① m−3m<4,① −2m<4,① m>−2,① m是负整数,① m=−1.21.A区显示的结果为:25+2a2,B区显示的结果为:−16−6a;这个和不能为负数,理由:根据题意得,25+4a2+(−16−12a)=25+4a2−16−12a=4a2−12a+9;① (2a−3)2≥0,① 这个和不能为负数.22.(1)证明:在△AOE和△POC中,{OA=OP,∠AOE=∠POC,OE=OC,① △AOE≅△POC(SAS).(2)解:∠1+∠C=∠2,理由如下:① △AOE≅△POC,① ∠E=∠C.① ∠1+∠E=∠2,① ∠1+∠C =∠2.23.设W =kx 2(k ≠0). ① 当x =3时,W =3, ① 3=9k ,解得k =13,① W 与x 的函数关系式为W =13x 2;①设薄板的厚度为x 厘米,则厚板的厚度为(6−x)厘米, ① Q =W 厚−W 薄=13(6−x)2−13x 2=−4x +12, 即Q 与x 的函数关系式为Q =−4x +12; ①① Q 是W 薄的3倍, ① −4x +12=3×13x 2, 整理得,x 2+4x −12=0,解得,x 1=2,x 2=−6(不合题意舍去), 故x 为2时,Q 是W 薄的3倍.24.① 直线l:y =kx +b 中,当x =−1时,y =−2;当x =0时,y =1, ① {−k +b =−2b =1 ,解得{k =3b =1 ,① 直线l 的解析式为y =3x +1; ① 直线l′的解析式为y =x +3;如图,解{y =x +3y =3x +1得{x =1y =4 ,① 两直线的交点为(1, 4),① 直线l′:y =x +3与y 轴的交点为(0, 3),① 直线l ′被直线l 和y 轴所截线段的长为:√12+(4−3)2=√2;把y =a 代入y =3x +1得,a =3x +1,解得x =a−13;把y =a 代入y =x +3得,a =x +3,解得x =a −3; 当a −3+a−13=0时,a =52,当12(a −3+0)=a−13时,a =7,当12(a−13+0)=a−3时,a=175,① 直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为52或7或175.25.① 经过第一次移动游戏,甲的位置停留在正半轴上,① 必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,① P甲对乙错=14.由题意m=5−4n+2(10−n)=25−6n.n=4时,离原点最近.不妨设甲连续k次正确后两人相距2个单位,则有|8+2k−4k|=2,解得k=3或5.如果k次中,有1次两人都对都错,则有|6+2(k−1)−4(k−1)|=2,解得k=3或5,如果k次中,有2次两人都对都错,则有|4+2(k−2)−4(k−2)|=2,解得k=3或5,…,综上所述,满足条件的k的值为3或5.26.如图1中,过点A作AH⊥BC于H.① AB=AC,AH⊥BC,① BH=CH=4,∠B=∠C,① tan∠B=tan∠C=AHBH =34,① AH=3,AB=AC=√AH2+BH2=√32+42=5.① 当点P在BC上时,点P到A的最短距离为3.如图1中,① ∠APQ=∠B,① PQ // BC,① △APQ∽△ABC,① PQ将△ABC的面积分成上下4:5,① S△APQS△ABC =(APAB)2=49,① APAB =23,① AP=103,① PM=AP=AM=103−2=43.当0≤x≤3时,如图1−1中,过点P作PJ⊥CA交CA的延长线于J.① PQ // BC,① APAB =PQBC,∠AQP=∠C,① x+25=PQ8,① PQ =85(x +2),① sin∠AQP =sin∠C=35,① PJ =PQ ⋅sin∠AQP =2425(x +2).当3≤x ≤9时,如图2中,过点P 作PJ ⊥AC 于J .同法可得PJ =PC ⋅sin∠C =35(11−x).由题意点P 的运动速度=936=14单位长度/秒.当3<x ≤9时,设CQ =y .① ∠APC =∠B +∠BAP =∠APQ +∠CPQ ,∠APQ =∠B ,① ∠BAP =∠CPQ ,① ∠B =∠C ,① △ABP ∽△PCQ ,① AB CP =BP CQ ,① 511−x =x−3y ,① y =−15(x −7)2+165,① −15<0, ① x =7时,y 有最大值,最大值=165, ① AK =94,① CK =5−94=114<165 当y =114时,114=−15(x −7)2+165, 解得x =7±32,① 点K被扫描到的总时长=(114+6−3)÷14=23秒.方法二:①点P在AB上的时候,有11/4个单位长度都能扫描到点K;①在BN阶段,当x在3∼5.5(即7−1.5)的过程,是能扫到K点的,在5.5∼8.5(即7+1.5)的过程是扫不到点K的,但在8.5∼9(即点M到N全部的路程)能扫到点K.所以扫到的时间是[(9−8.5)+(5.5−3)+114]÷14=23(秒).。
河北中考数学试卷(含答案解析)

河北省中考数学试卷一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分)1、(•河北)计算30的结果是()A、3B、30C、1D、0考点:零指数幂。
专题:计算题。
分析:根据零指数幂:a0=1(a≠0)计算即可.解答:解:30=1,故选C.点评:本题主要考查了零指数幂,任何非0数的0次幂等于1.2、(•河北)如图,∠1+∠2等于()A、60°B、90°C、110°D、180°考点:余角和补角。
专题:计算题。
分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3、(•河北)下列分解因式正确的是()A、﹣a+a3=﹣a(1+a2)B、2a﹣4b+2=2(a﹣2b)C、a2﹣4=(a﹣2)2D、a2﹣2a+1=(a﹣1)2考点:提公因式法与公式法的综合运用。
专题:因式分解。
分析:根据提公因式法,平方差公式,完全平方公式求解即可求得答案.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故本选项错误;B、2a﹣4b+2=2(a﹣2b+1),故本选项错误;C、a2﹣4=(a﹣2)(a+2),故本选项错误;D、a2﹣2a+1=(a﹣1)2,故本选项正确.故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4、(•河北)下列运算中,正确的是()A、2x﹣x=1B、x+x4=x5C、(﹣2x)3=﹣6x3D、x2y÷y=x2考点:整式的除法;合并同类项;幂的乘方与积的乘方。
专题:计算题。
分析:A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.解答:解:A中整式相减,系数相减再乘以未知数,故本选项错误;B,不同次数的幂的加法,无法相加,故本选项错误;C,整式的幂等于各项的幂,故本选项错误;D,整式的除法,相同底数幂底数不变,指数相减.故本答案正确.故选D.点评:本题考查了整式的除法,A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.本题很容易判断.5、(•河北)一次函数y=6x+1的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限考点:一次函数的性质。
2023年河北省中考数学真题(解析版)

2023年河北省初中毕业生升学文化课考试数学试卷一、选择题-的意义可以是()1.代数式7xA.7-与x的和B.7-与x的差C.7-与x的积D.7-与x的商【答案】C【解析】【分析】根据代数式赋予实际意义即可解答.-的意义可以是7-与x的积.【详解】解:7x故选C.【点睛】本题主要考查了代数式的意义,掌握代数式和差乘除的意义是解答本题的关键.2.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的()A.南偏西70︒方向B.南偏东20︒方向C.北偏西20︒方向D.北偏东70︒方向【答案】D【解析】【分析】根据方向角的定义可得答案.【详解】解:如图:∵西柏坡位于淇淇家南偏西70︒的方向,∴淇淇家位于西柏坡的北偏东70︒方向.故选D.【点睛】本题主要考查方向角,理解方向角的定义是正确解答的关键.3.化简233y x x ⎛⎫ ⎪⎝⎭的结果是()A.6xy B.5xy C.25x y D.26x y 【答案】A【解析】【分析】根据分式的乘方和除法的运算法则进行计算即可.【详解】解:2363362y y x x xy x x =⎛⎝⋅⎫= ⎪⎭,故选:A .【点睛】本题考查分式的乘方,掌握公式准确计算是本题的解题关键.4.1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A. B. C. D.【答案】B【解析】【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张,∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃,故选B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为()A.2B.3C.4D.5【答案】B【解析】【分析】利用三角形三边关系求得04AC <<,再利用等腰三角形的定义即可求解.【详解】解:在ACD 中,2AD CD ==,∴2222AC -<<+,即04AC <<,当4AC BC ==时,ABC 为等腰三角形,但不合题意,舍去;若3AC AB ==时,ABC 为等腰三角形,故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义,解题的关键是灵活运用所学知识解决问题.6.若k 为任意整数,则22(23)4k k +-的值总能()A.被2整除B.被3整除C.被5整除D.被7整除【答案】B【解析】【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +-的值总能被3整除,故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b -=-+通过因式分解,可以把多项式分解成若干个整式乘积的形式.7.若a b ===()A.2B.4C.D.【答案】A【解析】【分析】把a b ==【详解】解:∵a b ==2==,故选:A .【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.8.综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等【答案】C【解析】【分析】根据作图步骤可知,得出了对角线互相平分,从而可以判断.【详解】解:根据图1,得出BD 的中点O ,图2,得出OC AO =,可知使得对角线互相平分,从而得出四边形ABCD 为平行四边形,判定四边形ABCD 为平行四边形的条件是:对角线互相平分,故选:C .【点睛】本题考查了平行四边形的判断,解题的关键是掌握基本的作图方法及平行四边形的判定定理.9.如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是()A.a b< B.a b = C.a b > D.a ,b 大小无法比较【答案】A【解析】【分析】连接1223,PP P P ,依题意得12233467PP P P P P P P ===,4617P P PP =,137PP P 的周长为131737a PP PP P P ++=,四边形37P P P P 的周长为34466737b P P P P P P P P ++=+,故122313b a PP P P PP +-=-,根据123PP P 的三边关系即可得解.【详解】连接1223,PP P P ,∵点18~P P 是O 的八等分点,即 1223345566778148PP P P P P P P P P P P P P P P =======∴12233467PP P P P P P P ===, 464556781178P P P P P P P P P P PP =+=+=∴4617P P PP =又∵137PP P 的周长为131737a PPPP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,∴()()34466737131737b a P P P P P P P P PP PP P P ++-++=+-()()12172337131737PP PP P P P P PP PP P P =+++-++122313PP P P PP =-+在123PP P 中有122313PPP P PP >+∴1223130b a PP P P PP -=+>-故选A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.10.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是()A.12119.4610109.4610⨯-=⨯B.12129.46100.46910⨯-=⨯C.129.4610⨯是一个12位数D.129.4610⨯是一个13位数【答案】D【解析】【分析】根据科学记数法、同底数幂乘法和除法逐项分析即可解答.【详解】解:A.12119.4610109.4610⨯÷=⨯,故该选项错误,不符合题意;B.12129.46100.46910⨯-≠⨯,故该选项错误,不符合题意;C.129.4610⨯是一个13位数,故该选项错误,不符合题意;D.129.4610⨯是一个13位数,正确,符合题意.故选D .【点睛】本题主要考查了科学记数法、同底数幂乘法和除法等知识点,理解相关定义和运算法则是解答本题的关键.11.如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S = ()A. B. C.12 D.16【答案】B【解析】【分析】根据正方形的面积可求得AM 的长,利用直角三角形斜边的中线求得斜边BC 的长,利用勾股定理求得AC 的长,根据三角形的面积公式即可求解.【详解】解:∵16AMEF S =正方形,∴4AM ==,∵Rt ABC △中,点M 是斜边BC 的中点,∴28BC AM ==,∴AC ===,∴11422ABC S AB AC =⨯⨯=⨯⨯= ,故选:B .【点睛】本题考查了直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线等于斜边的一半”是解题的关键.12.如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】利用左视图和主视图画出草图,进而得出答案.【详解】解:由题意画出草图,如图,平台上至还需再放这样的正方体2个,故选:B .【点睛】此题主要考查了三视图,正确掌握观察角度是解题关键.13.在ABC 和A B C ''' 中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=()A.30︒B.n ︒C.n ︒或180n ︒-︒D.30︒或150︒【答案】C【解析】【分析】过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,求得3AD A D ''==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,∵306B B AB A B '''∠=∠=︒==,,∴3AD A D ''==,当B C 、在点D 的两侧,B C ''、在点D ¢的两侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴C C n '∠=∠=︒;当B C 、在点D 的两侧,B C ''、在点D ¢的同侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴'''A C D C n ∠=∠=︒,即'''180'''180A C B A C D n ∠=︒-∠=︒-︒;综上,C '∠的值为n ︒或180n ︒-︒.故选:C .【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.14.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是()A. B.C. D.【答案】D【解析】【分析】设圆的半径为R ,根据机器人移动时最开始的距离为2AM CN R ++,之后同时到达点A ,C ,两个机器人之间的距离y 越来越小,当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发,设圆的半径为R ,∴两个机器人最初的距离是2AM CN R ++,∵两个人机器人速度相同,∴分别同时到达点A ,C ,∴两个机器人之间的距离y 越来越小,故排除A ,C ;当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,保持不变,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大,故排除C ,故选:D .【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.15.如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=()A.42︒B.43︒C.44︒D.45︒【答案】C【解析】【分析】如图,由平角的定义求得18034ADB ADE Ð=°-Ð=°,由外角定理求得,16AHD ADB αÐ=Ð-Ð=°,根据平行性质,得16GIF AHD Ð=Ð=°,进而求得44EGF GIF βÐ=Ð-Ð=°.【详解】如图,∵146ADE ∠=︒∴18034ADB ADE Ð=°-Ð=°∵ADB AHDαÐ=Ð+Ð∴503416AHD ADB αÐ=Ð-Ð=°-°=°∵12l l ∥∴16GIF AHD Ð=Ð=°∵EGF GIFβÐ=Ð+Ð∴601644EGF GIF βÐ=Ð-Ð=°-°=°故选:C .【点睛】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角之间的数量关系是解题的关键.16.已知二次函数22y x m x =-+和22y x m =-(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.2mC.4D.22m 【答案】A【解析】【分析】先求得两个抛物线与x 轴的交点坐标,据此求解即可.【详解】解:令0y =,则220x m x -+=和220x m -=,解得0x =或2x m =或x m =-或m ,不妨设0m >,∵()0m ,和()0m -,关于原点对称,又这四个交点中每相邻两点间的距离都相等,∴()20m ,与原点关于点()0m ,对称,∴22m m =,∴2m =或0m =(舍去),∵抛物线22y x m =-的对称轴为0x =,抛物线22y x m x =-+的对称轴为222m x ==,∴这两个函数图象对称轴之间的距离为2,故选:A .【点睛】本题考查了抛物线与x 轴的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件.二、填空题17.如图,已知点(3,3),(3,1)A B ,反比例函数(0)k y k x=≠图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.【答案】4(答案不唯一,满足39k <<均可)【解析】【分析】先分别求得反比例函数(0)k y k x =≠图像过A 、B 时k 的值,从而确定k 的取值范围,然后确定符合条件k 的值即可.【详解】解:当反比例函数(0)k y k x=≠图像过(3,3)A 时,339k =⨯=;当反比例函数(0)k y k x =≠图像过(3,1)B 时,313k =⨯=;∴k 的取值范围为39k <<∴k 可以取4.故答案为4(答案不唯一,满足39k <<均可).【点睛】本题主要考查了求反比例函数的解析式,确定边界点的k 的值是解答本题的关键.18.根据下表中的数据,写出a 的值为_______.b 的值为_______.x结果代数式2n31x +7b21x x +a 1【答案】①.52②.2-【解析】【分析】把2x =代入得21x a x +=,可求得a 的值;把x n =分别代入31x b +=和211x x+=,据此求解即可.【详解】解:当x n =时,31x b +=,即31n b +=,当2x =时,21x a x +=,即221522a ⨯+==,当x n =时,211x x +=,即211n n +=,解得1n =-,经检验,1n =-是分式方程的解,∴()3112b =⨯-+=-,故答案为:52;2-【点睛】本题考查了求代数式的值,解分式方程,准确计算是解题的关键.19.将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).【答案】①.30②.【解析】【分析】(1)作图后,结合正多边形的外角的求法即可求解;(2)表问题转化为图形问题,首先作图,标出相应的字母,把正六边形的中心到直线l 的距离转化为求ON OM BE =+,再根据正六边形的特征及利用勾股定理及三角函数,分别求出,OM BE 即可求解.【详解】解:(1)作图如下:根据中间正六边形的一边与直线l 平行及多边形外角和,得60ABC ∠=︒,906030A α∠=∠=︒-︒=︒,故答案为:30;(2)取中间正六边形的中心为O,作如下图形,由题意得:AG BF ∥,AB GF ∥,BF AB ⊥,∴四边形ABFG 为矩形,AB GF ∴=,,90BAC FGH ABC GFH ∠=∠∠=∠=︒ ,()Rt Rt SAS ABC GFH ≌,BC FH ∴=,在Rt PDE △中,1,DE PE ==,由图1知2AG BF PE ===,由正六边形的结构特征知:12OM =⨯=()112BC BF CH =-=,3tan 3BC AB BAC ∴==-∠,21BD AB ∴=-=,又1212DE =⨯= ,BE BD DE ∴=+=,ON OM BE ∴=+=故答案为:【点睛】本题考查了正六边形的特征,勾股定理,含30度直角三角形的特征,全等三角形的判定性质,解直角三角形,解题的关键是掌握正六边形的结构特征.三、解答题20.某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区脱靶一次计分(分)312-在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【答案】(1)珍珍第一局的得分为6分;(2)6k =.【解析】【分析】(1)根据题意列式计算即可求解;(2)根据题意列一元一次方程即可求解.【小问1详解】解:由题意得()4321426⨯+⨯+⨯-=(分),答:珍珍第一局的得分为6分;【小问2详解】解:由题意得()()3311032613k k +⨯+--⨯-=+,解得:6k =.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.【答案】(1)2132S a a =++,251S a =+,当2a =时,1223S S +=(2)12S S >,理由见解析【解析】【分析】(1)根据题意求出三种矩形卡片的面积,从而得到12,S S ,12S S +,将2a =代入用2a =a 表示12S S +的等式中求值即可;(2)利用(1)的结果,使用作差比较法比较即可.【小问1详解】解:依题意得,三种矩形卡片的面积分别为:21S a S a S ===甲乙丙,,,∴213232S S S S a a =++=++甲乙丙,2551S S S a =+=+乙丙,∴()()2212325183S S a a a a a +=++++=++,∴当2a =时,212282323S S +=+⨯+=;【小问2详解】12S S >,理由如下:∵2132S a a =++,251S a =+∴()()()222123251211S S a a a a a a -=++-+=-+=-∵1a >,∴()21210S S a -=->,∴12S S >.【点睛】本题考查列代数式,整式的加减,完全平方公式等知识,会根据题意列式和掌握做差比较法是解题的关键.22.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?【答案】(1)中位数为3.5分,平均数为3.5分,不需要整改(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分【解析】【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可;(2)根据“重新计算后,发现客户所评分数的平均数大于3.55分”列出不等式,继而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可得解.【小问1详解】解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分;∴客户所评分数的中位数为:34 3.52+=(分)由统计图可知,客户所评分数的平均数为:1123364555 3.520⨯+⨯+⨯+⨯+⨯=(分)∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.【小问2详解】设监督人员抽取的问卷所评分数为x 分,则有:3.520 3.55201x ⨯+>+解得: 4.55x >∵调意度从低到高为1分,2分,3分,4分,5分,共5档,∴监督人员抽取的问卷所评分数为5分,∵45<,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分,即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由3.5分变成4分.【点睛】本题考查条形统计图,中位数和加权平均数,一元一次不等式的应用等知识,掌握求中位数和加23.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =-+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.【答案】(1)1C 的最高点坐标为()32,,19a =-,1c =;(2)符合条件的n 的整数值为4和5.【解析】【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =,即可求得c 的值;(2)求得点A 的坐标范围为()()5171 ,,,求得n 的取值范围,即可求解.【小问1详解】解:∵抛物线21:(3)2C y a x =-+,∴1C 的最高点坐标为()32,,∵点(6,1)A 在抛物线21:(3)2C y a x =-+上,∴21(63)2a =-+,解得:19a =-,∴抛物线1C 的解析式为21(3)29y x =--+,令0x =,则21(03)219c =--+=;【小问2详解】解:∵到点A 水平距离不超过1m ∴点A 的坐标范围为()()5171 ,,,当经过()51,时,211551188n =-⨯+⨯++,解得175n =;当经过()71,时,211771188n =-⨯+⨯++,解得417n =;∴174157n ≤≤∴符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.24.装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与 EQ的长度,并比较大小.【答案】(1)7cm ;(2)11cm 2;(3)253cm 3EF =, 25π=cm 6EQ , EF EQ >.【解析】【分析】(1)连接OM ,利用垂径定理计算即可;(2)由切线的性质证明OE GH ⊥进而得到OE MN ⊥,利用锐角三角函数求OD ,再与(1)中OC 相减即可;(3)由半圆的中点为Q 得到90QOB ∠=︒,得到30QOE ∠=︒分别求出线段EF 与 EQ的长度,再相减比较即可.【详解】解:(1)连接OM ,∵O 为圆心,OC MN ⊥于点C ,48cm MN =,∴124cm 2MC MN ==,∵50cm AB =,∴125cm 2OM AB ==,∴在Rt OMC 中,7cm OC ===.(2)∵GH 与半圆的切点为E ,∴OE GH⊥∵MN GH∥∴OE MN ⊥于点D ,∵30ANM ∠=︒,25cm ON =,∴125cm 22OD ON ==,∴操作后水面高度下降高度为:25117cm 22-=.(3)∵OE MN ⊥于点D ,30ANM ∠=︒∴60DOB ∠=︒,∵半圆的中点为Q ,∴ AQ QB=,∴90QOB ∠=︒,∴30QOE ∠=︒,∴tan cm 3EF QOE OE =∠⋅=, 30π2525π==cm 1806EQ ⨯⨯,∵()25π25325π50325π03666-==>,∴ EF EQ>.【点睛】本题考查了垂径定理、圆的切线的性质、求弧长和解直角三角形的知识,解答过程中根据相关性质构造直角三角形是解题关键.25.在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.【答案】(1)1l 的解析式为6y x =-+;2l 的解析式为15y x =-+;(2)①10,20x m y m =+=-;②3l 的解析式为30y x =-+,图象见解析;(3)538a c b+=【解析】【分析】(1)根据待定系数法即可求出1l 的解析式,然后根据直线平移的规律:上加下减即可求出直线2l 的解析式;(2)①根据题意可得:点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ,再得出点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线3l 的解析式,进而可画出函数图象;(3)先根据题意得出点A ,B ,C 的坐标,然后利用待定系数法求出直线AB 的解析式,再把点C 的坐标代入整理即可得出结果.【小问1详解】设1l 的解析式为y kx b =+,把(4,2)M 、(2,4)N 代入,得4224k b k b +=⎧⎨+=⎩,解得:16k b =-⎧⎨=⎩,∴1l 的解析式为6y x =-+;将1l 向上平移9个单位长度得到的直线2l 的解析式为15y x =-+;【小问2详解】①∵点P 按照甲方式移动了m 次,点P 从原点O 出发连续移动10次,∴点P 按照乙方式移动了(10m -次,∴点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ;∴点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标为21010m m m +-=+,纵坐标为()21020m m m +-=-,∴10,20x m y m =+=-;②由于102030x y m m +=++-=,∴直线3l 的解析式为30y x =-+;函数图象如图所示:【小问3详解】∵点,,A B C 的横坐标依次为,,a b c ,且分别在直线123,,l l l 上,∴()()(),6,,15,,30A a a B b b C c c -+-+-+,设直线AB 的解析式为y mx n =+,把A 、B 两点坐标代入,得615ma n a mb n b +=-+⎧⎨+=-+⎩,解得:9196m b a a n b a ⎧=-+⎪⎪-⎨⎪=-⎪-⎩,∴直线AB 的解析式为9916a y x b a b a⎛=-++- -⎝⎭,∵A ,B ,C 三点始终在一条直线上,∴991630a c c b a b a⎛⎫-++-=-+ ⎪--⎝⎭,整理得:538a c b +=;即a ,b ,c 之间的关系式为:538a c b +=.【点睛】本题是一次函数和平移综合题,主要考查了平移的性质和一次函数的相关知识,正确理解题意、熟练掌握平移的性质和待定系数法求一次函数的解析式是解题关键.26.如图1和图2,平面上,四边形ABCD中,8,12,6,90AB BC CD DA A ====∠=︒,点M 在AD 边上,且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P ,设点P 在该折线上运动的路径长为(0)x x >,连接A P '.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;(3)当08x <≤时,请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).【答案】(1)见解析(2)①90CBD ∠=︒,13x =;②76或236(3)22816x x +【解析】【分析】(1)根据旋转的性质和角平分线的概念得到A M AM '=,A MP AMP '∠=∠,然后证明出()SAS A MP AMP 'V V ≌,即可得到A P AP '=;(2)①首先根据勾股定理得到10BD ==,然后利用勾股定理的逆定理即可求出90CBD ∠=︒;首先画出图形,然后证明出DNM DBA V V ,利用相似三角形的性质求出103DN =,83MN =,然后证明出PBN DMN V V ∽,利用相似三角形的性质得到5PB =,进而求解即可;②当P 点在AB 上时,2PQ =,A MP AMP '∠=∠,分别求得,BP AP ,根据正切的定义即可求解;②当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H ,证明PQB BAD ∽,得出4855PQ PB ==,3655BQ PB ==,进而求得AQ ,证明HPQ HMA ∽,即可求解;(3)如图所示,过点A '作A E AB '⊥交AB 于点E ,过点M 作MF A E '⊥于点F ,则四边形AMFE 是矩形,证明A PE MA F '' ∽,根据相似三角形的性质即可求解.【小问1详解】∵将线段MA 绕点M 顺时针旋转()0180n n ︒<≤到MA ',∴A M AM'=∵A MA '∠的平分线MP 所在直线交折线AB BC -于点P ,∴A MP AMP'∠=∠又∵PM PM=∴()SAS A MP AMP 'V V ≌∴A P AP '=;【小问2详解】①∵8AB =,6DA =,90A ∠=︒∴10BD ==∵=BC ,12CD =∴(222210144BC BD +=+=,2212144CD ==∴222BC BD CD +=∴90CBD ∠=︒;如图所示,当180n =时,∵PM 平分A MA'∠∴90PMA ∠=︒∴PM AB∥∴DNM DBAV V ∽∴DN DM MN DB DA BA==∵2DM =,6DA =∴21068DN MN ==∴103DN =,83MN =∴203BN BD DN =-=∵90PBN NMD ∠=∠=︒,PNB DNM∠=∠∴PBN DMNV V ∽∴PB BN DM MN =,即203823PB =∴解得5PB =∴8513x AB PB =+=+=.②如图所示,当P 点在AB 上时,2PQ =,A MP AMP '∠=∠∵8,6,90AB DA A ==∠=︒,∴22226810BD AB AD =+=+=,63sin 105AD DBA BD ∠===,∴2103sin 35BQ BP DBA ===∠,∴1014833AP AB BP =-=-=∴1473tan tan 46AP A MP AMP AM '∠=∠===;如图所示,当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H ,∵90PQB CBD DAB ∠=∠=∠=︒,∴90QPB PBQ DBA ∠=︒-∠=∠,∴PQB BAD∽∴PQ QB PB BA AD BD==即8610PQ QB PB ==∴4855PQ PB ==,3655BQ PB ==,∴465AQ AB BQ =+=∵,PQ AB DA AB⊥⊥∴PQ AD ∥,∴HPQ HMA ∽,∴HQ PQ HA AM=∴854645HQ HQ =+解得:9215HQ =∴922315tan tan tan 865HQ A MP AMP QPH PQ '∠=∠=∠===,综上所述,tan A MP '∠的值为76或236;【小问3详解】解:∵当08x <≤时,∴P 在AB 上,如图所示,过点A '作A E AB '⊥交AB 于点E ,过点M 作MF A E '⊥于点F ,则四边形AMFE 是矩形,∴AE FM =,4EF AM ==,∵A MP AMP ' ≌,∴90PA M A '∠=∠=︒,∴90PA E FA M ''∠+∠=︒,又90A MF FA M ''∠+∠=︒,∴PA E A MF ''∠=∠,又∵90A EP MFA ''∠=∠=︒,∴A PE MA F '' ∽,∴A P PE A E MA A F FM''==''∵A P AP x '==,4MA MA '==,设FM AE y ==,A E h'=即44x x y h h y-==-∴4h y x=,()()44x y x h -=-∴()444h x x h x ⎛⎫-=- ⎪⎝⎭整理得22816x h x =+即点A '到直线AB 的距离为22816x x +.【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,折叠的性质,求正切值,熟练掌握以上知识且分类讨论是解题的关键.。
2020-2021年河北省中考数学试题及答案(Word版)

2021年河北省中考数学试卷及答案2021年河北省中考数学试卷及答案(1——34页)2020年河北省中考数学试卷及答案(35——45页)一、选择题(本大题有16个小题,共42分。
1~10小题各3分,11~16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,已知四条线段a ,b ,c ,d 中的一条与挡板另一侧的线段m 在同一直线上,请借助直尺判断该线段是( )A .aB .bC .cD .d2.(3分)不一定相等的一组是( )A .a +b 与b +aB .3a 与a +a +aC .a 3与a •a •aD .3(a +b )与3a +b3.(3分)已知a >b ,则一定有﹣4a □﹣4b ,“□”中应填的符号是( )A .>B .<C .≥D .=4.(3分)与√32−22−12结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣15.(3分)能与﹣(34−65)相加得0的是( )A .−34−65B .65+34C .−65+34D .−34+656.(3分)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A .A 代B .B 代C .C 代D .B 代7.(3分)如图1,▱ABCD 中,AD >AB ,∠ABC 为锐角.要在对角线BD 上找点N ,M ,使四边形ANCM 为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )A .甲、乙、丙都是B .只有甲、乙才是C .只有甲、丙才是D .只有乙、丙才是8.(3分)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB =( )A .1cmB .2cmC .3cmD .4cm 9.(3分)若√33取1.442,计算√33−3√33−98√33的结果是( )A .﹣100B .﹣144.2C .144.2D .﹣0.0144210.(3分)如图,点O 为正六边形ABCDEF 对角线FD 上一点,S △AFO =8,S △CDO =2,则S 正六边形ABCDEF 的值是( )A.20B.30C.40D.随点O位置而变化11.(2分)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列正确的是()A.a3>0B.|a1|=|a4|C.a1+a2+a3+a4+a5=0D.a2+a5<012.(2分)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.713.(2分)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).证法2:如图,∵∠A=76°,∠B=59°,且∠ACD=135°(量角器测量所得)又∵135°=76°+59°(计算所得)∴∠ACD =∠A +∠B (等量代换).下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理14.(2分)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“( )”应填的颜色是( )A .蓝B .粉C .黄D .红 15.(2分)由(1+c 2+c −12)值的正负可以比较A =1+c 2+c 与12的大小,下列正确的是( )A .当c =﹣2时,A =12B .当c =0时,A ≠12C .当c <﹣2时,A >12D .当c <0时,A <12 16.(2分)如图,等腰△AOB 中,顶角∠AOB =40°,用尺规按①到④的步骤操作: ①以O 为圆心,OA 为半径画圆;②在⊙O 上任取一点P (不与点A ,B 重合),连接AP ;③作AB 的垂直平分线与⊙O 交于M ,N ;④作AP 的垂直平分线与⊙O 交于E ,F .结论Ⅰ:顺次连接M ,E ,N ,F 四点必能得到矩形;结论Ⅱ:⊙O 上只有唯一的点P ,使得S 扇形FOM =S 扇形AOB .对于结论Ⅰ和Ⅱ,下列判断正确的是( )A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C .Ⅰ不对Ⅱ对D .Ⅰ对Ⅱ不对二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.(4分)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为 ;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片 块.18.(4分)如图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且∠A ,∠B ,∠E 保持不变.为了舒适,需调整∠D 的大小,使∠EFD =110°,则图中∠D 应 (填“增加”或“减少”) 度.19.(4分)用绘图软件绘制双曲线m :y =60x 与动直线l :y =a ,且交于一点,图1为a =8时的视窗情形.(1)当a =15时,l 与m 的交点坐标为 ;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O 始终在视窗中心. 例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的12,其可视范围就由﹣15≤x≤15及﹣10≤y≤10变成了﹣30≤x≤30及﹣20≤y≤20(如图2).当a=﹣1.2和a=﹣1.5时,l与m的交点分别是点A和B,为能看到m在A和B之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的1k,则整数k=.三、解答题(本大题有7个小题,共66分。
河北省2022年中考数学真题试题(含解析)

河北省 2022年中考数学真题试题第一卷(共42分)一、选择题:本大题共16个小题,共42分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.以下运算结果为正数的是( )A .2(3)-B .32-÷C .0(2017)⨯-D .23-【答案】A.【解析】试题分析:因为负数的偶数次方是正数,异号两数相除商为负,零乘以任何数都等于0,较小的数减去较大的数差为负数,故答案选A.考点:乘方,有理数的除法,有理数的乘法,有理数的减法.2.把0.0813写成10n a ⨯(110a ≤<,n 为整数)的形式,那么a 为( )A .1B .2-C .0.813D .8.13 【答案】D.【解析】试题分析:科学记数法中,a 的整数位数是一位,故答案选D.考点:科学记数法.3.用量角器测量MON ∠的度数,操作正确的选项是( )【答案】C.考点:角的比拟.4.23222333m n ⨯⨯⨯=+++个个……( ) A .23n m B .23m n C .32m n D .23m n【答案】B.【解析】 试题分析:m 个2相乘表示为2m ,n 个3相加表示为3n ,故答案选B.考点:有理数的乘方.5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④【答案】C. 考点:中心对称图形.6.如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分【答案】B. 考点:绝对值,倒数,相反数,立方根,平均数.7.假设ABC ∆的每条边长增加各自的10%得'''A B C ∆,那么'B ∠的度数与其对应角B ∠的度数相比( )A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变【答案】D.【解析】试题分析:角的度数与角的边的大小没有关系,故答案选D.考点:角的比拟.8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( )【答案】A.【解析】试题分析:主视图从图形的正面观察得到的图形,注意后排左上角的那个小正方体,故答案选A.考点:三视图.9.求证:菱形的两条对角线互相垂直.:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O .求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =,②∴AO BD ⊥,即AC BD ⊥.③∵四边形ABCD 是菱形, ④∴AB AD =.证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②【答案】D. 考点:菱形的性质,等腰三角形的性质.10.如图,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为防止行进中甲、乙相撞,那么乙的航向不能是( )A .北偏东55︒B .北偏西55︒C .北偏东35︒D .北偏西35︒【答案】D.考点:方向角.11.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的( )【答案】A.【解析】试题分析:正方形的对角线的长是10214.14,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A.考点:正方形的性质,勾股定理.12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,以下选项错误的选项是( )A .4446+-=B .004446++=C .34446++=D .14446-÷+= 【答案】D. 考点:算术平方根,立方根,0指数幂,负数指数幂.13.假设321x x -=-( )11x +-,那么( )中的数是( ) A .1-B .2-C .3-D .任意实数 【答案】B.【解析】试题分析:因为321222111x x x x x ---==----,故答案选B. 考点:分式的加减.14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比拟5月份两组家庭用水量的中位数,以下说法正确的选项是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断【答案】B. 考点:中位数,扇形统计图.15.如图,假设抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,那么反比例函数k y x =(0x >)的图象是( )【答案】D.【解析】试题分析:因为在封闭区域内的整数点的个数是4,所以k =4,故答案选D.考点:二次函数的图象,反比例函数的图象.16.正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK 边与AB 边重合,如下图.按以下步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,M 间的距离可能是( )A .1.4B .1.1C .0.8D .0.5第二卷(共78分)【答案】C. 考点:正多边形的有关计算.二、填空题(此题共有3个小题,总分值10分,将答案填在答题纸上)17.如图,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM AC =,BN BC =,测得200MN m =,那么A ,B 间的距离为 m .【答案】100.考点:三角形的中位线定理.18.如图,依据尺规作图的痕迹,计算α∠=°.【答案】56.【解析】试题分析:如图,根据作图痕迹可知,GH垂直平分AC,AG平分∠CAD. ∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ABC=68°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年河北省中考数学试题一、选择题(本大题共12个小题.1-6小题,每小题2分,7-12小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的 1.计算30的结果是A .3B .30C .1D .0 2.如图1,∠1+∠2等于A .60°B .90°C .110°D .180°3.下列分解因式正确的是A .-a +a 3=-a (1+a 2)B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)24.下列运算中,正确的是A .2x -x =1B .x +x 4=x 5C .(-2x )3=-6x 3D .x 2y ÷y =x 25.一次函数y =6x +1的图象不经过... A .第一象限 B .第二象限 C .第三象限 D .第四象限6.将图2①围成图2②的正方体,则图②中的红心“”标志所在的正方形是正方体中的 A .面CDHE B .面BCEFC .面ABFGD .面ADHG7.甲、乙、丙三个旅行团的游客人数都相等,且每团游客的平均年龄都是32岁,这三个团游客年龄的方并有分别是227S =甲,219.6S =乙,2 1.6S=丙,导游小王最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选 A .甲团 B .乙团 C .丙团 D .甲或乙团8.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面的函数关系式:h =-5(t-1)2+6,则小球距离地面的最大高度是 A .1米 B .5米 C .6米 D .7米9.如图3,在△ABC 中,∠C =90°,BC =6,D ,E 分别在AB ,AC 上,将△ABC 沿DE 折叠,使点A落在A ′处,若A ′为CE 的中点,则折痕DE 的长为A .12B .5米C .6米D .7米10.已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为A .2B .3C .5D .1311.如图4,在长形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆住的侧面,刚好能组合成圆住.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是12.根据图5中①所示的程序,得到了y 与x 的函数图象,如图5中②,若点M 是y 轴正半轴上任意一点,过点M 作PQ ∥x 轴交图象于点P 、Q ,连接OP 、OQ ,则以下结论:①x <0时,y =2x②△OPQ 的面积为定值③x >0时,y 随x 的增大而增大④MQ =2PM⑤∠POQ 可以等于90° 其中正确结论是 A .①②④ B .②④⑤ C .③④⑤ D .②③⑤二、填空题(本大题共6个小是,每小题3分,共18分,把答案写在题中横线上) 13π,-4,0这四个数中,最大的数是___________.14.如图6,已知菱形ABCD ,其顶点A 、B 在数轴上对应的数分别为-4和1,则BC =_____.15.若︱x -3︱+︱y +2︱=0,则x +y 的值为_____________.16.如图7,点O 为优弧ACB 所在圆的心,∠AOC =108°,点D 在AB 的延长线上,BD =BC ,则∠D =____________. 17.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置得到图②,则阴影部分的周长为_________18.如图9,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移图6ABCD图1图4①②ABC DO 图7C① ②图8图9① ②图2位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是____________.三、解答题(本大题共8个小题,共72分,解答应写出文字说明、证明过程 或演算步骤) 19.(本小题满分8分)已知23x y =⎧⎪⎨=⎪⎩是关于x ,y 的二元一次方程3x y a =+的解.求(a +1)(a -1)+7的值20.(本小题满分8分)如图10,在6×8的网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均为小正方形的顶点.⑴以O 为位似中心,在网格图...中作△A ′B ′C ′,使△A ′B ′C ′和△ABC 位似,且位似比为1:2⑵连接⑴中的AA ′,求四边形AA ′C ′C 的周长.(结果保留根号)21.(本小题满分8分)如图11,一转盘被等分成三个扇形,上面分别标有关-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,鞭个扇形恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形). ⑴若小静转动转盘一次,求得到负数的概率; ⑵小宇和小静分别转动一次,若两人得到的数相同,则称两人“不谋而合”,用列表法(或画树形图)求两人“不谋而合”的概率.22.(本小题满分8分)甲、乙两人准备整理一批新到的实验器材,若甲单独整理需要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.⑴问乙单独整理多少分钟完工?⑵若乙因式作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?23.(本小题满分9分)如图12,四边形ABCD 是正方形,点E ,K 分别在BC ,AB 上,点G 在BA 的延长线上,且CE =BK =AG .⑴求证:①DE =DG ; ②DE ⊥DG ;⑵尺规作图:以线段DE ,DG 为边作出正方形DEFG (要求:只保留作图痕迹,不写作法和证明);⑶连接⑵中的KF ,猜想并写出四边形CEFK 是怎样的特殊四边形,并证明你的猜想;⑷当1CE CB n =时,衣直接写出ABCD DEFGS S 正方形正方形的值.24.(本小题满分9分)A BCO-1 12图11 小宇 小静 ABCDK G图11已知A 、B 两地的路程为240千米,某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A 地运往B 地,受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现在有货运收费项目及收费标准表,行驶路程S (千米)与行驶时间t (时)的函数图象(如图13中①),上周货运量折线统计图(如图13中②)等信息如下:⑴汽车的速度为__________千米/时,火车的速度为_________千米/时;设每天用汽车和火车运输的总费用分别为y汽(元)和y 火(元),分别求y 汽、y 火与x 的函数关系式(不必写出x 的取值范围)及x 为何值时y汽>y 火;(总费用=运输费+冷藏费+固定费用)⑶请你从平均数、折线图走势两个角度分析,建议该经销商应提前下周预定哪种运输工具,才能使每天的运输总费用较省?25.(本小题满分10分)如图14①至图14④中,两平行线AB 、CD 音的距离均为6,点M 为AB 上一定点.思考:如图14①中,圆心为O 的半圆形纸片在AB 、CD 之间(包括AB 、CD ),其直径MN 在AB 上,MN =8,点P 为半圆上一点,设∠MOP =α,当α=________度时,点P 到CD 的距离最小,最小值为____________.探究一在图14①的基础上,以点M 为旋转中心,在AB 、CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止.如图14②,得到最大旋转角∠BMO =_______度,此时点N 到CD 的距离是______________.探究二将图14①中的扇形纸片NOP 按下面对α的要求剪掉,使扇形纸片MOP 绕点M 在AB 、CD 之间顺时针旋转.⑴如图14③,当α=60°时,求在旋转过程中,点P 到CD 的最小距离,并请指出旋转角∠BMO 的最大值:⑵如图14④,在扇形纸片MOP 旋转过程中,要保证点P 能落在直线CD 上,请确定α的取值范围.(参考数据:sin 49°=34,cos 41°=34,tan 37°=34)26.(本小题满分12分)如图15,在平面直角坐标系中,点P 从原点O 出发,沿x 轴向右以每秒1个单位长的速度图13①图13 ②BAD C 图14 ①BA D C 图14 ③BADC图14 ②BADC 图14 ④M运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(用含t的代数式表示);⑵当4<t<5时,设抛物线分别与线段AB、CD交于点M、N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,S=218;③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.2011年河北省中考数学试卷一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分)1、(2011•河北)计算30的结果是()A、3B、30C、1D、0考点:零指数幂。
专题:计算题。
分析:根据零指数幂:a0=1(a≠0)计算即可.解答:解:30=1,故选C.点评:本题主要考查了零指数幂,任何非0数的0次幂等于1.2、(2011•河北)如图,∠1+∠2等于()A、60°B、90°C、110°D、180°考点:余角和补角。
专题:计算题。
分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3、(2011•河北)下列分解因式正确的是()A、﹣a+a3=﹣a(1+a2)B、2a﹣4b+2=2(a﹣2b)C、a2﹣4=(a﹣2)2D、a2﹣2a+1=(a﹣1)2考点:提公因式法与公式法的综合运用。
专题:因式分解。
分析:根据提公因式法,平方差公式,完全平方公式求解即可求得答案.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故本选项错误;B、2a﹣4b+2=2(a﹣2b+1),故本选项错误;C、a2﹣4=(a﹣2)(a+2),故本选项错误;D、a2﹣2a+1=(a﹣1)2,故本选项正确.故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4、(2011•河北)下列运算中,正确的是()A、2x﹣x=1B、x+x4=x5C、(﹣2x)3=﹣6x3D、x2y÷y=x2考点:整式的除法;合并同类项;幂的乘方与积的乘方。