2018年河北中考数学模拟试卷

合集下载

2018年中考数学模拟试卷(河北省

2018年中考数学模拟试卷(河北省

2018年河北省中考数学模拟试卷一.选择题(共16小题,满分48分)1.(3分)下列式子成立的是()A.﹣1+1=0 B.﹣1﹣1=0 C.0﹣5=5 D.(+5)﹣(﹣5)=0 2.(3分)下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2,计算结果为负数的个数有()A.4个B.3个C.2个D.1个3.(3分)在下列四个标志中,既是中心对称又是轴对称图形的是()A.B.C.D.4.(3分)在3,0,﹣2,﹣四个数中,最小的数是()A.3 B.0 C.﹣2 D.﹣5.(3分)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱 B.圆锥 C.长方体D.球6.(3分)如图所示,数轴上点A、B分别表示1、后,若点B关于点A的对称点为点C,则点C所表示的数为()A.2﹣B.﹣2 C.1﹣D.﹣17.(3分)一艘轮船从A港出发,沿着北偏东63°的方向航行,行驶至B处时发现前方有暗礁,所以转向北偏西27°方向航行,到达C后需要把航向恢复到出发时的航向,此时轮船航行的航向向顺时针方向转过的度数为()A.63°B.27°C.90°D.50°8.(3分)化简正确的是()A.B.C.D.9.(3分)木匠有32米的木材,想要在花圃周围做边界,以下四种设计方案中,设计不合理的是()A.B.C.D.10.(3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.11.(2分)如图,△ABC≌△EBD,∠E=50°,∠D=62°,则∠ABC的度数是()A.68°B.62°C.60°D.50°12.(2分)关于x的一元二次方程(k+1)x2﹣2x+1=0有两个实数根,则k的取值范围是()A.k≥0B.k≤0C.k<0且k≠﹣1 D.k≤0且k≠﹣1 13.(2分)已知二次函数y=3(x﹣2)2+5,则有()A.当x>﹣2时,y随x的增大而减小B.当x>﹣2时,y随x的增大而增大C.当x>2时,y随x的增大而减小D.当x>2时,y随x的增大而增大14.(2分)如图,P A、PB是⊙O的切线,切点分别为点A、B,CD切⊙O于点Q交P A,PB于点C、D,且P A=8cm,则△PCD的周长为()A.8cm B.10cm C.12cm D.16cm15.(2分)一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的进水量与出水量分别是()A.5L,3.75L B.2.5L,5L C.5L,2.5L D.3.75L,5L 16.(2分)如图,将菱形ABCD沿BD方向平移得到菱形EFGH,若FD:BF=1:3,菱形ABCD与菱形EFGH的重叠部分面积记为S1,菱形ABCD的面积记为S2,则S1:S2的值为()A.1:3 B.1:4 C.1:9 D.1:16二.填空题(共3小题,满分10分)17.(3分)分解因式:a3﹣a=.18.(3分)现规定一种新的运算:=ad﹣bc,≤18,则x的取值范围.19.(4分)如图,以直角三角形ABC的斜边BC为边在三角形ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=6,则AC=.三.解答题(共7小题,满分68分)20.(8分)(1)解不等式组,并把解集在数轴上表示出来.(2)已知:关于x的方程=1的解是(1)中不等式组的整数解,求a的值.21.(9分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A.1.5小时以上B.1~1.5小时C.0.5~1小时D.0.5小时以下图1、图2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了名学生;学生参加体育活动时间的中位数落在时间段(填写上面所给“A”、“B”、“C”、“D”中的一个选项);(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.22.(9分)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.23.(9分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.24.(10分)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b且填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a、b的式子表示).(2)应用:点A为线段BC外一动点,且BC=4,AB=2,如图2所示,分别以AB,AC为边,作等边三解形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且P A=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.25.(11分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?26.(12分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF= AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.参考答案与解析一.选择题1.【解答】解:A、原式=0,正确;B、原式=﹣2,错误;C、原式=﹣5,错误;D、原式=5+5=10,错误,故选:A.2.【解答】解:①﹣(﹣2)=2,②﹣|﹣2|=﹣2,③﹣22=﹣4,④﹣(﹣2)2=﹣4,所以负数有三个.故选:B.3.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.4.【解答】解:∵﹣2<﹣<0<3,∴四个数中,最小的数是﹣2,故选:C.5.【解答】解:A、圆柱的三视图分别是长方形,长方形,圆,正确;B、圆锥体的三视图分别是等腰三角形,等腰三角形,圆及一点,错误;C、长方体的三视图都是矩形,错误;D、球的三视图都是圆形,错误;故选:A.6.【解答】解:根据题意得:AC=AB=﹣1,即1﹣c=﹣1,解得:c=2﹣,则点C表示的数为2﹣,故选:A.7.【解答】解:根据题意,得AE∥BF,AM∥CN;∠A=63°,∠FBC=27°.∵AE∥BF,∴∠1=∠A=63°.∵AM∥CN,∴∠DCN=∠DBM=∠1+∠FBC=63°+27°=90°.故选:C.8.【解答】解:原式==x+1,故选:C.9.【解答】解:A、∵垂线段最短,∴平行四边形的另一边一定大于6m,∵2(10+6)=32m,∴周长一定大于32m;B、周长=2(10+6)=32m;C、周长=2(10+6)=32m;D、周长=2(10+6)=32m;故选:A.10.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选:A.11.【解答】解:∵∠E=50°,∠D=62°,∴∠EBD=180°﹣50°﹣62°=68°,∵△ABC≌△EBD,∴∠ABC=∠EBD=68°,故选:A.12.【解答】解:根据题意得k+1≠0且△=(﹣2)2﹣4(k+1)≥0,解得k≤0且k≠﹣1.故选:D.13.【解答】解:∵y=3(x﹣2)2+5,∴抛物线开口向上,对称轴为x=2,顶点坐标为(2,5),∴A、B、C都不正确,∵二次函数的图象为一条抛物线,当x>2时,y随x的增大而增大∴D正确,故选:D.14.【解答】解:∵P A、PB是⊙O的切线,切点分别为点A、B,∴PB=P A=8cm,∵CD切⊙O于点Q交P A,PB于点C、D,∴CA=CQ,DQ=DB,∴△PCD的周长=PC+CD+PD=PC+CA+DB+PD=P A+PB=16cm,故选:D.15.【解答】解:由题意可得,每分钟的进水量为:20÷4=5(L),每分钟的出水量为:[5×8﹣(30﹣20)]÷8=3.75(L),故选:A.16.【解答】解:如图设AD交EF于M,CD交FG于N.由题意,重叠部分四边形MDNF是菱形,菱形MFND∽菱形ABCD,∴=()2,∵DF:BF=1:3,∴DF:BD=1:4,∴=()2=,故选:D.二.填空题(共3小题,满分10分)17.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).18.【解答】解:根据题意知﹣10﹣4(1﹣x)≤18,﹣10﹣4+4x≤18,4x≤18+10+4,4x≤32,x≤8,故答案为:x≤8.19.【解答】解:在AC上截取CG=AB=4,连接OG,∵四边形BCEF是正方形,∠BAC=90°,∴OB=OC,∠BAC=∠BOC=90°,∴B、A、O、C四点共圆,∴∠ABO=∠ACO,∵在△BAO和△CGO中,∴△BAO≌△CGO,∴OA=OG=6,∠AOB=∠COG,∵∠BOC=∠COG+∠BOG=90°,∴∠AOG=∠AOB+∠BOG=90°,即△AOG是等腰直角三角形,由勾股定理得:AG=,即AC=12+4=16.故答案为:16三.解答题(共7小题,满分68分)20.【解答】解:(1)解x+4>0得x>﹣4,解2x+5<1得x<﹣2,不等式组的解集为﹣4<x<﹣2,把解集画在数轴上:;(2)∵不等式组,的解集为﹣4<x<﹣2,∴整数解为x=﹣3,把x=﹣3代入方程=1,得=1,∴a=﹣2,∴a的值为﹣2.21.【解答】解:(1)由图知A类有60人,占30%,则本次一共调查了60÷30%=200人;∵“B”有200﹣60﹣30﹣10=100人,中位数为第100、101个数据的平均数,∴第100、101个数据均落在B组,则中位数落在B时间段,故答案为:200、B;(2)补全图形如下:(3)用样本估计总体,每天参加体育锻炼在0.5小时以下占5%;则3000×5%=150,答:估计全校可能有150名学生平均每天参加体育活动的时间在0.5小时以下.22.【解答】解:(1)如图,∵∠AEC=30°,∴∠ABC=30°,∵AB=AD,∴∠D=∠ABC=30°,根据三角形的内角和定理得,∠BAD=120°,连接OA,∴OA=OB,∴∠OAB=∠ABC=30°,∴∠OAD=∠BAD﹣∠OAB=90°,∴OA⊥AD,∵点A在⊙O上,∴直线AD是⊙O的切线;(2)连接OA,∵∠AEC=30°,∴∠AOC=60°,∵BC⊥AE于M,∴AE=2AM,∠OMA=90°,在Rt△AOM中,AM=OA•sin∠AOM=4×sin60°=2,∴AE=2AM=4.23.【解答】解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).24.【解答】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=P A=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2 +3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).如图3中,根据对称性可知当点P在第四象限时,P(2﹣,﹣)时,也满足条件.综上所述,满足条件的点P坐标(2﹣,)或(2﹣,﹣),AM的最大值为2 +3.25.【解答】解:(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+3000x﹣108000;(3)根据题意得76≤x≤80,w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤80时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.26.【解答】解:(1)如图1,∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.。

最新-河北省中考数学模拟试题及答案(5) 精品

最新-河北省中考数学模拟试题及答案(5) 精品

2018年河北省初中升学统一考试数学模拟试卷(五)本试卷分卷I 和卷II 两部分.卷I 为选择题,卷II 为非选择题. 本试卷共120分,考试时间120分钟.卷Ⅰ(选择题,共20分)注意事项:1. 答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题: 本大题共10小题;每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.2)2(-化简的结果是【 】A .2B .—2C .2或—2D .4 2.点P (-2,3)关于原点对称点的坐标是【 】A .(-2,3)B .(2,-3)C .(2,3)D .(-2,-3) 3.如图1,△ABC 中,∠C =90°,BC =2,AB =3,则下列结论正确的是【 】A .35sin =A B .32cos =AC .32sin =A D .25=tgA 4.如果两个圆只有一条共切线,那么这两个圆的位置关系是【 】A .外离B .外切C .相交D .内切 5.下列图形中,轴对称图形的个数是【 】ACB图1B C D A .1个 B .2个 C .3个 D .4个.6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打【 】 A .6折 B .7折 C .8折 D .9折 7.如图2,P 是反比例函数xy 4在第一象限分支上的一动点,P A ⊥x 轴,随着x 逐渐增大,△APO 的面积将【 】 A .增大 B .减小 C .不变 D .无法确定 8.为了鼓励节约用水,按以下规定收取水费:(1)每户每月用水量不超过20立方米,则每立方米水费1.2元,;(2)每户每月用水量超过20立方米,则超过部分每立方米水费2元,设某户一个月所交水费为y (元),用水量为x (立方米),则y 与x 的函数关系用图像表示为【 】9 】C 是支点,当用力压杠杆的端点A 时,杠杆绕C 点转动,另一端点B 向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B 端必须向上翘起10cm ,已知杠杆的动力臂AC 与阻力臂BC 之比为5︰1,则要使这块石头滚动,至少要将杠杆的端点A 向下压【 】 A 、100cm B 、60cm C 、50cm D 、10cm图3A B C D图5 卷Ⅱ(非选择题,100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上二、填空:本大题共10小题;每小题2分,共20 分.把答案填写在题中横线上.11.-5的倒数是12.分解因式:a a a 4423+-= . 13.写出一个反比例函数的解析式,使它的图像不经过第一、三象限: . 14.四边形ABCD 是菱形,∠A =60°,对角线BD 的长为7cm ,则此菱形的周长是 cm .15.用换元法解方程2511322=-+-x x x x ,若设12-=x x y ,则原方程可化为 .16.如图4,顺此连接四边形ABCD 各边中点,得到四边形EFGH ,还需添加 条件,才能保证四边形EFGH 是矩形17.如图5,A 、B 、C 三点是⊙O 上的点,∠ABO =55°, 则∠BCA的度数是 度.18.等腰梯形中,已知一底角是45°,高为1,中位线长为3,则梯形的上底长为19.光线以如图6所示的角度α照射到平面镜上,然后在平面镜Ⅰ、Ⅱ间来回反射,已知α=60°,β=50°, 则γ= 度.20.某建筑工地急需长12cm 和17cm 两种规格的金属线材,现工地上只有长为100cm的金属线材,要把一根这种金属线材截成12cm 和17cm 的线材各 根时,才能最大限度地利用这种金属线材.A BCD E FG H图4 图6Ⅱ三、计算(本题共8个小题,共80分)21.(本小题满分8分)先化简,在求值:aa a +--112,其中2=a .22.(本小题满分8分)如图7,ABCD 是正方形,点E 在BC 上,DF ⊥AE 于F .请你在AE 上找一点G , 使△ABG ≌△DAF ,并给予证明.图723.(本小题满分8分)如图8,PA 切⊙O 于点A ,PBC 交⊙O 于点B 、C ,若PB 、PC 的长是关于x的方程0)2(82=++-m x x 的两根,且BC =4,求m 的值以及P A 的长.图824.甲、乙两名同学进行投掷飞镖比赛,每人各投掷10次,中靶情况如图9所示.请你回答下列问题 (1)填写下表:(2)分别写出甲、乙两名同学这10次投掷飞镖比赛成绩的平均数、中位数和众数 (3)在右图的网格图中,画出甲、乙投掷飞镖成绩的折线图(4)从折线图的走势看,请你分析哪位同学的潜力较大.甲: 乙:)图925.(本小题满分12分)某运输部门规定:办理托运,当一件物品的重量不超过a 千克(a <18)时,需付基础费30元和保险费b 元;为了限制过重物品的托运,当一件物品超过a 千克时,除了付以上基础费和保险费外,超过部分还需每千克付c 元的超重费.设某件物品的重量为x 千克,支付费用为y 元.(1)当0<x ≤a 时,y = (用含b 的代数式表示);当x >a 时,y = (用含a 、b 、c 的代数式表示); (2)甲、乙、丙三人各托运一件物品,物品的重量与支付费用如下表所示:①是根据以上提供的信息确定a 、b 、c 的值,并写出支付费用y (元)与每件物品重量x (千克)的函数关系式 ②试问在物品可拆分的情况下,用不 超过120元的费用能否托运50千克的物品?若能,请你设计出一种托运方案;若不能请你说明理由.已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若将此三角形沿AD剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(表出图中的直角),并分别写出所拼四边形的对角线的长(不要求写计算过程,只需写出结果即可)剪开27、(本小题满分12分)某电脑软件经销店,以每件30元的进价购进一种新开发的软件W,通常销售利润可达到进价的60%.为促进商店内与软件W相关联的其它软件(销售价格不变)的销售,决定将软件W在不赔本的情况下,每件的销售利润以不高于进价30%的可变价格出售,用来招揽顾客.经过几天销售发现,其它软件日均销售利润y元与软件W的售价x元满足一次函数关系,当软件W的售价分别是33元和38元时,其它软件的销售利润分别是188元和168元.(1)求出y与x的函数关系式,并写出x的取值范围;(2)若在一天中,能将19件软件W售出,销售软件W与销售其他软件的利润和不低于230元,试确定软件W的售价范围.(利润=售价—进价)28、(本小题满分12分)等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ 与直线AC相交与点D.设P点运动时间为t,△PCQ的面积为S.(1)求出S关于t的函数关系式(2)当点P运动几秒时,S△PCQ=S△ABC(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.模拟考试数学答案(五)一、选择题(每题2分,共20分) ABCDC BCDBC 二、.填空题(每空2分,共20分) 11.-51 12.a (a -2)2 13.y= -x214 .28 15.6y 2-5y +2=0 16.AC ⊥BD 17.35 18.2 19.40 20.4 , 3 三、计算:21.解:原式=22212)1)(1(22a a a a a a a a -++=+-+-+……………………………………4分 把2=a 代入,原式21222-++==24--…………………………8分22.证明:作BG ⊥AE 交AE 与G ,G 点即为所求。

最新-河北省石家庄市2018中考数学模拟试题 冀教版 精品

最新-河北省石家庄市2018中考数学模拟试题 冀教版 精品

图2 EBAFC DB图31 23图1图42018-2018学年度第二学期初三数学一模试题注意事项:1.本试卷满分为120分,考试时间为120分钟.2.请把选择题答案涂在答题卡上,填空题答案写在答题纸上,否则成绩无效. 一、选择题(共12×2=24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. -3的倒数是 ( ) A .3 B .—31C .— 3D .31 2. 如图1,将三角尺的直角顶点放在直尺的一边上,∠1=300,∠2=700,则3∠等于( )A .200B .300C .400D .5003. 据2018年1月27日河北卫视报道,河北省目前汽车拥有量约为3 100 000辆.则3 100 000用科学记数法表示为( )A .0.31×10 B .31×118 C .3.1×118D .3.1×118 4. 下列计算错误的是( )A .2m + 3n =5mnB .426a a a =÷ C .632)(x x = D .32a a a =⋅ 5. 下列说法正确的是( )A .某市“明天降雨的概率是75%”表示明天有75%的时间会降雨.B .随机抛掷一枚均匀的硬币,落地后正面一定朝上.C .在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖. D .在平面内,平行四边形的两条对角线一定相交.6. 为了美化环境,某市2018年用于绿化的投资为20万元,2018年为25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x ,根据题意所列方程为( ) A .25202=x B .25)1(20=+x C .25)1(202=+x D .25)1(20)1(202=+++x x 7. 如图2,四边形ABCD 中,E 是BC 的中点,连结DE 并延长,交AB 的延长线于点F ,AB =BF .添加一个条件,使四边形ABCD 是平行四边形.下列条件中正确的是( ) A .AD =BC B .CD =BF C .∠F =∠CDE D .∠A =∠C8.如图3,将Rt △ABC 形状的楔子从木桩的底端P 沿水平方向打入木桩,使木桩向上运动.已知楔子斜面的倾斜角为15°,若楔子沿水平方向前进6cm (如箭头所示),则木桩上升了( ) A .6sin15°cm B .6cos15°cm C .6tan15° cm D .6tan15cm9. 如图4,1∠的正切值为( ).A .31 B .21C .3D .2 10.已知二次函数y =ax 2+bx +c(a ≠0)的图象如图5所示,下列结论:①a >0; ②函数的对O图6图 5称轴为直线1x =; ③当13x x =-=或时,函数y 的值都等于0.其中正确结论的个数是( )A .3B .2C .1D .0 11.如图6,函数y =ax 2-a 与y =ax(a ≠0)在同一直角坐标系中的图象可能是( )12.如图7,将边长为12cm 的正方形纸片ABCD 折叠,使得点A 落在边CD 上 的E 点,折痕为MN ,若MN 的长为13cm ,则CE 的长为( ) A . 6 B .7 C . 8 D .10二、填空题(本大题共6个小题,每小题3分,共18分.) 13. 如图8,在数轴上点A 和点B 之间表示整数的点有个.14. 已知2a b +=,则224a b b -+的值 .15. 若把函数y =223x x --化为y =()2x m k -+的形式,其中,m k 为常数,则m k += .16.如图9是置于水平地面上的一个球形储油罐,小敏想测量它的半径. 在阳光下,他测得球的影子的最远点A 到球罐与地面接触点B 的距离是 10米(即AB =10米);同一时刻,他又测得竖直立在地面上长为1米的 竹竿的影子长为2米,则球的半径是_ 米.17.灯具厂准备用铁皮加工成圆锥形灯罩,其中圆锥底面圆的半径为6πcm ,母线长为15cm ,已知在加工灯罩的过程中,材料损耗率为10%100个这样的灯罩,实际需要的铁皮面积为(不计接缝)____2cm . 18.矩形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图10所示放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y kx b =+(k >0)和x 轴上,若点B 1(1,2),B 2(3,4), 则B n 的坐标是_ . 2018-2018学年度第二学期初三数学一模试题注意事项:1.本试卷满分为120分,考试时间为120分钟;2.请把选择题答案涂在答题卡上,填空题答案写在答题纸上,否则成绩无效.D E图10AB C MN 图7图9AB二、填空题(每小题3分,共18分)13. ;14. ;15. ;16. ;17. ;18. . 三、解答题(本大题8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)解方程: 02311=-++xx20.(本小题满分8分)如图11,在由边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,E 为BC 中点,请按要求完成下列各题:(1)画AD ∥BC (D 为格点),连接CD ;(2)通过计算说明△ABC 是直角三角形; (3)在△ACB 中,tan ∠CAE = , 在△ACD 中,sin ∠CAD = .21.(本小题满分9分)某校为了了解九年级学生数学测试成绩情况,以九年级(1) 班学生的数学测试成绩为样本,按A ,B ,C ,D 四个等级进行统计,并将统计结 果绘制如下两幅统计图,请你结合图中所给信息解答下列问题: (说明:A 级:118分~120分;B 级:118分~118分;C 级:72分~101分;D 级: 72分以下) (1)补全条形统计图并计算C(2)求出D 级所在的扇形圆心角的度数;(3)该班学生数学测试成绩的中位数落在哪个等级内;(4)若118分以上(包括118分)为优秀,该校九年级学生共有1500人,请你估计这次考试中数学优秀的学生共有多少人?22.(本小题满分9分)已知反比例函数y= k x的图象与二次函数y =ax 2+x -1的图象相交于点(2,2)(1)求a 和k 的值;(2)反比例函数的图象是否经过二次函数图象的顶点,为什么?CAB图11E各等级人数百分比各等级人数分布统计图23.(本小题满分10分)如图1,点C将线段AB分成两.部分,如果AB : AC=AC : BC,么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想那“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成到部分,这两部分的面积分别为S1: S2,如果S : S1= S1: S2,,那么称直线l为该图形的两黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组探究发现:在(1)中,过点C任作AE交AB于E,再过点D作DF CE∥,交AC于点F,连接EF(如图3),则直线EF是△ABC的黄金分割线.请说明理由.(4)如图4,点E 是ABCD的边AB的黄金分割点,过点E作EF AD∥,交DC于点F,显然直线EF 是ABCD 的黄金分割线.请你再画一条ABCD的黄金分割线,使它不经过ABCD各边黄金分割点(保留必要的辅助线).24.(本小题满分10分)已知,等腰Rt△ABC中,点O是斜边的中点,△MPN是直角三角形,固定△ABC,滑动△MPN,在滑动过程中始终保持点P在AC上,且PM⊥AB,PN⊥BC,垂足分别为E、F.(1)如图1,当点P与点O重合时,OE、OF的数量和位置关系分别是____ __.(2)当△MPN移动到图2的位置时,(1)中的结论还成立吗?请说明理由.(3)如图3,等腰Rt△ABC的腰长为6,点P在AC的延长线上时,Rt△MPN的边PM 与AB的延长线交于点E,直线BC与直线NP交于点F,OE交BC于点H,且EH:M E班级_____________姓名______________考场______________考号________________HO=2:5,则BE的长是多少?25.(本小题满分12分)如图,⊙O的半径为6cm,射线PM与⊙O相切于点C,且PC=16cm.(1)请你作出图中线段PC的垂直平分线EF,垂足为Q,并求出QO的长;(2)在(1)的基础上画出射线QO,分别交⊙O于点A、B,将直线EF沿射线QM方向以5cm/s 的速度平移(平移过程中直线EF始终保持与PM垂直),设平移时间(3)直接写出t为何值时,直线EF与⊙O无公共点?t为何值时,直线EF与⊙O有两个公共点?26.(本小题满分12分)已知某种水果的批发单价与批发量的函数关系如图1所示.(1)图1零售价(元)图2(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在上图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商以每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.。

2018年河北省九年级数学中考模拟试卷

2018年河北省九年级数学中考模拟试卷

2018年河北省九年级数学中考模拟试卷一、选择题:1.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是( )A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃2.下列各式中,能用平方差公式计算的是()A. B.C. D.3.下列图形中,既是轴对称图形又是中心对称图形的有( )A.4个B.3个C.2个D.1个4.下列分式约分正确的是()5.某市乘出租车需付车费y(元)与行车里程x(千米)之间函数关系的图象如图所示,那么该市乘出租车超过3千米后,每千米的费用是()A.0.71元B.2.3元C.1.75元D.1.4元6.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )A.75°B.60°C.55°D.45°7.如果,则()8.如图是由相同小正方体组成的立体图形,它的左视图为()9.如图所示,△ABC中BC边上的高是()A.BDB.AEC.BED.CF10.如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S:S△OBC:S△OAC=()△OABA.1:1:1B.1:2:3C.2:3:4D.3:4:5【11.表示a,b两数的点在数轴上位置如图所示,则下列判断错误的是()A.a+b<0B.a﹣b>0C.a×b>0D.a<|b|12.从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.如果设该客车由高速公路从甲地到乙地所需时间为x小时,那么x满足的分式方程是()A. =×2B. =﹣35C.﹣=35D.﹣=3513.如果梯子的底端离建筑物5m,那么长为13m梯子可以达到该建筑物的高度是( )A.12mB. 14mC.15mD.13m14.用配方法解一元二次方程x2+4x-5=0,此方程可变形为( )A.(x+2)2=9B.(x-2)2=9C.(x+2)2=1D.(x-2)2=115.在中华经典美文阅读中,刘明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm,则它的宽约为( )A.12.36 cm B.13.6 cm C.32.36 cm D.7.64 cm16.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x,x2,其中﹣1<x11<0.1<x2<2.下列结论:4a+2b+c<0;2a+b<0;b2+8a>4ac;a<﹣1;其中结论正确的有()A.1个B.2个C.3个D.4个一、填空题:17.18.把多项式2x2y﹣4xy2+2y3分解因式的结果是.19.如图,AB是⊙O直径,弦AD、BC相交于点E,若CD=5,AB=13,则=.二、计算题:20.计算:(-3)4÷(1.5)2﹣6×(-)+|﹣32﹣9|21.﹣22÷(﹣1)2﹣×[4﹣(﹣5)2]三、解答题:22.如图,已知在四边形ABCD中,E是AC上一点,∠1=∠2,∠3=∠4.求证:∠5=∠6.23.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.24.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4. 如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从图A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;……设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)随机掷两次骰子,求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?25.为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜.26.如图,一种某小区的两幢10层住宅楼间的距离为AC=30m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α.(1)用含α的式子表示h(不必指出α的取值范围);(2)当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光?27.如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0<x<8),△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.(1)求y1与x的函数关系,并在图2中画出y1的图象;(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;(3)在图2中,点G是x轴正半轴上一点(0<OG<6)过G作EF垂直于x轴,分别交y1、y2于点E、F.①说出线段EF的长在图1中所表示的实际意义;②当0<x<6时,求线段EF长的最大值.参考答案1.B2.C3.C4.D5.D6.B7.B8.A9.B10.C11.C12.D13.A14.A16.D17.略18.答案为:2y(x﹣y)2.19.答案为:.20.原式=55.21.原式=3;22.【解答】证明:∵,∴△ADC≌△ABC(ASA).∴DC=BC.又∵,∴△CED≌△CEB(SAS).∴∠5=∠6.23.【解答】解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.24.25.【解答】解:(1)设y1=kx+b,将(0,29),(30,35)代入,解得k=,b=29,∴,又24×60×30=43200(min)∴(0≤x≤43200),同样求得;(2)当y1=y2时,;当y1<y2时,.所以,当通话时间等于96min时,两种卡的收费相等,当通话时间小于mim时,“如意卡便宜”,当通话时间大于min时,“便民卡”便宜.26.解:(1)过点E作EH⊥AB于H,由题意四边形ACEH是矩形,∴EH=AC=30,AH=CE=h,∠BEH=α,∴BH=30﹣h,在Rt△BEH中,tan∠BEH=,∴30﹣h=30tanα,∴h=30﹣30tanα.(2)当α=30°时,h=30﹣30×≈12.7,∵12.7÷3=4.2,∴B点的影子落在乙楼的第五层,当B点的影子落在乙楼C处时,甲楼的影子刚好不影响乙楼采光,此时AB=AC=30,△ABC是等腰直角三角形,∴∠ACB=45°,∴=1(小时),∴从此时起1小时后甲楼的影子刚好不影响乙楼采光.27.解:(1)∵,CD=3,CQ=x,∴.图象如图所示.(2)方法一:,CP=8k-xk,CQ=x,∴.∵抛物线顶点坐标是(4,12),∴.解得.则点P的速度每秒厘米,AC=12厘米.此时PC=AC-AP=8k-4k=4k,CQ=4.∴由,得.解得.则点P的速度每秒厘米,AC=12厘米.方法三:设y2的图象所在抛物线的解析式是.∵图象过(0,0),(4,12),(8,0),∴解得∴.①∵,CP=8k-xk,CQ=x,∴.②比较①②得.则点P的速度每秒厘米,AC=12厘米.(3)①观察图象,知线段的长EF=y2-y1,表示△PCQ与△DCQ的面积差(或△PDQ面积).②由⑵得.(方法二,)∵EF=y2-y1,∴EF=,∵二次项系数小于0,∴在范围,当时,最大.。

河北省2018年中考数学模拟试题(三)及答案

河北省2018年中考数学模拟试题(三)及答案

2018年河北省中考数学模拟试题(三)一、选择题(本大题共16小题,共42分。

1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是( )A .aB .bC .cD .d2.用激光测距仪测量,从一座山峰发出的激光经过4×10–5秒到达另一座山峰,已知光速为3×108米/秒,则两座山峰之间的距离用科学记数法表示为( ) A .1.2×103米B .12×103米C .1.2×104米D .1.2×105米3.下列图形中,∠2>∠1的是( )A .B .C .D .4.如果a ﹣b =21,那么代数式(a ﹣a b 2)•ba a 的值是( )A .﹣2B .2C .﹣21 D .215.某区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛活动. 小江统计了班级30名同学四月份的诗词背诵数量,具体数据如下表所示: 诗词数量(首)4 5 6 7 8 9 10 11 人数34457511那么这30名同学四月份诗词背诵数量的众数和中位数分别是( )A .11,7B .7,5 C .8,8 D . 8,7 6. 在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形构成的图形为轴对称图形,则还需要涂黑的小正方形序号是( ) A .①或②B .③或⑥C .④或⑤D .③或⑨7. 小聪按如图所示的程序输入一个正数x ,最后输出的结果为853,则满足条件的x 的不同值最多有( )平行四边形A .4个B .5个C .6个D .6个以上8. 甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率给出的统计图如图所示,则符合这一结果的实验可能是( )A .掷一枚正六面体的骰子,出现5点的概率B .掷一枚硬币,出现正面朝上的概率C .任意写出一个整数,能被2整除的概率D .一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率9.如图,小明从A 处出发沿北偏西30°方向行走至B 处,又沿南偏西50°方向行走至C 处,此时再沿与出发时一致的方向行走至D 处,则∠BCD 的度数为( ) A .100° B .80°C .50°D .20°10.如图,在平面直角坐标系xOy 中,点A 从(3,4)出发,绕点O 顺时针旋转一周,则点A 不.经过( ) A .点M B .点N C .点P D .点Q11. 鸡兔同笼问题是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?经计算可得( ) A .鸡23只,兔12只 B .鸡12只,兔23只 C .鸡15只,兔20只 D .鸡20只,兔15只12. 我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.它是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,其直观图如图丙,图中四边形是为体现其直观性所作的xy–1–2–3–4–5–6123456–1–2–3–4–512345PQN MAO辅助线.当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是( )A .a ,bB .a ,dC .c ,bD .c ,d13. 已知,菱形ABCD 中,AD =1,记∠ABC 为∠α(αO O <<090),菱形的面积记作S ,菱形的周长记作C .则下列说法中,不正确的是( )A .菱形的周长C 与∠α 的大小无关B .菱形的面积S 是α的函数C .当α∠=45°时,菱形的面积是21D .菱形的面积S 随α的增大而增大14. 如图,点A 在观测点的北偏东方向30 °,且与观测点的距离为8千米,将点A 的位置记作A (8,30°),用同样的方法将点B ,点C 的位置分别记作B (8,60°),C (4,60°),则观测点的位置应在( )A.O 1B.O 2C.O 3D.O 415.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是( )A .B .C .D .16. 两个少年在绿茵场上游戏.小红从点A 出发沿线段AB 运动到点B ,小兰从点C 出发,以相同的速度沿⊙O 逆时针运动一周回到点C ,两人的运动路线如图1所示,其中AC =D B .两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C 的距离y 与时间x (单位:秒)的对应关系如图2所示.则下列说法正确的是( )A .小红的运动路程比小兰的长B .两人分别在1.09秒和7.49秒的时刻相遇C .当小红运动到点D 的时候,小兰已经经过了点D D .在4.84秒时,两人的距离正好等于⊙O 的半径二、填空题(本大题共3小题,共10分。

2018年河北省中考数学三模试卷带答案解析(解析版)

2018年河北省中考数学三模试卷带答案解析(解析版)

2018年河北省中考数学模拟试卷(三)一、选择题(共16小题,每小题3分,满分42分)1.(3分)3﹣(﹣2)×4的相反数是()A.5 B.﹣5 C.11 D.﹣112.(3分)我国推行“一带一路”政策以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口为()A.4.6×109B.46×108 C.0.46×1010D.4.6×10103.(3分)如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD 的度数是()A.60°B.80°C.100° D.120°4.(3分)下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x65.(3分)关于的叙述正确的是()A.在数轴上不存在表示的点 B.=+C.=±2D.与最接近的整数是36.(3分)下列说法正确的是()A.三角形的外心到三边的距离相等B.“任意画出一个等边三角形,它是轴对称图形”是随机事件C.“任意画出一个平行四边行,它是中心对称图形”是必然事件D.对飞机乘客的安检应采用抽样调查7.(3分)若关于x的一元二次方程ax2﹣bx+4=0的解是x=2,则2020+2a﹣b的值是()A.2016 B.2018 C.2020 D.20228.(3分)图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为()A.B.C.D.9.(3分)如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC10.(3分)△ABC是由△DEF的每条边都扩大到原来的2倍得到的,则△ABC与△DEF的面积之比为()A.1:2 B.2:1 C.1:4 D.4:111.(2分)已知关于x的方程有正根,则实数a的取值范围是()A.a<0且a≠﹣3 B.a>0 C.a<﹣3 D.a<3且a≠﹣312.(2分)如图,在△ABC中,∠C=90°,分别以点A,B为圆心,大于AB长为半径作弧,两弧分别交于M,N两点,过M,N两点的直线交AC于点E,若AC=8,BC=6,则AE的长为()A.2 B.3 C.D.13.(2分)已知B港口位于A观测点北偏东45°方向,且其到A观测点正北风向的距离BM的长为10km,一艘货轮从B港口沿如图所示的BC方向航行4km 到达C处,测得C处位于A观测点北偏东75°方向,则此时货轮与A观测点之间的距离AC的长为()km.A.8 B.9 C.6 D.714.(2分)在如图所示的七边形ABCDEFG中,∠1、∠2、∠3、∠4 四个角的外角和为180°,∠5 的外角为60°,BP、DP 分别平分∠ABC、∠CDE,则∠BPD 的度数是()A.130°B.120°C.110° D.100°15.(2分)平面内一个正五边形与一个正方形的边长正好相等,在它们相接的地方,形成一个完整的“苹果”图案(如图).如果让正方形沿着正五边形的四周滚动,并且始终保持正方形和正五边形有两条边邻接,那么第一次恢复“苹果”的图形时,正方形要绕五边形转()A.1圈 B.2圈 C.3圈 D.4圈16.(2分)如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4 B.2 C.D.二、填空题(共3小题,每小题3分,满分10分)17.(3分)如图,在平面直角坐标系中,点A的坐标为(2.5,1),连接OA并延长至点B,使OA=AB,则点B的坐标是18.(3分)不等式组的最小整数解是.19.(4分)在数轴上,表示数x的点到原点的距离用|x|表示,如果表示数m的点和﹣5的点之间的距离是3,那么m=;|c﹣|+|c﹣4|+|c+1|的最小值是三、解答题(共7小题,满分68分)20.(8分)请你参考黑板中老师的讲解,用乘法公式简便计算;(1)6992(2)20192﹣2017×202121.(9分)如图1,放置的一副三角尺,将含45°角的三角尺斜边中点O为旋转中心,逆时针旋转30°得到如图2,连接OB、OD、AD.(1)求证:△AOB≌△AOD;(2)试判定四边形ABOD是什么四边形,并说明理由.22.(9分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)23.(9分)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,CD=CE (1)求证:OA=OB;(2)已知AB=4 ,OA=4,求阴影部分的面积.24.(10分)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.25.(11分)如图,在菱形ABCD中,∠ABC=45°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为点F.(1)当点F落在AB上时,求∠BCF的度数;(2)若∠EBF=15°,求CF的长;(3)当点E从点A运动到点B时,求点F运动的路径长.26.(12分)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B 点,已知A点坐标是(2,0),B点坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D点的坐标;(3)二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.2018年河北省中考数学模拟试卷(三)参考答案与试题解析一、选择题(共16小题,每小题3分,满分42分)1.(3分)3﹣(﹣2)×4的相反数是()A.5 B.﹣5 C.11 D.﹣11【分析】根据题目中的式子可以计算出相应的结果,从而可以求得这个结果的相反数.【解答】解:∵3﹣(﹣2)×4=3+8=11,∴3﹣(﹣2)×4的相反数是﹣11,故选:D.2.(3分)我国推行“一带一路”政策以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口为()A.4.6×109B.46×108 C.0.46×1010D.4.6×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:46亿=4600 000 000=4.6×109,故选:A.3.(3分)如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD 的度数是()A.60°B.80°C.100° D.120°【分析】根据两直线平行,同位角相等可得∠ADE=∠AOB,根据反射光线的性质可得∠ADE=∠ODC,然后求出∠CDE,再根据两直线平行,同旁内角互补求解即可.【解答】解:∵DE∥OB,∴∠ADE=∠AOB=40°,由反射光线得,∠ADE=∠ODC=40°,∴∠CDE=180°﹣∠ADE﹣∠ODC=180°﹣40°﹣40°=100°,∵DE∥OB,∴∠BCD=180°﹣∠CDE=180°﹣100°=80°.故选:B.4.(3分)下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x6【分析】A:根据合并同类项的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据完全平方公式判断即可.D:根据同底数幂的除法法则判断即可.【解答】解:∵3a+4b≠7ab,∴选项A不正确;∵(ab3)2=a2b6,∴选项B不正确;∵(a+2)2=a2+4a+4,∴选项C不正确;∵x12÷x6=x6,∴选项D正确.故选:D.5.(3分)关于的叙述正确的是()A.在数轴上不存在表示的点 B.=+C.=±2D.与最接近的整数是3【分析】根据数轴上的点与实数是一一对应的关系,实数的加法法则,算术平方根的计算法则计算即可求解.【解答】解:A、在数轴上存在表示的点,故选项错误;B、≠+,故选项错误;C、=2,故选项错误;D、与最接近的整数是3,故选项正确.故选:D.6.(3分)下列说法正确的是()A.三角形的外心到三边的距离相等B.“任意画出一个等边三角形,它是轴对称图形”是随机事件C.“任意画出一个平行四边行,它是中心对称图形”是必然事件D.对飞机乘客的安检应采用抽样调查【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、三角形的内心到三边的距离相等,故A不符合题意;B、“任意画出一个等边三角形,它是轴对称图形”是必然事件,故B不符合题意;C“任意画出一个平行四边行,它是中心对称图形”是必然事件,故C符合题意;D、对飞机乘客的安检应采用全面调查,故D不符合题意;故选:C.7.(3分)若关于x的一元二次方程ax2﹣bx+4=0的解是x=2,则2020+2a﹣b的值是()A.2016 B.2018 C.2020 D.2022【分析】把x=2代入已知方程求得2a﹣b的值,然后将其整体代入所求的代数式并求值即可.【解答】解:∵关于x的一元二次方程ax2﹣bx+4=0的解是x=2,∴4a﹣2b+4=0,则2a﹣b=﹣2,∴2020+2a﹣b=2020+(2a﹣b)=2020+(﹣2)=2018.故选:B.8.(3分)图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是4,3,2.故选:C.9.(3分)如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC【分析】根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.【解答】解:添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故选:B.10.(3分)△ABC是由△DEF的每条边都扩大到原来的2倍得到的,则△ABC与△DEF的面积之比为()A.1:2 B.2:1 C.1:4 D.4:1【分析】根据相似三角形面积的比等于相似比的平方解答.【解答】解:∵△ABC是由△DEF的每条边都扩大到原来的2倍得到的,∴△ABC与△DEF的相似比是2:1,∴△ABC与△DEF的面积之比为4:1.故选:D.11.(2分)已知关于x的方程有正根,则实数a的取值范围是()A.a<0且a≠﹣3 B.a>0 C.a<﹣3 D.a<3且a≠﹣3【分析】首先解方程求得方程的解,根据方程的解是正数,即可得到一个关于a 的不等式,从而求得a的范围.【解答】解:去分母得:x+a=﹣x+3即2x=3﹣a解得x=根据题意得:>0解得:a<3∵x﹣3≠0,∴x≠3,即≠3,解得a≠﹣3,∴a<3且a≠﹣3.故选:D.12.(2分)如图,在△ABC中,∠C=90°,分别以点A,B为圆心,大于AB长为半径作弧,两弧分别交于M,N两点,过M,N两点的直线交AC于点E,若AC=8,BC=6,则AE的长为()A.2 B.3 C.D.【分析】根据题意可知直线MN是线段AB的垂直平分线,故可得出AE=BE,设AE=BE=x,则CE=AC﹣x=8﹣x,在Rt△BCE中利用勾股定理求出x的值即可.【解答】解:∵由题意可知直线MN是线段AB的垂直平分线,∴AE=BE.设AE=BE=x,则CE=AC﹣x=8﹣x,在Rt△BCE中,∵BC2+CE2=BE2,即62+(8﹣x)2=x2,解得x=.故选:D.13.(2分)已知B港口位于A观测点北偏东45°方向,且其到A观测点正北风向的距离BM的长为10km,一艘货轮从B港口沿如图所示的BC方向航行4km 到达C处,测得C处位于A观测点北偏东75°方向,则此时货轮与A观测点之间的距离AC的长为()km.A.8 B.9 C.6 D.7【分析】根据∠MAB=45°,BM=10和勾股定理求出AB的长,再根据tan∠BAD=,求出BD的长,即可得出AD以及CD的长,进而得出答案.【解答】解:∵∠MAB=45°,BM=10,∴AB===20km,过点B作BD⊥AC,交AC的延长线于D,在Rt△ADB中,∠BAD=∠MAC﹣∠MAB=75°﹣45°=30°,tan∠BAD==,∴AD=BD,BD2+AD2=AB2,即BD2+(BD)2=202,∴BD=10,∴AD=10,在Rt△BCH中,BD2+CD2=BC2,BC=4,∴CD=2,∴AC=AD﹣CD=10﹣2=8km,答:此时货轮与A观测点之间的距离AC的长为8km.故选:A.14.(2分)在如图所示的七边形ABCDEFG中,∠1、∠2、∠3、∠4 四个角的外角和为180°,∠5 的外角为60°,BP、DP 分别平分∠ABC、∠CDE,则∠BPD 的度数是()A.130°B.120°C.110° D.100°【分析】根据邻补角互补得出,∠1+∠2+∠3+∠4=4×180°﹣180°=540°,∠5=120°,利用多边形内角和定理求出∠ABC+∠CDE=240°,根据角平分线定义得出∠CBP+∠CDP=120°,然后根据四边形内角和定理求出∠BPD 的度数.【解答】解:∵∠1、∠2、∠3、∠4 四个角的外角和为180°,∠5 的外角为60°,∴∠1+∠2+∠3+∠4=4×180°﹣180°=540°,∠5=120°,∴∠ABC+∠CDE=(7﹣2)×180°﹣540°﹣120°=240°,∵BP、DP 分别平分∠ABC、∠CDE,∴∠CBP+∠CDP=(∠ABC+∠CDE)=120°,∴∠BPD=360°﹣∠5﹣(∠CBP+∠CDP)=360°﹣120°﹣120°=120°.故选:B.15.(2分)平面内一个正五边形与一个正方形的边长正好相等,在它们相接的地方,形成一个完整的“苹果”图案(如图).如果让正方形沿着正五边形的四周滚动,并且始终保持正方形和正五边形有两条边邻接,那么第一次恢复“苹果”的图形时,正方形要绕五边形转()A.1圈 B.2圈 C.3圈 D.4圈【分析】四边形与五边形的公倍数是20边,第一次恢复“苹果”的图形时,正方形要旋转20÷5圈.【解答】解:因为正方形有4条边,要使第一次恢复“苹果”的图形时,正方形要绕五边形转4圈.故选D.16.(2分)如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4 B.2 C.D.【分析】过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,再求得DE,BC的长,根据三角形的面积公式即可得出△DEF和△ABC的面积.【解答】解:过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,∵∠ODM=∠OBN=30°,∴OB=4,DM=,DE=2,BN=2,BC=4,=×4×6=12,∴S△ABC=×2×3=3,∴S△DEF∴==4.故选:A.二、填空题(共3小题,每小题3分,满分10分)17.(3分)如图,在平面直角坐标系中,点A的坐标为(2.5,1),连接OA并延长至点B,使OA=AB,则点B的坐标是(5,2)【分析】设解析式为y=kx,把(2.5,1)代入解析式,进而利用OA=AB解答即可.【解答】解:过A作AD⊥x轴,过B作BE⊥x轴,设解析式为y=kx,把(2.5,1)代入解析式,可得:1=2.5k,解得:k=0.4,所以解析式为:y=0.4x,因为OA=AB,所以OD=DE=2.5,所以OE=5,BE=2AD=2,所以点B的坐标为:(5,2),故答案为:(5,2)18.(3分)不等式组的最小整数解是x=﹣3.【分析】先分别求出各不等式的解集,再求出其公共解集,画出数轴便可直接得出答案.【解答】解:由①得,x>﹣,由②得,x<,所以不等式的解集为﹣<x<,在数轴上表示为:由图可知,不等式组的最小整数解是x=﹣3.19.(4分)在数轴上,表示数x的点到原点的距离用|x|表示,如果表示数m的点和﹣5的点之间的距离是3,那么m=﹣8或﹣2;|c﹣|+|c﹣4|+|c+1|的最小值是5【分析】根据数轴上两点间的距离,可得答案,根据线段上的点到线段两端点的距离相等,可得答案.【解答】解:由题意,得|m+5|=3,m+5=3或m+5=﹣3,解得m=﹣2,或m=﹣8,故答案为:﹣2或﹣8;由线段上的点到线段两端点的距离相等,得c在﹣1与4的线段上时,|c﹣4|+|c+1|最小=5,当c≠时,|c﹣|>0,|c﹣|+|c﹣4|+|c+1|的最小值>5;当c=时,|c﹣|=0,|c﹣|+|c﹣4|+|c+1|的最小值=0+|c﹣4|+|c+1|=5,故答案为:5.三、解答题(共7小题,满分68分)20.(8分)请你参考黑板中老师的讲解,用乘法公式简便计算;(1)6992(2)20192﹣2017×2021【分析】(1)根据完全平方公式即可求出答案. (2)根据平方差公式即可求出答案. 【解答】解:(1)6992 =(700﹣1)2 =7002﹣2×700×1+1 =490000﹣1400+1 =488601(2)20192﹣2017×2021 =20192﹣(2019﹣2)(2019+2) =20192﹣20192+22 =421.(9分)如图1,放置的一副三角尺,将含45°角的三角尺斜边中点O 为旋转中心,逆时针旋转30°得到如图2,连接OB 、OD 、AD . (1)求证:△AOB ≌△AOD ;(2)试判定四边形ABOD 是什么四边形,并说明理由.【分析】(1)利用直角三角形斜边上的中线性质得到OB=AC ,OD=EF ,则OB=OD=OA ,再证明△AOB 是等边三角形得到∠AOB=60°,AB=OB=OA ,接着利用旋转的性质得∠AOE=30°,所以∠AOD=60°,从而可判定△AOD 为等边三角形,所以两个边长相等的等边三角形全等;(2)利用等边三角形的性质得到AB=AD=OB=OD ,从而可判定四边形 ABOD 是菱形.【解答】解:(1)证明:根据题意得:∠BAC=60°,∠ABC=∠EDF=90°,EF=AC ,OD ⊥EF ,∵O 为 AC 、EF 的中点,∴OB=AC ,OD=EF , 而AC=EF , ∴OB=OD=OA , ∵∠BAO=60°,∴△AOB 是等边三角形, ∴∠AOB=60°,AB=OB=OA ,∵△DEF 绕斜边中点O 为逆时针旋转30°得到如图2, ∴∠AOE=30°,∴∠AOD=90°﹣30°=60°, ∴△AOD 为等边三角形, ∴△AOB ≌△AOD ;(2)四边形 ABOD 是菱形; 理由如下:∵△AOB ≌△AOD , ∴AB=AD , ∴AB=AD=OB=OD , ∴四边形 ABOD 是菱形.22.(9分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)【分析】(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;(2)易知(分),(分),(分),根据题意不难判断;(3)画出树状图,即可解决问题;【解答】解:(1)甲运动员测试成绩的众数和中位数都是7分.(2)∵(分),(分),(分),∴>,>∴选乙运动员更合适.(3)树状图如图所示,第三轮结束时球回到甲手中的概率是.23.(9分)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,CD=CE (1)求证:OA=OB;(2)已知AB=4 ,OA=4,求阴影部分的面积.【分析】(1)连接OC,由切线的性质可知∠ACO=90°,由于CD=CE,所以∠AOC=∠BOC,从而可证明∠A=∠B,从而可知OA=OB;(2)由(1)可知:△AOB是等腰三角形,所以AC=2,从可求出扇形OCE的面积以及△OCB的面积【解答】解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,∵CD=CE∴=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2,S阴影=2﹣π.24.(10分)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.【分析】(1)根据P(,8),可得反比例函数解析式,根据P(,8),Q(4,1)两点可得一次函数解析式;(2)根据中心对称的性质,可得点P关于原点的对称点P'的坐标;(3)过点P′作P′D⊥x轴,垂足为D,构造直角三角形,依据P'D以及AP'的长,即可得到∠P'AO的正弦值.【解答】解:(1)∵点P在反比例函数的图象上,∴把点P(,8)代入可得:k2=4,∴反比例函数的表达式为,∴Q (4,1).把P(,8),Q (4,1)分别代入y=k1x+b中,得,解得,∴一次函数的表达式为y=﹣2x+9;(2)点P关于原点的对称点P'的坐标为(,﹣8);(3)过点P′作P′D⊥x轴,垂足为D.∴OD=,P′D=8,∵点A在y=﹣2x+9的图象上,∴点A(,0),即OA=,∴DA=5,∴P′A=,∴sin∠P′AD=,∴sin∠P′AO=.25.(11分)如图,在菱形ABCD中,∠ABC=45°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为点F.(1)当点F落在AB上时,求∠BCF的度数;(2)若∠EBF=15°,求CF的长;(3)当点E从点A运动到点B时,求点F运动的路径长.【分析】(1)根据等腰直角三角形的性质即可解决问题;(2)分以下两种情况:①当点F在菱形内部时,②当点F在菱形外部时;(3)首先确定点F的运动轨迹,利用弧长公式计算即可;【解答】解:(1)当点F落在AB上时,点E,F重合,即CF⊥AB,∵∠ABC=45°,∴∠BCF=45°.在Rt△BFC中,BC=4,∠FBC=30°,sin30°==,∴CF=2,②当点F在菱形外部时,∠FBC=15°+45°=60°,在Rt△BFC中,BC=4,sin60°==,∴CF=2,故CF的长为2或2.(3)如图,设BC的中点为点O,以点O为圆心,OB长为半径画半圆O,连接AC,BD交于点F′,易得点F′在半圆O上,连接OF′.∵BF⊥CE,∴∠BFC=90°,∴点F在半圆O中的一段弧上运动,当点E从点A运动到点B时,点F的运动路径的长为的长,∵∠ABC=45°,∴∠BCF′=67.5°,∴∠BOF′=135°,∴的长为=.26.(12分)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B 点,已知A点坐标是(2,0),B点坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D点的坐标;(3)二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.【分析】(1)根据点A、B的坐标,利用待定系数法即可求出二次函数的解析式;(2)根据二次函数解析式,利用二次函数的性质即可得出二次函数图象的顶点坐标,再代入y=0即可得出点D的坐标;(3)根据两点之间线段最短,找出使得△CBD的周长最小的点C的位置,根据点A、B的坐标,利用待定系数法即可求出直线AB的解析式,再代入x=4即可求出点C的坐标.【解答】解:(1)将A(2,0)、B(8,6)代入y=x2+bx+c,得,解得:,∴二次函数的解析式为y=x2﹣4x+6;(2)∵二次函数解析式为y=x2﹣4x+6,∴二次函数图象的顶点坐标为(4,﹣2).当y=0时,有x2﹣4x+6=0,解得:x1=2,x2=6,∴D点的坐标为(6,0);(3)存在.连接CA,如图所示.∵点C在二次函数的对称轴x=4上,∴x C=4,CA=CD,∴△CBD的周长=CD+CB+BD=CA+CB+BD.当点A、C、B三点共线时,CA+CB最小,∵BD是定值,把A (2,0)、B (8,6)代入y=mx +n , 得,解得:,∴直线AB 的解析式为y=x ﹣2. 当x=4时,y=x ﹣2=4﹣2=2,∴当点C 的坐标为(4,2)时,△CBD 的周长最小.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

2018年河北省中考数学模拟试卷(b卷)

2018年河北省中考数学模拟试卷(b卷)

2018年河北省中考数学模拟试卷(b卷)一、选择题(本大题共16小题,1-10小题,每小题3分,11-16小题每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列四个运算中,结果最小的是()A.﹣1+(﹣2)B.1﹣(﹣2)C.1×(﹣2)D.1÷(﹣2)2.(3分)地球距太阳的距离是150000000km,用科学记数法表示为1.5×10n km,则n的值为()A.6 B.7 C.8 D.93.(3分)下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.4.(3分)下列运算正确的是()A.(x5)2=x7B.x3+x4=x7C.(x+2)2=x2+4 D.x8÷x2=x65.(3分)下列命题中,①13个人中至少有2人的生日是同一个月是必然事件;②一名篮球运动员投篮命中概率为0.7,他投篮10次,一定会命中7次;③因为任何数的平方都是正数,所以任何数的平方根都是正数;④在平面上任意画一个三角形,其内角和一定是180°,正确的个数是()A.1 B.2 C.3 D.46.(3分)如图,在数轴上,点O对应数字O,点A对应数字2,过点A作AB 垂直于数轴,且AB=4,连接OB,绕点O顺时针旋转OB,使点B落在数轴上的点C处,则点C所表示的数介于()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7.(3分)如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,俯视图改变B.左视图改变,俯视图改变C.俯视图不变,左视图改变D.主视图不变,左视图不变8.(3分)为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是()A.极差是6 B.众数是7 C.中位数是8 D.平均数是109.(3分)如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA 的延长线交于点E,如果,那么的值是()A.B.C.D.10.(3分)如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°11.(2分)如图,某轮船在点O处测得一个小岛上的电视塔A在北偏西60°的方向,船向西航行20海里到达B处,测得电视塔A在船的西北方向,若要轮船离电视塔最近,则还需向西航行()A.海里B.海里C.海里D.海里12.(2分)若分式的值为0,则x的值为()A.﹣1 B.1 C.±1 D.013.(2分)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定14.(2分)直线y=﹣x﹣1与反比例函数(x<0)的图象交于点A,与x 轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC,则k的值为()A.﹣2 B.﹣4 C.﹣6 D.﹣815.(2分)将Rt△AOB 如图放置在直角坐标系中,并绕O点顺时针旋转90°至△COD的位置,已知A(﹣2,0),∠ABO=30°.则△AOB旋转过程中所扫过的图形的面积为()A.B.C. D.16.(2分)如图在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒2个单位长度,点在弧线上的速度为每秒个单位长度,则2018秒时,点P的坐标是()A.(2017,0)B.(2017,)C.(2018,0)D.(2019,﹣)二、填空题(本大题共3小题,共10分,17-18小题各3分,19小题有2个空,每空2分)17.(3分)在Rt△ABC中,∠C=90°,点D、E分别是边AC、AB的中点,点F 在边BC上,AF与DE相交于点G,如果∠AFB=110°,那么∠CGF的度数是.18.(3分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为.19.(4分)如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第一次将点A向左移动3个单位长度到达点A1,第2次将点A1向右平移6个单位长度到达点A2,第3次将点A2向左移动9个单位长度到达点A3…则第6次移动到点A6时,点A6在数轴上对应的实数是;按照这种规律移动下去,至少移动次后该点到原点的距离不小于41.三、解答题(本大题共7小题,共计68分。

2018年河北省中考数学模拟试卷(一)

2018年河北省中考数学模拟试卷(一)

2018年河北省中考数学模拟试卷(一)一、选择题(本大题共16个小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣(﹣3)×2的结果是()A.1 B.﹣5 C.6 D.﹣62.下列选项中,使根式有意义的a的取值范围为a<1的是()A.B.C.D.3.如图,∠1的正切值为()A.B.C.3 D.24.下列几何体:其中,左视图是平行四边形的有()A.4个B.3个C.2个D.1个5.如图所示的图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.cm B.cm C.cm D.1cm7.在直角坐标系中,O为坐标原点,已知,在y轴上确定点P,使得△AOP为等腰三角形,则符合条件的P点共有几个()A.4 B.3 C.2 D.18.已知等腰△ABC的两条边的长度是一元二次方程x2﹣6x+8=0的两根,则△ABC的周长是()A.10 B.8 C.6 D.8或109.若关于x的方程有增根,则m的值为()A.0 B.1 C.﹣1 D.210.小明制作了如图所示的正方体礼品盒,其对面图案都相同,那么该正方体的平面展开图可能是()A.B. C.D.11.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.12.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE的函数解析式为()A. B.C.D.13.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC14.如图,在▱ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是()A.2 B.3 C.4 D.515.已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),交x轴于A,B两点,交y轴于C.则:①b=﹣2;②该二次函数图象与y轴交于负半轴;③存在这样一个a,使得M、A、C三点在同一条直线上;④若a=1,则OA•OB=OC2.以上说法正确的有()A.①②③④B.②③④ C.①②④ D.①②③16.如图所示,在△ABC中,D是BC的中点,DE⊥BC交AC于点E,已知AD=AB,连接BE交AD于点F,下列结论:①BE=CE;②∠CAD=∠ABE;③S△ABF=3S△DEF;④△DEF∽△DAE,其中正确的有()A.1个B.4个C.3个D.2个二、填空题:本大题共4个小题,每小题3分,共12分,把答案写在题中横线上.17.分解因式:x3﹣2x2y+xy2=.18.若x=﹣2,则代数式x2+1的值为.19.如图,鹏鹏从点P出发,沿直线前进10米后向右转α,接着沿直线前进10米,再向右转α,…,照这样走下去,他第一次回到出发地点P时,一共走了100米,则α的度数为.20.如图,在矩形ABCD中,AD=4,AB=2,连接其对边中点,得到四个矩形,顺次连接AF、FG、AE三边的中点,得到三角形①;连接矩形GMCH对边的中点,又得到四个矩形,顺次连接GQ、QP、GN三边的中点,得到三角形②;…;如此操作下去,得到三角形,则三角形的面积为.三、解答题:本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤.21.请你根据王老师所给的内容,完成下列各小题.(1)如果x=﹣5,2◎4=﹣18,求y的值;(2)若1◎1=8,4◎2=20,求x、y的值.22.如图,已知AD∥BC,按要求完成下列各小题(保留作图痕迹,不要求写作法).(1)用直尺和圆规作出∠BAD的平分线AP,交BC于点P.(2)在(1)的基础上,若∠APB=55°,求∠B的度数.(3)在(1)的基础上,E是AP的中点,连接BE并延长,交AD于点F,连接PF.求证:四边形ABPF是菱形.23.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.24.为普及消防安全知识,预防和减少各类火灾事故的发生,2015年11月,河北内丘中学邀请邢台市安全防火中心的相关人员,为全校教师举行了一场以“珍爱生命,远离火灾”为主题的消防安全知识讲座.在该知识讲座结束后,王老师组织了一场消防安全知识竞赛活动,其中九年级有七个班参赛.在竞赛结束后,王老师对九年级的获奖人数进行统计,得到每班平均有10人获奖,王老师将每班获奖人数绘制成如图所示的不完整的折线统计图.(1)请将折线统计图补充完整,并直接写出九年级获奖人数最多的班级是班;(2)求九年级七个班的获奖人数的这组数据的中位数;(3)若八年级参赛的总人数比九年级的多50名,获奖总人数比九年级多10名,但八年级和九年级获奖人数的百分比相同,求八年级参加竞赛的总人数.25.2015年全球葵花籽产量约为4200万吨,比2014年上涨2.1%,某企业加工并销售葵花籽,假设销售量与加工量相等,在图中,线段AB、折线CDB分别表示葵花籽每千克的加工成本y1(元)、销售价y2(元)与产量x(kg)之间的函数关系;(1)请你解释图中点B的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数解析式;(3)当0<x≤90时,求该葵花籽的产量为多少时,该企业获得的利润最大?最大利润是多少?26.四边形ABCD是⊙O的内接正方形,AD=8,EB、EC是⊙O的两条,切点分别为B、C,P是边AB上的动点,连接DP.(1)如图1,当点P与点B重合时,连接OC.①求∠E的度数;②求CE的长度;(2)如图2,当点P在AB上,且AP<AB时,过点P作FP⊥DP于点P,交BE于点F,连接DF.①试判断DP与FP之间的数量关系,并说明理由;②若,求DP的长度.2018年河北省中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共16个小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣(﹣3)×2的结果是()A.1 B.﹣5 C.6 D.﹣6【考点】有理数的乘法.【分析】有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,依此计算即可求解.【解答】解:﹣(﹣3)×2=3×2=6故﹣(﹣3)×2的结果是6.故选:C.2.下列选项中,使根式有意义的a的取值范围为a<1的是()A.B.C.D.【考点】二次根式有意义的条件.【分析】根据二次根式的定义可知被开方数必须为非负数,同时应考虑分母中若有字母,字母的取值不能使分母为零,即可求解.【解答】解:A、当a≥1时,根式有意义.B、当a≤1时,根式有意义.C、a取任何值根式都有意义.D、要使根式有意义,则a≤1,且分母不为零,故a<1,故选D.3.如图,∠1的正切值为()A.B.C.3 D.2【考点】锐角三角函数的定义;圆周角定理.【分析】根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形的边的比的问题.【解答】解:根据圆周角的性质可得:∠1=∠2.∵tan∠2=,∴∠1的正切值等于.故选A.4.下列几何体:其中,左视图是平行四边形的有()A.4个B.3个C.2个D.1个【考点】简单几何体的三视图.【分析】左视图是从几何体的左面看所得到的图形.【解答】解:圆柱的左视图是长方形,长方形是一个特殊的平行四边形;圆锥的左视图是三角形;棱柱的左视图是长方形,长方形是一个特殊的平行四边形;长方体的左视图是长方形,长方形是一个特殊的平行四边形;故左视图是平行四边形的有3个,故选:B.5.如图所示的图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:D.6.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.cm B.cm C.cm D.1cm【考点】正多边形和圆.【分析】连接AC,作BD⊥AC于D;根据正六边形的特点求出∠ABC的度数,再由等腰三角形的性质求出∠BAD的度数,由特殊角的三角函数值求出AD的长,进而可求出AC的长.【解答】解:连接AC,过B作BD⊥AC于D;∵AB=BC,∴△ABC是等腰三角形,∴AD=CD;∵此多边形为正六边形,∴∠ABC==120°,∴∠ABD==60°,∴∠BAD=30°,AD=AB•cos30°=2×=,∴a=2cm.故选A.7.在直角坐标系中,O为坐标原点,已知,在y轴上确定点P,使得△AOP为等腰三角形,则符合条件的P点共有几个()A.4 B.3 C.2 D.1【考点】等腰三角形的判定;坐标与图形性质.【分析】首先算出AO的长,再以O为圆心,AO长为半径画圆,交y轴于两点,再做出AO的垂直平分线,与y轴交点也可以构造出等腰三角形,此时为(0,2)点,得出只有两点即为P所在位置.【解答】解:过点A作AC⊥x轴于点C,∵,∴AO=2,tan∠AOC===,∴∠AOC=30°,以O为圆心,2为半径画圆,交y轴于两点(0,2),(0,﹣2),作AO的垂直平分线,此时交点正好与(0,2)点重合,故使得△AOP为等腰三角形,则符合条件的P点共有2个,故选:C.8.已知等腰△ABC的两条边的长度是一元二次方程x2﹣6x+8=0的两根,则△ABC的周长是()A.10 B.8 C.6 D.8或10【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【分析】用因式分解法可以求出方程的两个根分别是2和4,根据等腰三角形的三边关系,腰应该是4,底是2,然后可以求出三角形的周长.【解答】解:x2﹣6x+8=0,∴(x﹣2)(x﹣4)=0,∴x1=2,x2=4.由三角形的三边关系可得:(两边之和大于第三边),∴腰长是4,底边是2,所以周长是:4+4+2=10.故选:A.9.若关于x的方程有增根,则m的值为()A.0 B.1 C.﹣1 D.2【考点】分式方程的增根.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解:方程两边都乘(x﹣2),得m=1﹣x∵最简公分母(x﹣2)∴原方程增根为x=2,∴把x=2代入整式方程,得m=﹣1.故选C.10.小明制作了如图所示的正方体礼品盒,其对面图案都相同,那么该正方体的平面展开图可能是()A.B. C.D.【考点】几何体的展开图.【分析】对面图案均相同的正方体礼品盒,则两个相同的图案一定不能相邻,据此即可判断.【解答】解:A、两个相同的图案三角形和花都相邻,故选项错误;B、正确;C、两个相同的图案三角形和星相邻,故选项错误;D、两个相同的图案星和花相邻,故选项错误.故选:B.11.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.【考点】函数的图象.【分析】根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.【解答】解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B 符合题意;故选:B.12.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE的函数解析式为()A. B.C.D.【考点】二次函数的应用.【分析】利用坐标系易得A、B、C三点的坐标,根据待定系数法就可以求出抛物线的解析式,再利用二次函数关于y轴对称的性质,即可得出答案.【解答】解:设左轮廓线ACB的抛物线解析式为y=ax2+bx+c(a≠0),∵A(﹣5,1),B(﹣1,1),C(﹣3,0),∴,解得:;∴左轮廓线ACB的抛物线解析式为:y=x2+x+;由左右两轮廓线关于y轴对称,y=x2+x+=(x+3)2,∴右轮廓线DFE的函数解析式为:y=(x﹣3)2,故选:C.13.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【考点】全等三角形的判定.【分析】本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.14.如图,在▱ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是()A.2 B.3 C.4 D.5【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,可得BC=AD=6,CD=AB=4,AD∥BC,得∠ADE=∠DEC,又由DE平分∠ADC,可得∠CDE=∠DEC,根据等角对等边,可得EC=CD=4,所以求得BE=BC﹣EC=2.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,CD=AB=4,AD∥BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴EC=CD=4,∴BE=BC﹣EC=2.故选:A.15.已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),交x轴于A,B两点,交y轴于C.则:①b=﹣2;②该二次函数图象与y轴交于负半轴;③存在这样一个a,使得M、A、C三点在同一条直线上;④若a=1,则OA•OB=OC2.以上说法正确的有()A.①②③④B.②③④ C.①②④ D.①②③【考点】抛物线与x轴的交点.【分析】①根据二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),代入可得a、b、c的关系,然后通过变形可以得到b的值,即可判断①是否正确;②根据二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),代入可得a、b、c的关系,通过变形可以得到a、c的关系,由a>0,即可判断c的正负,从而可以判断②是否正确;③求出过点M、C的直线解析式,然后令y=0,求出相应的x的值,然后将x的值代入二次函数的解析式,看是否有a的值使得二次函数的值等于,注意a的值必须大于0,从而可以判断③是否正确;④根据a的值可以得到二次函数的解析式,从而可以推出结论是否正确.【解答】解:∵二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),∴②﹣①,得2b=﹣4,解得b=﹣2,故①b=﹣2正确;②+①,得2(a+c)=0,∴a+c=0,∵a>0,∴c=﹣a<0,故②正确;设过点M(﹣1,2),点C(0,c)的直线的解析式为y=kx+m∴,解得,∴y=(c﹣2)x+c,∵c=﹣a,∴y=(﹣a﹣2)x﹣a,当y=0时,x=,将x=代入y=ax2﹣2x﹣a,得y=,令=0,得a=0,∵a>0,∴a=0不符题意,故③错误;当a=1时,二次函数的解析式为:y=x2﹣2x﹣1,∴当y=0时,设x2﹣2x﹣1=0的两根为x1,x2,∴,∴OA•OB=|x1|•|x2|=|﹣1|=1=(﹣1)2=OC2,故④正确;故选C.16.如图所示,在△ABC中,D是BC的中点,DE⊥BC交AC于点E,已知AD=AB,连接BE交AD于点F,下列结论:①BE=CE;②∠CAD=∠ABE;③S△ABF=3S△DEF;④△DEF∽△DAE,其中正确的有()A.1个B.4个C.3个D.2个【考点】三角形综合题.【分析】要解答本题,首先由中垂线的性质可以求得BE=CE,利用外角与内角的关系可以得出∠CAD=∠ABE,通过作辅助线利用等腰三角形的性质和三角形全等可以得出EF=FH=HB,根据等高的两三角形的面积关系求出AF=DF,S△ABF=3S△DEF,利用角的关系代替证明∠5≠∠4,从而得出△DEF与△DAE不相似.根据以上的分析可以得出正确的选项答案.【解答】解:∵D是BC的中点,且DE⊥BC,∴DE是BC的垂直平分线,CD=BD,∴CE=BE,故①正确;∴∠C=∠7,∵AD=AB,∴∠8=∠ABC=∠6+∠7,∵∠8=∠C+∠4,∴∠C+∠4=∠6+∠7,∴∠4=∠6,即∠CAD=∠ABE,故②正确;作AG⊥BD于点G,交BE于点H,∵AD=AB,DE⊥BC,∴∠2=∠3,DG=BG=BD,DE∥AG,∴△CDE∽△CGA,△BGH∽△BDE,EH=BH,∠EDA=∠3,∠5=∠1,∴在△DEF与△AHF中,,∴△DEF≌△AHF(AAS),∴AF=DF,EF=HF=EH,且EH=BH,∴EF:BF=1:3,∴S△ABF=3S△AEF,∵S△DEF=S△AEF,∴S△ABF=3S△DEF,故③正确;∵∠1=∠2+∠6,且∠4=∠6,∠2=∠3,∴∠5=∠3+∠4,∴∠5≠∠4,∴△DEF∽△DAE,不成立,故④错误.综上所述:正确的答案有3个.故选:C.二、填空题:本大题共4个小题,每小题3分,共12分,把答案写在题中横线上.17.分解因式:x3﹣2x2y+xy2=x(x﹣y)2.【考点】提公因式法与公式法的综合运用.【专题】常规题型.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故答案为:x(x﹣y)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.若x=﹣2,则代数式x2+1的值为10﹣4.【考点】二次根式的化简求值.【分析】把x的值代入所求的代数式进行化简求值即可.【解答】解:把x=﹣2代入x2+1,得(﹣2)2+1=()2﹣4+4+1=10﹣4.故答案是:10﹣4.【点评】本题考查了二次根式的化简求值.解题的关键是数学完全平方差公式.19.如图,鹏鹏从点P出发,沿直线前进10米后向右转α,接着沿直线前进10米,再向右转α,…,照这样走下去,他第一次回到出发地点P时,一共走了100米,则α的度数为36°.【考点】多边形内角与外角.【分析】第一次回到出发点A时,所经过的路线正好构成一个的正多边形,用100÷10=10,求得边数,再根据多边形的外角和为360°,即可求解.【解答】解:∵第一次回到出发点A时,所经过的路线正好构成一个的正多边形,∴正多边形的边数为:100÷10=10,根据多边形的外角和为360°,∴则他每次转动的角度为:360°÷10=36°,故答案为:36°.【点评】本题考查了多边形的内角与外角,解决本题的关键是明确第一次回到出发点A时,所经过的路线正好构成一个正多边形.20.如图,在矩形ABCD中,AD=4,AB=2,连接其对边中点,得到四个矩形,顺次连接AF、FG、AE三边的中点,得到三角形①;连接矩形GMCH对边的中点,又得到四个矩形,顺次连接GQ、QP、GN三边的中点,得到三角形②;…;如此操作下去,得到三角形,则三角形的面积为.【考点】矩形的性质.【专题】规律型.【分析】根据矩形的性质和三角形的面积公式求出三角形①、②、③的面积,得出规律写出第n 个三角形的面积.【解答】解:∵矩形ABCD的长AD=4,宽AB=2,∴AF=2,AE=1,=×2×=;则S三角形①=×1×=;S三角形②S=××=;三角形③…=,∴S三角形n故答案为:.【点评】本题考查的是矩形的性质,掌握三角形的面积公式、通过计算找出规律是解题的关键.三、解答题:本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤.21.请你根据王老师所给的内容,完成下列各小题.(1)如果x=﹣5,2◎4=﹣18,求y的值;(2)若1◎1=8,4◎2=20,求x、y的值.【考点】解二元一次方程组;解一元一次方程.【专题】新定义;一次方程(组)及应用.【分析】(1)已知等式根据题中的新定义化简,将x的值代入即可求出y的值;(2)已知等式利用题中的新定义化简组成方程组,求出方程组的解即可得到x与y的值.【解答】解:(1)根据题意得:2◎4=2x+4y=﹣18,把x=﹣5代入得:﹣10+4y=﹣18,解得:y=﹣2;(2)根据题意得:,②﹣①得:x=2,把x=2代入得:y=6.【点评】此题考查了解二元一次方程组,弄清题中的新定义是解本题的关键.22.如图,已知AD∥BC,按要求完成下列各小题(保留作图痕迹,不要求写作法).(1)用直尺和圆规作出∠BAD的平分线AP,交BC于点P.(2)在(1)的基础上,若∠APB=55°,求∠B的度数.(3)在(1)的基础上,E是AP的中点,连接BE并延长,交AD于点F,连接PF.求证:四边形ABPF是菱形.【考点】作图—复杂作图;菱形的判定.【专题】作图题;证明题.【分析】(1)利用基本作图(作已知角的平分线)作AP平分∠DAB;(2)先利用平行线的性质得∠DAP=∠APB=55°,再利用角平分线定义得∠BAP=∠DAP=55°,然后根据三角形内角和计算∠ABP的度数;(2)先由∠BAP=∠APB得到BA=BP,再判断△ABF为等腰三角形得到AB=AF,所以AF=BP,则可判断四边形ABPF是平行四边形,然后加上AB=BP可判断四边形ABPF是菱形.【解答】(1)解:如图,AP为所作;(2)解:∵AD∥BC,∴∠DAP=∠APB=55°,∵AP平分∠DAB,∴∠BAP=∠DAP=55°,∴∠ABP=180°﹣55°﹣55°=70°;(2)证明:∵∠BAP=∠APB,∴BA=BP,∵BE=FE,AE平分∠BAF,∴△ABF为等腰三角形,∴AB=AF,∴AF=BP,而AF∥BP,∴四边形ABPF是平行四边形,∵AB=BP,∴四边形ABPF是菱形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.23.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.【考点】一次函数图象与几何变换.【分析】(1)根据平移的性质得到点C的坐标;把点B、C的坐标代入直线方程y=kx+b(k≠0)来求该直线方程;(2)根据平移的性质得到点D的坐标,然后将其代入(1)中的函数解析式进行验证即可;(3)根据点B的坐标求得直线l2的解析式,据此求得相关线段的长度,并利用三角形的面积公式进行解答.【解答】解:(1)∵B(﹣3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,∴﹣3+1=﹣2,3﹣2=1,∴C的坐标为(﹣2,1),设直线l1的解析式为y=kx+c,∵点B、C在直线l1上,∴代入得:解得:k=﹣2,c=﹣3,∴直线l1的解析式为y=﹣2x﹣3;(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(﹣2,1),∴﹣2﹣3=﹣5,1+6=7,∴D的坐标为(﹣5,7),代入y=﹣2x﹣3时,左边=右边,即点D在直线l1上;(3)把B的坐标代入y=x+b得:3=﹣3+b,解得:b=6,∴y=x+6,∴E的坐标为(0,6),∵直线y=﹣2x﹣3与y轴交于A点,∴A的坐标为(0,﹣3),∴AE=6+3=9,∵B(﹣3,3),∴△ABE的面积为×9×|﹣3|=13.5.【点评】本题考查了用待定系数法求一次函数的解析式,平移的性质,一次函数图象上点的坐标特征,三角形的面积的应用,能理解每个点的求法是解此题的关键.24.为普及消防安全知识,预防和减少各类火灾事故的发生,2015年11月,河北内丘中学邀请邢台市安全防火中心的相关人员,为全校教师举行了一场以“珍爱生命,远离火灾”为主题的消防安全知识讲座.在该知识讲座结束后,王老师组织了一场消防安全知识竞赛活动,其中九年级有七个班参赛.在竞赛结束后,王老师对九年级的获奖人数进行统计,得到每班平均有10人获奖,王老师将每班获奖人数绘制成如图所示的不完整的折线统计图.(1)请将折线统计图补充完整,并直接写出九年级获奖人数最多的班级是(3)班;(2)求九年级七个班的获奖人数的这组数据的中位数;(3)若八年级参赛的总人数比九年级的多50名,获奖总人数比九年级多10名,但八年级和九年级获奖人数的百分比相同,求八年级参加竞赛的总人数.【考点】折线统计图;中位数.【分析】(1)先求出九年级有七个班的获奖人数,减去给出的6个班的获奖人数,可得(3)班获奖人数,依此将折线统计图补充完整,再比较大小可得九年级获奖人数最多的班级;(2)根据中位数的定义求出九年级七个班的获奖人数的这组数据的中位数;(3)设八年级参加竞赛的总人数为x人,根据等量关系:八年级和九年级获奖人数的百分比相同,列出方程求解即可.【解答】解:(1)10×8﹣(8+11+6+9+12+10)=80﹣66=14(人),如图所示:故九年级获奖人数最多的班级是(3)班;故答案为:(3)(2)从小到大排列为6,8,9,10,11,12,14,正中间的数是10,九年级七个班的获奖人数的这组数据的中位数是10;(3)设八年级参加竞赛的总人数为x人,依题意有=,解得x=400,经检验x=400是原分式方程的解.故八年级参加竞赛的总人数为400人.【点评】本题考查的折线统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,用到的知识点是中位数的定义.25.2015年全球葵花籽产量约为4200万吨,比2014年上涨2.1%,某企业加工并销售葵花籽,假设销售量与加工量相等,在图中,线段AB、折线CDB分别表示葵花籽每千克的加工成本y1(元)、销售价y2(元)与产量x(kg)之间的函数关系;(1)请你解释图中点B的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数解析式;(3)当0<x≤90时,求该葵花籽的产量为多少时,该企业获得的利润最大?最大利润是多少?【考点】二次函数的应用.【分析】(1)结合图象与题意,即可得出结论;(2)设出函数解析式,利用待定系数法,即可得出结论;(3)设出函数解析式,利用待定系数法,可求出销售价格与产量的函数关系式,再由利润=(销售价格﹣成本)×产量,得出二次函数,求取极值即可.【解答】解:(1)图中点B的横坐标、纵坐标的实际意义为:当产量为130kg时,葵花籽每千克的加工成本与销售价相同,都是9.8元.(2)设线段AB所表示的y1与x之间的函数解析式为y1=k1x+b1,∵A点坐标为(0,2),B点坐标为(130,9.8),∴有,解得:.∴线段AB所表示的y1与x之间的函数解析式y1=0.06x+2.(3)当0<x≤90时,销售价y2(元)与产量x(kg)之间的函数图象为线段CD.设线段CD所表示的y2与产量x之间的函数解析式为y2=k2x+b2,∵C点坐标为(0,8),D点坐标为(90,9.8),∴有,解得:.∴线段CD所表示的y2与x之间的函数解析式y2=0.02+8.令企业获得的利润为W,则有W=x(y2﹣y1)=﹣0.04x2+6x=﹣0.04(x﹣75)2+225,故当x=75时,W取得最大值225.答:该葵花籽的产量为75kg时,该企业获得的利润最大;最大利润为225元.【点评】本题考查了待定系数法求解析式、坐标系点的意义以及利用二次函数求极值的问题,解题的关键是熟练的运用二元一次解方程组即将二次函数的普通式转化为顶点式求极值.本题属于基础题,难度不大,唯一的失分点是运算量较大,需要细心计算,多加验算.26.四边形ABCD是⊙O的内接正方形,AD=8,EB、EC是⊙O的两条,切点分别为B、C,P是边AB上的动点,连接DP.(1)如图1,当点P与点B重合时,连接OC.①求∠E的度数;②求CE的长度;(2)如图2,当点P在AB上,且AP<AB时,过点P作FP⊥DP于点P,交BE于点F,连接DF.①试判断DP与FP之间的数量关系,并说明理由;②若,求DP的长度.【考点】圆的综合题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ACDB图2 2018年河北中考模拟数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.在3,-1,0,-2这四个数中,最大的数是( ) A .0 B .-1C .-2D .32.如图1所示的几何体的俯视图是( )A .B .C .D . 3.一元一次不等式x +1<2的解集在数轴上表示为( )A .B .C .D .4.如图2,AB ∥CD ,AD 平分∠BAC ,若∠BAD =70°, 那么∠ACD 的度数为( ) A .40°B .35°C .50°D .45°5.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( ) A .31B .21 -1 0-10 1正面 图1 01C .32 D .61 6.下列计算正确的是( ) A .|-a |=a B .a 2·a 3=a 6 C .()2121-=--D .(3)0=07.如图3,小聪在作线段AB 的垂直平分线时,他是这样操作的: 分别以A 和B 为圆心,大于AB 21的长为半径画弧,两弧相交 于C 、D 两点,直线CD 即为所求.根据他的作图方法可知四边 形ADBC 一定是( )A .矩形B .菱形C .正方形D .无法确定8.已知n 20是整数,则满足条件的最小正整数n 为( )A .2B .3C .4D .59.如图4,四边形ABCD 是⊙O 的内接四边形,若∠BOD =88°, 则∠BCD 的度数是( ) A .88° B .92°C .106°D .136°10.下列因式分解正确的是( ) A .m 2+n 2=(m +n )(m -n ) B .x 2+2x -1=(x -1)2 C .a 2-a =a (a -1)D .a 2+2a +1=a (a +2)+111.下列命题中逆命题是真命题的是( ) A .对顶角相等B .若两个角都是45°,那么这两个角相等C .全等三角形的对应角相等D .两直线平行,同位角相等12.若关于x 的方程x 2﹣4x +m =0没有实数根,则实数m 的取值范围是( ) A .m <﹣4 B .m >﹣4C .m <4D .m >413.如图5所示,正方形ABCD 的面积为12,△ABE 是等边 三角形,点E 在正方形ABCD 内,点P 是对角线AC 上一点, 若PD +PE 的和最小,则这个最小值为( )A .32B .62C .3D .614.如图6,在平面直角坐标系中,过点A 与x 轴平行的直线交抛图3CBAD图4AB图物线2)1(31+=x y 于点B 、C ,线段BC 的长度为6,抛物线 b x y +-=22与y 轴交于点A ,则b =( ).A .1B .C .3D .615.已知△ABC 在正方形网格中的位置如图7所示,点A 、B 、C 、P 均在格点上,则点P 叫做△ABC 的( ) A .外心 B .内心 C .重心D .无法确定图716.如图8是小李销售某种食品的总利润y元与销售量x千克的函数图象(总利润=总销售额-总成本).由于目前销售不佳,小李想了两个解决方案:方案(1)是不改变食品售价,减少总成本;方案(2)是不改变总成本,提高食品售价.下面给出的四个图象中虚线表示新的销售方式中总利润与销售量的函数图像,则分别反映了方案(1)(2)的图象是()A.②,③B.①,③C.①,④D.④,②图8②④③2017年河北中考模拟数 学 试 卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.太阳的半径约为696 000千米,用科学记数法表示数696 000为 .1819.如图9所示,正五边形ABCDE 的边长为1,⊙B 过五边形的顶点A 、C ,则劣弧AC 的长为 .20.如图10,在第1个△A 1BC 中,∠B =20°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第5个三角形中以A 5为顶点的内角度数是 °.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)定义新运算:对于任意实数a ,b (其中a≠0),都有aba ab a --=⊗1,图912 34 …图106810等式右边是通常的加法、减法及除法运算,比如:02122112=--=⊗ (1) 求45⊗的值;(2) 若12=⊗x (其中x ≠0),求x 的值是多少22.(本小题满分10分)为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下:(1)请补充完成下面的成绩统计分析表:(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;(3)体育老师说,咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50﹪。

如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标23.(本小题满分10分)已知:如图12-1,Rt △ABC 中,∠BAC =90°,点D 是线段AC 的中点,连接BD 并延长至点E ,使BE =2BD .连接AE ,CE 。

(1)求证:四边形ABCE 是平行四边形;(2)如图12-2所示,将三角板顶点M 放在AE 边上,两条直角边分别过点B 和点C ,若∠MEC =∠EMC ,BM 交AC 于点N 。

①求证:△ABN ≌△MCN ;②当点M 恰为AE 中点时sin ∠ABM =_____。

E图12-1E24.(本小题满分11分)已知函数y =-x +4的图象与函数xky =的图像在同一坐标系内.函数y =-x +4的图象如图13-1与坐标轴交于A 、B 两点,点M (2,m )是直线AB 上一点,点N 与点M 关于y 轴对称,线段MN 交y 轴于点C . (1)m =_____,S △AOB =_____; (2)如果线段MN 被反比例函数xky =的图像分成两部分,并且这两部分长度的比为 1:3,求k 的值;(3)如图13-2,若反比例函数xky =图像经过点N ,此时反比例函数上存在两个点E (x 1,y 1)、F (x 2,y 2)关于原点对称且到直线MN 的距离之比为1:3,若x 1<x 2请直接写出这两点的坐标.25.(本小题满分11分)平面上,Rt △ABC 与直径为CE 的半圆O 如图14-1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交图13-1BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转, 点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°).(1)①当α=0°时,连接DE ,则∠CDE =______°,CD =______; ②当α=180°时,AEBD =___________.(2)试判断:旋转过程中AEBD的大小有无变化请仅就图14-2的情形给出证明. (3)若m =10,n =8,当α=∠ACB 时,线段BD =________.(4)若m =6,n =24,当半圆O 旋转至与△ABC 的边相切时,线段BD =____________.26.(本小题满分14分)某商场秋季计划购进一批进价为每条40元的围巾进行销售:探究:根据销售经验,应季销售时,若每条围巾的售价为60元,则可售出400条;若每条围巾的售价每提高1元,销售量相应减少10条。

(1)假设每条围巾的售价提高x 元,那么销售每条围巾所获得的利润是______元,销售量是______条(用含x 的代数式表示);(2)设应季销售利润为y 元,请写y 与x 的函数关系式;并求出应季销售利润为8000元时每条围巾的售价。

A B 图14-1 CAB备用图A B 图14-2拓展:根据销售经验,过季处理时,若每条围巾的售价定为30元亏本销售,可售出50条;若每条围巾的售价每降低1元,销售量相应增加5条,(1)若剩余100条围巾需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金;若使亏损金额最小,每条围巾的售价应是_____元。

(2)若过季需要处理的围巾共m 条,且100≤m ≤300,过季亏损金额最小是______元;(用含m 的代数式表示)延伸:若商场共购进了500条围巾且销售情况满足上述条件,如果应季..销售利润在不低于8000元的条件下:(1)没有售出的围巾共m 条,则m 的取值范围是:_________________;(2)要使最后的总利润(销售利润=应季销售利润-过季亏损金额)最大,则应季销售的售价是_____元。

参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是24(,)24b ac b a a --.。

相关文档
最新文档