2018年中考数学选择填空压轴题专题(初中数学全套通用)
2018年全国各地中考数学压轴题汇编:选择、填空(浙江专版)(原卷)

2018年全国各地中考数学压轴题汇编(浙江专版)选择、填空一.选择题(共18小题)1.(2018•杭州)如图,已知点P是矩形ABCD内一点(不含边界),设∠PAD=θ1,∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则()A.(θ1+θ4)﹣(θ2+θ3)=30°B.(θ2+θ4)﹣(θ1+θ3)=40°C.(θ1+θ2)﹣(θ3+θ4)=70°D.(θ1+θ2)+(θ3+θ4)=180°2.(2018•宁波)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为()A.πB.πC.πD.π3.(2018•嘉兴)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.44.(2018•杭州)如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2 5.(2018•宁波)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8 B.﹣8 C.4 D.﹣4 6.(2018•杭州)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁7.(2018•温州)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C.D.8.(2018•宁波)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b9.(2018•温州)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D 在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A.4 B.3 C.2 D.10.(2018•嘉兴)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁11.(2018•湖州)如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F 处,连结AD,则下列结论不一定正确的是()A.AE=EF B.AB=2DEC.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等12.(2018•绍兴)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A.B.C.D.13.(2018•湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A.r B.(1+)r C.(1+)r D.r 14.(2018•绍兴)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图)若有34枚图钉可供选用,则最多可以展示绘画作品()A.16张B.18张C.20张D.21张15.(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°16.(2018•湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a 的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥17.(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱18.(2018•衢州)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O 作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm二.填空题(共12小题)19.(2018•宁波)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD 的边相切时,BP的长为.20.(2018•杭州)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE 翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G 在BC边上,若AB=AD+2,EH=1,则AD=.21.(2018•温州)如图,直线y=﹣x+4与x轴、y轴分别交于A,B两点,C 是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为.22.(2018•嘉兴)如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是.23.(2018•宁波)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.24.(2018•温州)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为cm.25.(2018•湖州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是.26.(2018•绍兴)过双曲线y=(k>0)上的动点A作AB⊥x轴于点B,P是直线AB上的点,且满足AP=2AB,过点P作x轴的平行线交此双曲线于点C.如果△APC的面积为8,则k的值是.27.(2018•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是(不包括5).28.(2018•绍兴)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,ycm(y≤15),当铁块的顶部高出水面2cm时,x,y满足的关系式是.29.(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.30.(2018•衢州)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x 轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A nB n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点A1的坐标是,﹣1点A2018的坐标是.。
江苏省无锡地区2018年中考数学选择填空压轴题专题2方程不等式中的含参问题20180723164

专题02 方程、不等式中的含参问题例1.已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b-3c=1,若m=3a+b-7c,则m的最小值为__________.x+y+z同类题型1.1 已知x+2y-3z=0,2x+3y+5z=0,则=________.x-y+z4x+3m=2同类题型1.2 方程组{8x-3y=m)的解x,y满足x>y,则m的取值范围是()9 10 19 A.m>B.m>C.m>D.m>10 9 10 10 19例2.关于x的方程x+mx-9=0和x-3x+m+6m=0有公共根,则m的值为________.2018同类题型2.1 已知a是一元二次方程x-2018x+1=0的一个根,则代数式a-2017a+的a+1值是___.同类题型2.2 已知关于x的方程(k-1)x+(2k-1)x+1=0有两个不相等的实数根,那么实数k的取值范围为_____________.同类题型2.3 已知α、β是方程x-2x-4=0的两个实数根,则α+8β+6的值为()A.-1 B.2 C.22 D.301 1 1 1 1例3.已知方程x+=a+的两根分别为a,,则方程x+=a+的根是x a a x-1 a-1 ()1 1 1 aA.a,B.,a-1 C.,a-1 D.a,a-1 a-1 a a-12x-b同类题型3.1 若关于x的方程=3的解是非负数,则b的取值范围是________.x-12 6 12同类题型3.2 观察分析下列方程:①x+=3;②x+=5;③x+=7.请利用它们所蕴x x x1n+n含的规律,求关于x的方程x+=2n+5(n为正整数)的根,你的答案是x-4_________________.2 a+1 3a同类题型3.3 已知关于x的方程-=只有整数解,则整数a的值为x-1 x+2 (x-1)(x+2)_____________.例4.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[-2.1]=-3.则下列结论:①[-x]=-[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当-1<x<1时,[1+x]+[1-x]的值为1或2;④x=-2.75是方程4x-2[x]+5=0的唯一一个解.其中正确的结论有_________(写出所有正确结论的序号).同类题型4.1设[x]表示不大于x的最大整数,{x}表示不小于x的最小整数,(x)表示最接近x的整数(x≠n+0.5,n为整数).例如[3.4]=3,{3.4}=4,(3.4)=3.则不等式8≤2x+[x]+3{x}+4(x)≤14的解为()A.0.5≤x≤2 B.0.5<x<1.5或1.5<x<2C.0.5<x<1.5 D.1.5<x<2同类题型4.2规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是___________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=-2.1时,[x]+(x)+[x)=-7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当-1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.5同类题型4.3 如果关于x的不等式(a+b)x+2a-b>0的解集是x<,那么关于x的不等2式(b-a)x+a+2b≤0的解集是____________.x+4 x>+1同类题型4.4 若关于x的不等式组{x-a<0)解集为x<2,则a的取值范围是___________.3 2同类题型4.5 按如图的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有___________.参考答案例1.已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b-3c=1,若m=3a+b-7c,则m的最小值为__________.3a+2b+c=5解:由题意可得{2m a=+3b a-+3b c-=71c),7﹒(m+2) 11﹒(m+2) m+2解得a=-3,b=7-,c=,3 3 3由于a,b,c是三个非负实数,∴a≥0,b≥0,c≥0,1 5∴-≥m≥-.11 75所以m_(最小值)=-.75故本题答案为:-.7x+y+z同类题型1.1 已知x+2y-3z=0,2x+3y+5z=0,则=________.x-y+zx+2y-3z=0①解:由题意得:{2x+3y+5z=0②),①×2-②得y=11z,代入①得x=-19z,x+y+z-19z+11z+z7原式===.x-y+z-19z-11z+z294x+3m=2同类题型1.2 方程组{8x-3y=m)的解x,y满足x>y,则m的取值范围是()9 10 19 A.m>B.m>C.m>D.m>10 9 10 10 194x+3m=2①解:{8x-3y=m②)2-3m2-3m4-7m由①得x=,代入②得,8 ×-3y=m,y=.4 4 32-3m4-7m10∵x>y,即>,解得m>.4 3 19选D.例2.关于x的方程x+mx-9=0和x-3x+m+6m=0有公共根,则m的值为________.解:设这个公共根为α.则方程x+mx-9=0的两根为α、-m-α;方程x-3x+m+6m=0的两根为α、3-α,由根与系数的关系有:α(-m-α)=-9,α(3-α)=m+6m,整理得,α+mα=9①,α-3α+m+6m=0②,②-①得,m+6m-3α-mα=-9,即(m+3)-α(m+3)=0,(m+3)(m+3-α)=0,所以m+3=0或m+3-α=0,解得m=-3或α=m+3,把α=m+3代入①得,(m+3)+m(m+3)=9,m+6m+9+m+3m=9,m(2m+9)=0,所以m=0或2m+9=0,解得m=0或m=-4.5,综上所述,m的值为-3,0,-4.5.2018同类题型2.1 已知a是一元二次方程x-2018x+1=0的一个根,则代数式a-2017a+的a+1值是___.解:由题意,把根a代入x-2018x+1=0,可得:a-2018a+1=0,∴a-2017a-a+1=0,a+1=2018a;∴a-2017a=a-1,2018 2018 1∴a-2017a+=a-1+=a+-1a+1 2018a aa+1 2018a=-1=-1a a=2018-1,=2017.同类题型2.2 已知关于x的方程(k-1)x+(2k-1)x+1=0有两个不相等的实数根,那么实数k的取值范围为_____________.解:由题意知,k≠±1,△=(2k-1)-4(k-1)=5-4k>05∴k<且k≠±1.4同类题型2.3 已知α、β是方程x-2x-4=0的两个实数根,则α+8β+6的值为()4A.-1 B.2 C.22 D.30解:∵α、β是方程x-2x-4=0的两个实数根,∴α+β=2,α-2α-4=0,∴α=2α+4∴α+8β+6=α﹒α+8β+6=α﹒(2α+4)+8β+6=2α+4α+8β+6=2(2α+4)+4α+8β+6=8α+8β+14=8(α+β)+14=30,故选D.1 1 1 1 1例3.已知方程x+=a+的两根分别为a,,则方程x+=a+的根是()x a a x-1 a-11 1 1 aA.a,B.,a-1 C.,a-1 D.a,a-1 a-1 a a-11 1 1 1解:方程x+=a+可以写成x-1+=a-1+的形式,x-1 a-1 x-1 a-11 1 1∵方程x+=a+的两根分别为a,,x a a1 1 1∴方程x-1+=a-1+的两根的关系式为x-1=a-1,x-1=,即方程的根为x x-1 a-1 a-1a=a或,a-11 1 a∴方程x+=a+的根是a,.x-1 a-1 a-1选D.2x-b同类题型3.1 若关于x的方程=3的解是非负数,则b的取值范围是________.x-1解:去分母得,2x-b=3x-3∴x=3-b∵x≥0∴3-b≥0解得,b≤3又∵x-1≠0∴x≠1即3-b≠1,b≠2则b的取值范围是b≤3且b≠2.2 6 12同类题型3.2 观察分析下列方程:①x+=3;②x+=5;③x+=7.请利用它们所蕴x x xn+n含的规律,求关于x的方程x+=2n+5(n为正整数)的根,你的答案是x-4_________________.1 × 2解:x+=3,解得:x=2或x=1;x2 × 3x+=5,解得:x=2或x=3;x53 × 4x+=7,解得:x=3或x=4,xmn得到规律x+=m+n的解为:x=m或x=n,xn(n+1)所求方程整理得:x-4+=2n+1,x-4根据规律得:x-4=n或x-4=n+1,解得:x=n+4或x=n+5.2 a+1 3a同类题型3.3 已知关于x的方程-=只有整数解,则整数a的值为x-1 x+2 (x-1)(x+2)_____________.解:方程两边同乘以(x-1)(x+2),得:2(x+2)-(a+1)(x-1)=3a,2a-5 3解得:x==-2-,1-a1-a∵方程只有整数解,∴1-a=3或1或-3或-1,当1-a=3,即a=-2时,x=-2-1=-3,检验,将x=-3代入(x-1)(x+2)=4≠0,故x=-3是原分式方程的解;当1-a=1,即a=0时,x=-2-3=-5,检验,将x=-5代入(x-1)(x+2)=18≠0,故x=-7是原分式方程的解;当1-a=-3,即a=4时,x=-2+1=-1,检验,将x=-1代入(x-1)(x+2)=-2≠0,故x=-1是原分式方程的解;当1-a=-1,即a=2时,x=1,检验,将x=1代入(x-1)(x+2)=0,故x=1不是原分式方程的解;∴整数a的值为:-2,0或4.例4.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[-2.1]=-3.则下列结论:①[-x]=-[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当-1<x<1时,[1+x]+[1-x]的值为1或2;④x=-2.75是方程4x-2[x]+5=0的唯一一个解.其中正确的结论有_________(写出所有正确结论的序号).解:①当x=-3.5时,[-3.5]=-4,-[x]=-3,不相等,故原来的说法错误;②若[x]=n,则x的取值范围是n≤x<n+1是正确的;③当-1<x<0时,[1+x]+[1-x]=0+1=1;当x=0时,[1+x]+[1-x]=1+1=2;当0<x<1时,[1+x]+[1-x]=1+0=1;故当-1<x<1时,[1+x]+[1-x]的值为1或2是正确的;④x-[x]的范围为0~1,4x-2[x]+5=0,-5≤2x<-7,即-2.5≤x<-3.5,x=-2.75或x=-3.25都是方程4x-2[x]+5=0,故原来的说法错误.故答案为:②③.6同类题型4.1 设[x]表示不大于x的最大整数,{x}表示不小于x的最小整数,(x)表示最接近x的整数(x≠n+0.5,n为整数).例如[3.4]=3,{3.4}=4,(3.4)=3.则不等式8≤2x+[x]+3{x}+4(x)≤14的解为()A.0.5≤x≤2 B.0.5<x<1.5或1.5<x<2C.0.5<x<1.5 D.1.5<x<2解:根据题意得:x>0,若x≥2,则2x≥4,[x]≥2,3{x}≥6,4(x)≥8,不等式不成立.故只需分析0<x<2时的情形即可,①0<x≤0.5时,不等式可化为:8≤2x+0+3+0≤14,解得:2.5≤x≤5.5,不符合不等式;②当0.5<x≤1时,不等式可化为:8≤2x+0+3+4≤14,解得:0.5≤x≤3,因此0.5<x≤1,符合不等式;③当1<x<1.5时,不等式可化为:8≤2x+1+6+4≤14,解得:-1.5≤x≤1.5,因此1<x<1.5,符合不等式;④当1.5<x<2时,不等式可化为:8≤2x+1+6+8≤14,解得:-3.5≤x≤-0.5,不符合不等式.故原不等式的解集为:0.5<x<1.5.故选C.同类题型4.2规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是___________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=-2.1时,[x]+(x)+[x)=-7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当-1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.解:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=-2.1时,[x]+(x)+[x)=[-2.1]+(-2.1)+[-2.1)=(-3)+(-2)+(-2)=-7,故②正确;③4[x]+3(x)+[x)=11,7[x]+3+[x)=11,7[x]+[x)=8,1<x<1.5,故③正确;④∵-1<x<1时,∴当-1<x<-0.5时,y=[x]+(x)+x=-1+0+x=x-1,当-0.5<x<0时,y=[x]+(x)+x=-1+0+x=x-1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,1 1∵y=4x,则x-1=4x时,得x=-;x+1=4x时,得x=;当x=0时,y=4x=0,3 37∴当-1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为:②③.5同类题型4.3 如果关于x的不等式(a+b)x+2a-b>0的解集是x<,那么关于x的不等2式(b-a)x+a+2b≤0的解集是____________.5解:∵关于x的不等式(a+b)x+2a-b>0的解集是x<,2b-2a∴x<,a+bb-2a5∴=,且a+b<0,a+b2即b=-3a,a+b<0,∴a-3a<0,即a>0,∴b-a=-4a<0,-a-2b∴关于x的不等式(b-a)x+a+2b≤0的解集是x≥,b-a-a-2b-a+6a 5∵==-,b-a-3a-a45 ∴关于x的不等式(b-a)x+a+2b≤0的解集是x≥-.4x+4 x>+1同类题型4.4 若关于x的不等式组{x-a<0)解集为x<2,则a的取值范围是___________.3 2x+4 x解:由>+1,得3 22x+8>3x+6,解得x<2,由x-a<0,得x<a,x+4 x>+1又因关于x的不等式组{x-a<0)解集为x<2,3 2所以a≥2.同类题型4.5 按如图的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有___________.解:∵最后输出的数为656,∴5x+1=656,得:x=131>0,∴5x+1=26,得:x=5>0,8∴5x+1=5,得:x=0.8>0;∴5x+1=0.8,得:x=-0.04<0,不符合题意,故x的值可取131,26,5,0.8共4个.9。
(完整word版)2018年全国各地中考数学选择、填空压轴题汇编(一),推荐文档

2018年全国各地中考数学选择、填空压轴题汇编(一)参考答案与试题解析一•选择题(共13小题)1. (2018?长沙)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中里”是我国市制长度单位,1里=500米,则该沙田的面积为()A. 7.5平方千米B. 15平方千米 C. 75平方千米D. 750平方千米解:••• 52+122=132,•••三条边长分别为5里,12里,13里,构成了直角三角形,•••这块沙田面积为:寺X 5X 500X 12X 500=7500000 (平方米)=7.5 (平方千米).Z故选:A.2. (2018?株洲)已知一系列直线y=a k x+b (a k均不相等且不为零,a k同号,k为大于或等于2的整数,b>0)分别与直线y=0相交于一系列点A k,设A k的横坐标为x k,则对于式子——-(K i< k,Kj < k, E j),下列一定正确的是()Z i-K jA. 大于1B.大于0C.小于-1D.小于0| b b解:由题意X i=—云,X j二—石,亠a i_a3屯•巧•式子= -> 0,圧厂幻b故选:B.3. (2018?衡阳)对于反比例函数y=-〒,下列说法不正确的是()A. 图象分布在第二、四象限B. 当x>0时,y随x的增大而增大C. 图象经过点(1,- 2)D. 若点A (X1,y1),B (X2,y2)都在图象上,且X1V X2,则y1V y2解:A、k=-2v0,二它的图象在第二、四象限,故本选项正确;B、k=- 2v0,当x>0时,y随x的增大而增大,故本选项正确;2|C、:-「=- 2,二点(1,- 2)在它的图象上,故本选项正确;D、点A (x i,y i)、B (X2、y2)都在反比例函数y=-吕的图象上,若x i<X2<0,贝U y i v y2,故本选项错误.故选:D.4. (2018?长沙)若对于任意非零实数a,抛物线y=a^+ax- 2a总不经过点P (x°-3, X。
无锡地区2018年中考数学选择填空压轴题专题3函数的几何综合问题

专题03 函数的几何综合问题例1.如图,在平面直角坐标系中,直线l:错误!与x轴交于点错误!,以错误!为边长作等边三角形A1OB1,过点错误!作错误!平行于x轴,交直线l于点错误!,以错误!为边长作等边三角形错误!,过点错误!作错误!平行于x轴,交直线l于点B3,以错误!为边长作等边三角形错误!,…,则点错误!的横坐标是____________.同类题型1.1 如图,直线l:y=x+1交y轴于点错误!,在x轴正方向上取点错误!,使错误!;过点错误!作错误!⊥x轴,交l于点错误!,在x轴正方向上取点错误!,使错误!;过点错误!作错误!⊥x轴,交l于点错误!,在x轴正方向上取点错误!,使错误!;…记错误!面积为错误!,错误!面积为错误!,错误!面积为错误!,…则错误!等于()A.错误!B.错误!C.错误!D.错误!同类题型1.2 如图,已知直线l:错误!x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点错误!;过点错误!作y轴的垂线交直线l于点错误!,过点错误!作直线l的垂线交y轴于点错误!;…;按此作法继续下去,则点错误!的坐标为()A.(0,128) B.(0,256) C.(0,512) D.(0,1024)同类题型1。
3 如图,在平面直角坐标系中,直线l:错误!x+1交x轴于点B,交y轴于点A,过点A作错误!⊥AB交x轴于点错误!,过点错误!作错误!⊥x轴交直线l于点错误!…依次作下去,则点错误!的横坐标为____________.例2.高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离错误!、错误!(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的坐标为(7,180),其中正确的有_________(把所有正确结论的序号都填在横线上).同类题型2。
2018年全国各地中考数学压轴题汇编:选择、填空(湖北专版)(解析卷)

2018年全国各地中考数学压轴题汇编(湖北专版)选择、填空参考答案与试题解析一.选择题(共22小题)1.(2018•天门)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5解:如图,连接AE,∵AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.2.(2018•武汉)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.3.(2018•黄石)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A.B.C.2πD.解:连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.4.(2018•天门)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.5.(2018•黄石)已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是()A.x<﹣1或x>4 B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4 D.x<﹣1或0<x<4解:解方程组得:,,即A(4,1),B(﹣1,﹣4),所以当y1>y2时,x的取值范围是﹣1<x<0或x>4,故选:B.6.(2018•宜昌)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B.C.D.解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=S正方形ABCD=,故选:B.7.(2018•黄石)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x 秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A.B.C.D.解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,=CM•CE=;∴y=S△EMC故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x ≤4时,如图3,矩形ABCD 与△PMN 重叠部分是四边形EMCD ,过E 作EF ⊥MN 于F ,∴EF=MF=2,∴ED=CF=x ﹣2,∴y=S 梯形EMCD =CD•(DE +CM )==2x ﹣2;③当4<x ≤6时,如图4,矩形ABCD 与△PMN 重叠部分是五边形EMCGF ,过E 作EH ⊥MN 于H ,∴EH=MH=2,DE=CH=x ﹣2,∵MN=6,CM=x ,∴CG=CN=6﹣x ,∴DF=DG=2﹣(6﹣x )=x ﹣4,∴y=S 梯形EMCD ﹣S △FDG =﹣=×2×(x ﹣2+x )﹣=﹣+10x ﹣18,故选项A 正确;故选:A .8.(2018•宜昌)如图,在平面直角坐标系中,把△ABC 绕原点O 旋转180°得到△CDA ,点A ,B ,C 的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D 的坐标为( )A.(2,2)B.(2,﹣2)C.(2,5)D.(﹣2,5)解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD经过点O,∵B的坐标为(﹣2,﹣2),∴D的坐标为(2,2),故选:A.9.(2018•襄阳)已知二次函数y=x2﹣x+m﹣1的图象与x轴有交点,则m的取值范围是()A.m≤5 B.m≥2 C.m<5 D.m>2解:∵二次函数y=x2﹣x+m﹣1的图象与x轴有交点,∴△=(﹣1)2﹣4×1×(m﹣1)≥0,解得:m≤5,故选:A.10.(2018•宜昌)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40°D.45°解:∵直线AB是⊙O的切线,C为切点,∴∠OCB=90°,∵OD∥AB,∴∠COD=90°,∴∠CED=∠COD=45°,故选:D.11.(2018•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2C.D.2解:∵OA⊥BC,∴CH=BH,=,∴∠AOB=2∠CDA=60°,∴BH=OB•sin∠AOB=,∴BC=2BH=2,故选:D.12.(2018•宜昌)如图,一块砖的A,B,C三个面的面积比是4:2:1.如果A,B,C 面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为p=,其中P是压强,F是压力,S是受力面积,则p1,p2,p3,的大小关系正确的是()A.p1>p2>p3B.p1>p3>p2C.p2>p1>p3D.p3>p2>p1解:∵p=,F>0,∴p随S的增大而减小,∵A,B,C三个面的面积比是4:2:1,∴p1,p2,p3的大小关系是:p3>p2>p1.故选:D.13.(2018•荆门)如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(2,﹣3)解:过点作IF⊥AC于点F,IE⊥OA于点E,∵A(4,0),B(0,3),C(4,3),∴BC=4,AC=3,则AB=5,∵I是△ABC的内心,∴I到△ABC各边距离相等,等于其内切圆的半径,∴IF=1,故I到BC的距离也为1,则AE=1,故IE=3﹣1=2,OE=4﹣1=3,则I(3,2),∵△ABC绕原点逆时针旋转90°,∴I的对应点I'的坐标为:(﹣2,3).故选:A.14.(2018•孝感)如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.解:由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选:C.15.(2018•荆门)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有()A.1个B.2个C.3个D.4个解:∵抛物线的顶点坐标(﹣2a,﹣9a),∴﹣=﹣2a,=﹣9a,∴b=4a,c=5a,∴抛物线的解析式为y=ax2+4ax﹣5a,∴4a+2b+c=4a+8a﹣5a=7a>0,故①正确,5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②错误,∵抛物线y=ax2+4ax﹣5a交x轴于(﹣5,0),(1,0),∴若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1,正确,故③正确,若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,故④错误,故选:B.16.(2018•黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1 B.2 C.0或2 D.﹣1或2解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.17.(2018•咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5D.5解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB===8,故选:B.18.(2018•随州)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.解:由于兔子在图中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A、C均错误;故选:B.19.(2018•咸宁)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个B.2个C.3个D.4个解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选:A.20.(2018•恩施州)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.12解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.21.(2018•随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个B.3个C.2个D.1个解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以①正确;∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴ax2+bx≤a+b,所以③正确;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以④正确.故选:A.22.(2018•恩施州)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.5解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.二.填空题(共14小题)23.(2018•天门)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.24.(2018•襄阳)如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=,则AP的长为.解:设AB=a,AD=b,则ab=32,由△ABE∽△DAB可得:=,∴b=a2,∴a3=64,∴a=4,b=8,设PA交BD于O.在Rt△ABD中,BD==12,∴OP=OA==,∴AP=.故答案为.25.(2018•武汉)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.26.(2018•孝感)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则方程ax2=bx+c的解是x1=﹣2,x2=1.解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.所以方程ax2=bx+c的解是x1=﹣2,x2=1故答案为x1=﹣2,x2=1.27.(2018•黄冈)如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=2.解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.28.(2018•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是2或14cm.解:①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF﹣OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.29.(2018•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm(杯壁厚度不计).解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.30.(2018•孝感)如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为7.解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB,∴AG=DH=﹣x﹣1,∴DG=BM,∴1﹣=﹣1﹣x﹣,x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S=CE•BM=××4=7;△CEB故答案为:7.31.(2018•咸宁)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E 的坐标为(2,3),则点F的坐标为(﹣1,5).解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线EG,垂足为G,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).32.(2018•随州)如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交与点C,若tan∠AOC=,则k的值为3.解:设点A的坐标为(3a,a),∵一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,∴a=3a﹣2,得a=1,∴1=,得k=3,故答案为:3.33.(2018•咸宁)如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A 关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:①AD=CD;②∠ACD的大小随着α的变化而变化;③当α=30°时,四边形OADC为菱形;④△ACD面积的最大值为a2;其中正确的是①③④.(把你认为正确结论的序号都填上).解:①∵A、C关于直线OM'对称,∴OM'是AC的垂直平分线,∴CD=AD,故①正确;②连接OC,由①知:OM'是AC的垂直平分线,∴OC=OA,∴OA=OB=OC,以O为圆心,以OA为半径作⊙O,交AO的延长线于E,连接BE,则A、B、C都在⊙O 上,∵∠MON=120°,∴∠BOE=60°,∵OB=OE,∴△OBE是等边三角形,∴∠E=60°,∵A、C、B、E四点共圆,∴∠ACD=∠E=60°,故②不正确;③当α=30°时,即∠AOD=∠COD=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴∠OAC=60°,OC=OA=AC,由①得:CD=AD,∴∠CAD=∠ACD=∠CDA=60°,∴△ACD是等边三角形,∴AC=AD=CD,④∵CD=AD,∠ACD=60°,∴△ACD是等边三角形,当AC最大时,△ACD的面积最大,∵AC是⊙O的弦,即当AC为直径时最大,此时AC=2OA=2a,α=90°,∴△ACD面积的最大值是:AC2==,故④正确,所以本题结论正确的有:①③④故答案为:①③④.34.(2018•随州)如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为(,﹣).解:作B′H⊥x轴于H点,连结OB,OB′,如图,∵四边形OABC为菱形,∴∠AOC=180°﹣∠C=60°,OB平分∠AOC,∴∠AOB=30°,∵菱形OABC绕原点O顺时针旋转75°至第四象限OA′B′C′的位置,∴∠BOB′=75°,OB′=OB=2,∴∠AOB′=∠BOB′﹣∠AOB=45°,∴△OBH为等腰直角三角形,∴OH=B′H=OB′=,∴点B′的坐标为(,﹣).故答案为:(,﹣).35.(2018•恩施州)在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC 沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为π+.(结果不取近似值)解:∵Rt△ABC中,∠A=60°,∠ABC=90°,∴∠ACB=30°,BC=,将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长;第三部分为△ABC的面积;∴点B所经过的路径与直线l所围成的封闭图形的面积=++•1•=+.故答案为π+.36.(2018•随州)如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.给出以下判断:①AC垂直平分BD;②四边形ABCD的面积S=AC•BD;③顺次连接四边形ABCD的四边中点得到的四边形可能是正方形;④当A,B,C,D四点在同一个圆上时,该圆的半径为;⑤将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,当BF⊥CD 时,点F到直线AB的距离为.其中正确的是①③④.(写出所有正确判断的序号)解:∵在四边形ABCD中,AB=AD=5,BC=CD,∴AC是线段BD的垂直平分线,故①正确;四边形ABCD的面积S=,故②错误;当AC=BD时,顺次连接四边形ABCD的四边中点得到的四边形是正方形,故③正确;当A,B,C,D四点在同一个圆上时,设该圆的半径为r,则r2=(r﹣3)2+42,得r=,故④正确;将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,如图所示,连接AF,设点F到直线AB的距离为h,由折叠可得,四边形ABED是菱形,AB=BE=5=AD=GD,BO=DO=4,∴AD⊥CD,EF==,∵S=S梯形ABFD﹣S△ADF,△ABF∴×5h=(5+5+)×﹣×5×,解得h=,故⑤错误;故答案为:①③④.。
2018中考数学压轴题专题10选择填空方法综述(解析版)(PDF版)

规律 . 解决规律探究性问题常常利用特殊值 ( 特殊点、特殊数量、特殊线段、特殊位置等
) 进行归纳、概括 ,
从特殊到一般 , 从而得出规律 ( 符合一定的经验与事实的数学结论 ), 然后验证或应用这一规律解题即可 . 解
答时对分析问题、解决问题能力具有很高的要求
.
3. 以几何图形中的动点最值问题为背景的选择填空题:“两点之间线段最短”,“垂线段最短”,“点关 于线对称”, “线段的平移” . 原型 ---- “饮马问题”, “造桥选址问题”, 考的较多的还是“饮马问题”,
. 大量积累基本图形,并在此基础上“截长补短” ,
“能割善补 ”,是学习几何图形的一个诀窍,每一个重要概念,重要定理都有一个基本图形,三线八角可以
算做一个基本图形 .
2. 以数字及图形规律探究问题为背景的选择填空题:掌握探究规律的方法,可以通过具体到抽象、特殊 到一般的方法,有时通过类比、联想,还要充分利用已知条件或图形特征进行透彻分析,从中找出隐含的
出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等 4. 以几何图形中的图形操作与变换问题为背景的选择填空题:在解决这类问题时,要注意折叠出等角,折
叠出等长, 折叠出等腰三角形, 折叠出全等与相似等 . 图形的旋转是中考题的新题型, 热点题型, 解题方法 :
结合具体的问题大胆尝试,动手操作平移,旋转,探究发现其内在的规律;注重对网格内和坐标内的图形 的变换试题的研究,熟练掌握其常用的解题方法;关注图形与变换创新题,弄清其本质,掌握基本解题方
& 变式训练 &
变式 2.1( 2017 四川省巴中市) 如图,A、B、C、D 为圆 O 的四等分点, 动点 P 从圆心 O 出发,沿 CO→ CD →DO
2018年中考数学选择填空压轴题专题成套汇总(精品)

目录四边形的综合问题 ............................................................................. - 1 - 方程、不等式中的含参问题............................................................ - 21 - 函数的几何综合问题........................................................................ - 30 - 函数的动点问题 ............................................................................... - 54 - 三角形综合问题 ............................................................................... - 76 - 四边形的综合问题 ......................................................................... - 100 - 圆的综合问题 ................................................................................. - 121 - 几何变换问题 ................................................................................. - 143 - 阅读理解问题 ................................................................................. - 161 - 选择填空方法综述 ......................................................................... - 171 -四边形的综合问题例1.如图,△APB中,AB=2 2 ,∠APB=90°,在AB的同侧作正△ABD、正△APE和△BPC,则四边形PCDE面积的最大值是__________.同类题型1.1 如图,△APB中,AP=4,BP=3,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是___________.同类题型1.2 如图,在□ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB 交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①② B.只有①②③ C.只有③④ D.①②③④同类题型1.3 如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=P C.其中正确的有______________.(填序号)同类题型1.4 如图,在□ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE例2.图甲是小明设计的带菱形图案的花边作品.该作品由形如图乙的矩形图案拼接而成(不重叠、无缝隙).图乙中AB BC = 67,EF =4cm ,上下两个阴影三角形的面积之和为54cm 2 ,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为____________.同类题型2.1 如图,在菱形ABCD 中,AB =4cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为____________.同类题型2.2 如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是____________.同类题型2.3 如图,在菱形ABCD 中,边长为10,∠A =60°.顺次连接菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1 ;顺次连接四边形A 1B 1C 1D 1 各边中点,可得四边形A 2B 2C 2D 2 ;顺次连接四边形A 2B 2C 2D 2 各边中点,可得四边形A 3B 3C 3D 3 ;按此规律继续下去…,则四边形A 2017B 2017C 2017D 2017 的周长是______________.例3. 如图,在矩形ABCD 中,点E 为AB 的中点,EF ⊥EC 交AD 于点F ,连接CF (AD >AE ),下列结论:①∠AEF =∠BCE ;②S △CEF =S △EAF +S △CBE ;③AF +BC >CF ; ④若BC CD = 32,则△CEF ≌△CDF .其中正确的结论是____________.(填写所有正确结论的序号)同类题型3.1 如图,在矩形ABCD 中,AD = 2 AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①AED =∠CED ;②AB =HF ,③BH =HF ;④BC -CF =2HE ;⑤OE =OD ;其中正确结论的序号是____________.同类题型3.2 如图,在矩形ABCD 中,BC = 2 AB ,∠ADC 的平分线交边BC 于点E ,AH ⊥DE 于点H ,连接CH 并延长交AB 边于点F ,连接AE 交CF 于点O ,给出下列命题:①AD =DE ②DH =2 2 EH ③△AEH ∽△CFB ④HO =12AE 其中正确命题的序号是________________(填上所有正确命题的序号)同类题型3.3 如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .23例4.已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂线AP 交DE 于点P .若AE =AP =1,PB = 6 ,下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 2 ;③EB ⊥ED ;④S △APD +S △APB =1+ 6 .⑤S 正方形ABCD =4+ 6.其中正确结论的序号是___________________.同类题型4.1 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B →C →D →A →B 滑动到B 止.点N 是正方形ABCD 内任一点,把N 点落在线段QR 的中点M 所经过的路线围成的图形内的概率记为P ,则P =( )A .4-π4B .π4C .14D .π-14同类题型4.2 如图,边长为2的正方形ABCD 中,AE 平分∠DAC ,AE 交CD 于点F ,CE ⊥AE ,垂足为点E ,EG ⊥CD ,垂足为点G ,点H 在边BC 上,BH =DF ,连接AH 、FH ,FH 与AC 交于点M ,以下结论:①FH =2BH ;②AC ⊥FH ;③S △ACF =1;④CE = 12AF ;⑤EG 2 =FG ﹒DG ,其中正确结论的个数为( )A .2B .3C .4D .5同类题型4.3 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是 ______________.(1)EF= 2 OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF= 2 OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=34;(5)OG﹒BD=AE2+CF2.同类题型4.4 如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF的中点为G,则当点P从点C运动到点D时,点G移动的路径长为 _____________.参考答案例1.如图,△APB中,AB=2 2 ,∠APB=90°,在AB的同侧作正△ABD、正△APE和△BPC,则四边形PCDE面积的最大值是__________.解:如图,延长EP交BC于点F,∵∠APB =90°,∠APE =∠BPC =60°,∴∠EPC =150°,∴∠CPF =180°-150°=30°,∴PF 平分∠BPC ,又∵PB =PC ,∴PF ⊥BC ,设Rt △ABP 中,AP =a ,BP =b ,则CF =12CP =12b ,a 2+b 2 =8, ∵△APE 和△ABD 都是等边三角形,∴AE =AP ,AD =AB ,∠EAP =∠DAB =60°,∴∠EAD =∠PAB ,∴△EAD ≌△PAB (SAS ),∴ED =PB =CP ,同理可得:△APB ≌△DCB (SAS ),∴EP =AP =CD ,∴四边形CDEP 是平行四边形,∴四边形CDEP 的面积=EP ×CF =a ×12b =12ab , 又∵(a -b )2=a 2-2ab +b 2 ≥0,∴2ab ≤a 2+b 2 =8,∴12ab ≤2, 即四边形PCDE 面积的最大值为2.同类题型1.1 如图,△APB 中,AP =4,BP =3,在AB 的同侧作正△ABD 、正△APE 和正△BPC ,则四边形PCDE 面积的最大值是___________.解:∵△APE 和△ABD 是等边三角形,∴AE =AP =4,AB =AD ,∠EAP =∠DAB =60°,∴∠EAD =∠PAB =60°-∠DAP ,在△EAD 和△PAB 中⎩⎪⎨⎪⎧AE =AP∠EAD =∠PAB AD =AB∴△EAD ≌△PAB (SAS ),∴DE =BP ,同理△DBC ≌△ABP ,∴DC=AP,∵△APE和△BPC是等边三角形,∴EP=AP,BP=CP,∴DE=CP=3,DC=PE=4,∴四边形PCDE是平行四边形,当CP⊥EP时,四边形PCDE的面积最大,最大面积是3×4=12.同类题型1.2 如图,在□ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB 交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①② B.只有①②③ C.只有③④ D.①②③④解:∵△ABE、△ADF是等边三角形∴FD=AD,BE=AB∵AD=BC,AB=DC∴FD=BC,BE=DC∵∠B=∠D,∠FDA=∠ABE∴∠CDF=∠EBC∴△CDF≌△EBC,故①正确;∵∠FAE=∠FAD+∠EAB+∠BAD=60°+60°+(180°-∠CDA)=300°-∠CDA,∠FDC=360°-∠FDA-∠ADC=300°-∠CDA,∴∠CDF=∠EAF,故②正确;同理可得:∠CBE=∠EAF=∠CDF,∵BC=AD=AF,BE=AE,∴△EAF≌△EBC,∴∠AEF=∠BEC,∵∠AEF+∠FEB=∠BEC+∠FEB=∠AEB=60°,∴∠FEC=60°,∵CF=CE,∴△ECF是等边三角形,故③正确;在等边三角形ABE中,∵等边三角形顶角平分线、底边上的中线、高和垂直平分线是同一条线段∴如果CG⊥AE,则G是AE的中点,∠ABG=30°,∠ABC=150°,题目缺少这个条件,CG ⊥AE不能求证,故④错误.选B.同类题型1.3 如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=P C.其中正确的有______________.(填序号)解:证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.答案为①②③④.同类题型1.4 如图,在□ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE解:∵四边形ABCD 是平行四边形,∴AH ∥BG ,AD =BC ,∴∠H =∠HBG ,∵∠HBG =∠HBA ,∴∠H =∠HBA ,∴AH =AB ,同理可证BG =AB ,∴AH =BG ,∵AD =BC ,∴DH =CG ,故C 正确,∵AH =AB ,∠OAH =∠OAB ,∴OH =OB ,故A 正确,∵DF ∥AB ,∴∠DFH =∠ABH ,∵∠H =∠ABH ,∴∠H =∠DFH ,∴DF =DH ,同理可证EC =CG ,∵DH =CG ,∴DF =CE ,故B 正确,无法证明AE =AB ,选D .例2.图甲是小明设计的带菱形图案的花边作品.该作品由形如图乙的矩形图案拼接而成(不重叠、无缝隙).图乙中AB BC = 67,EF =4cm ,上下两个阴影三角形的面积之和为54cm 2 ,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为____________.解:如图乙,H 是CF 与DN 的交点,取CD 的中点G ,连接HG ,,设AB =6a cm ,则BC =7a cm ,中间菱形的对角线HI 的长度为x cm ,∵BC =7a cm ,MN =EF =4cm ,∴CN =7a +42,∵GH ∥BC ,∴GH CN =DG DC ,∴7a -x 27a +42=12, ∴x =3.5a -2…(1); ∵上下两个阴影三角形的面积之和为54cm 2 ,∴6a ﹒(7a -x )÷2=54,∴a (7a -x )=18…(2);由(1)(2),可得a =2,x =5,∴CD =6×2=12(cm ),CN =7a +42=7×2+42=9(cm) , ∴DN =122+92 =15(cm ), 又∵DH =DG 2+GH 2=62+(7×2-52)2 =7.5(cm ), ∴HN =15-7.5=7.5(cm ),∵AM ∥FC ,∴KN HK =MN CM =49-4=45, ∴HK =54+5×7.5=256(cm) , ∴该菱形的周长为:256×4=503(cm ).同类题型2.1 如图,在菱形ABCD 中,AB =4cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为____________.解:延长AB 至M ,使BM =AE ,连接FM ,∵四边形ABCD 是菱形,∠ADC =120°∴AB =AD ,∠A =60°,∵BM =AE ,∴AD =ME ,∵△DEF 为等边三角形,∴∠DAE =∠DFE =60°,DE =EF =FD ,∴∠MEF +∠DEA ═120°,∠ADE +∠DEA =180°-∠A =120°,∴∠MEF =∠ADE ,∴在△DAE 和△EMF 中,⎩⎪⎨⎪⎧AD =ME∠MEF =∠ADE DE =EF ∴△DAE ≌EMF (SAS ),∴AE =MF ,∠M =∠A =60°,又∵BM =AE ,∴△BMF 是等边三角形,∴BF =AE ,∵AE =t ,CF =2t ,∴BC =CF +BF =2t +t =3t ,∵BC =4,∴3t =4,∴t =43. 同类题型2.2 如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是____________.解:如图所示:∵MA ′是定值,A ′C 长度取最小值时,即A ′在MC 上时,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A =60°,M 为AD 中点,∴2MD =AD =CD =2,∠FDM =60°,∴∠FMD =30°,∴FD =12MD =12, ∴FM =DM ×cos30°=32, ∴MC =FM 2+CF 2=7 ,∴A ′C =MC -MA ′=7 -1.同类题型2.3 如图,在菱形ABCD 中,边长为10,∠A =60°.顺次连接菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1 ;顺次连接四边形A 1B 1C 1D 1 各边中点,可得四边形A 2B 2C 2D 2 ;顺次连接四边形A 2B 2C 2D 2 各边中点,可得四边形A 3B 3C 3D 3 ;按此规律继续下去…,则四边形A 2017B 2017C 2017D 2017 的周长是______________.解:∵菱形ABCD 中,边长为10,∠A =60°,顺次连结菱形ABCD 各边中点,∴△AA 1D 1 是等边三角形,四边形A 2B 2C 2D 2 是菱形,∴A 1D 1 =5,C 1D 1=12AC =5 3 ,A 2B 2=C 2D 2=C 2B 2=A 2D 2 =5, 同理可得出:A 3D 3=5×12 ,C 3D 3=12C 1D 1=12×5 3 , A 5D 5=5×(12)2 ,C 5D 5=12C 3D 3=(12)2×5 3 , …∴四边形A 2015B 2015C 2015D 2015 的周长是:5+5321007 .例3. 如图,在矩形ABCD 中,点E 为AB 的中点,EF ⊥EC 交AD 于点F ,连接CF (AD >AE ),下列结论:①∠AEF =∠BCE ;②S △CEF =S △EAF +S △CBE ;③AF +BC >CF ; ④若BC CD = 32,则△CEF ≌△CDF .其中正确的结论是____________.(填写所有正确结论的序号)解:延长CB ,FE 交于点G ,∵∠AEF +∠BEC =90°,∠BEC +∠BCE =90°,∴∠AEF =∠BCE ,①正确;在△AEF 和△BEG 中,⎩⎪⎨⎪⎧∠FAE =∠GBE =90°AE =BE∠AEF =∠BEG, ∴△AEF ≌△BEG (ASA ),∴AF =BG ,EF =EG ,∵CE ⊥EG ,∴S △CEG =S △CEF ,CG =CF ,∴S △CEF =S △EAF +S △CBE ,②正确;∴AF +BC =BG +BC =CG =CF ,③错误;∵BC CD =32, ∴∠BCE =30°,∴∠FCE =∠FCD =30°,在△CEF 和△CDF 中,⎩⎪⎨⎪⎧∠D =∠FEC =90°∠DCF =∠ECFCF =CF , ∴△CEF ≌△CDF (AAS ),④正确.同类题型3.1 如图,在矩形ABCD 中,AD = 2 AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①AED =∠CED ;②AB =HF ,③BH =HF ;④BC -CF =2HE ;⑤OE =OD ;其中正确结论的序号是____________.解:∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴△ABE 是等腰直角三角形,∴AE= 2 AB ,∵AD= 2 AB ,∴AE =AD ,在△ABE 和△AHD 中,⎩⎪⎨⎪⎧∠BAE =∠DAE∠ABE =∠AHD =90°AE =AD, ∴△ABE ≌△AHD (AAS ),∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED =12 (180°-45°)=67.5°,∴∠CED =180°-45°-67.5°=67.5°,∴∠AED =∠CED ,故①正确;∵∠AHB=12 (180°-45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =∠AED ,∴OE =OH ,∵∠DOH =90°-67.5°=22.5°,∠ODH =67.5°-45°=22.5°,∴∠DOH =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故⑤正确;∵∠EBH =90°-67.5°=22.5°,∴∠EBH =∠OHD ,又∵BE =DH ,∠AEB =∠HDF =45°在△BEH 和△HDF 中⎩⎪⎨⎪⎧∠EBH =∠OHDBE =DH ∠AEB =∠HDF∴△BEH ≌△HDF (ASA ),∴BH =HF ,HE =DF ,故③正确;由上述①、②、③可得CD =BE 、DF =EH =CE ,CF =CD -DF ,∴BC -CF =(CD +HE )-(CD -HE )=2HE ,所以④正确;∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB ≠HF ,故②错误;综上所述,结论正确的是①③④⑤.同类题型3.2 如图,在矩形ABCD 中,BC = 2 AB ,∠ADC 的平分线交边BC 于点E ,AH ⊥D E 于点H ,连接CH 并延长交AB 边于点F ,连接AE 交CF 于点O ,给出下列命题:①AD =DE ②DH =2 2 EH ③△AEH ∽△CFB ④HO =12AE 其中正确命题的序号是________________(填上所有正确命题的序号)解:在矩形ABCD 中,AD =BC =2AB = 2 CD ,∵DE 平分∠ADC ,∴∠ADE =∠CDE =45°,∵AD ⊥DE ,∴△ADH 是等腰直角三角形,∴AD = 2 AB ,∴AH =AB =CD ,∵△DEC 是等腰直角三角形,∴DE = 2 CD ,∴AD =DE ,∴∠AED =67.5°,∴∠AEB =180°-45°-67.5°=67.5°,∴∠AED =∠AEB ,∵AD ∥BC ,∴∠DAE =∠AEB ,∴∠DAE =∠AED ,∴AD =DE ,故①正确;设DH =1,则AH =DH =1,AD =DE = 2 ,∴HE = 2 , ∴22HE =22≠1,故②错误;∵∠AEH =67.5°,∴∠EAH =22.5°,∵DH =CD ,∠EDC =45°,∴∠DHC =67.5°,∴∠OHA =22.5°,∴∠OAH =∠OHA ,∴OA =OH ,∴∠AEH =∠OHE =67.5°,∴OH =OE ,∴OH =12AE , 故④正确;∵AH =DH ,CD =CE ,在△AFH 与△CHE 中,⎩⎪⎨⎪⎧∠AHF =∠HCE =22.5°∠FAH =∠HEC =45°AH =CE , ∴△AFH ≌△CHE ,∴∠AHF =∠HCE ,∵AO =OH ,∴∠HAO =∠AHO ,∴∠HAO =∠BCF ,∵∠B =∠AHE =90°,∴△AEH ∽△CFB ,故③正确.答案为:①③④.同类题型3.3 如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .23解:∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∵点E 是边BC 的中点,∴BE =12BC =12AD , ∴△BEF ∽△DAF , ∴EF AF =BE AD =12, ∴EF =12AF , ∴EF =13AE , ∵点E 是边BC 的中点,∴由矩形的对称性得:AE =DE ,∴EF =13DE ,设EF =x ,则DE =3x , ∴DF =DE 2-EF 2=2 2 x ,∴tan ∠BDE =EF DF =x 22x =24;选A .例4.已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂线AP 交DE 于点P .若AE =AP =1,PB = 6 ,下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 2 ;③EB ⊥ED ;④S △APD +S △APB =1+ 6 .⑤S 正方形ABCD =4+ 6.其中正确结论的序号是___________________.解:①∵∠EAB +∠BAP =90°,∠PAD +∠BAP =90°,∴∠EAB =∠PAD ,又∵AE =AP ,AB =AD ,∵在△APD 和△AEB 中,⎩⎪⎨⎪⎧AE =AP∠EAB =∠PAD AB =AD, ∴△APD ≌△AEB (SAS );故此选项成立;③∵△APD ≌△AEB ,∴∠APD =∠AEB ,∵∠AEB =∠AEP +∠BEP ,∠APD =∠AEP +∠PAE ,∴∠BEP =∠PAE =90°,∴EB ⊥ED ;故此选项成立;②过B 作BF ⊥AE ,交AE 的延长线于F ,∵AE =AP ,∠EAP =90°,∴∠AEP =∠APE =45°,又∵③中EB ⊥ED ,BF ⊥AF ,∴∠FEB =∠FBE =45°,又∵BE =BP 2-PE 2 =2,∴BF =EF = 2 ,故此选项正确;④如图,连接BD ,在Rt △AEP 中,∵AE =AP =1,∴EP = 2 ,又∵PB = 6 ,∴BE =2,∵△APD ≌△AEB ,∴PD =BE =2,∴S △ABP +S △ADP =S △ABD -S △BDP =12 S 正方形ABCD -12×DP ×BE =12×(4+6)-12×2×2=62. 故此选项不正确.⑤∵EF =BF = 2 ,AE =1,∴在Rt △ABF 中,AB 2=(AE +EF )2+BF 2=5+2 2 ,∴S 正方形ABCD =AB 2=5+22,故此选项不正确.答案为:①②③.同类题型4.1 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B →C →D →A →B 滑动到B 止.点N 是正方形ABCD 内任一点,把N 点落在线段QR 的中点M 所经过的路线围成的图形内的概率记为P ,则P =( )A .4-π4B .π4C .14D .π-14解:根据题意得点M 到正方形各顶点的距离都为1,点M 所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,∴点M 所经过的路线围成的图形的面积为正方形ABCD 的面积减去4个扇形的面积.而正方形ABCD 的面积为2×2=4,4个扇形的面积为4×90π×12360=π, ∴点M 所经过的路线围成的图形的面积为4-π,∴把N 点落在线段QR 的中点M 所经过的路线围成的图形内的概率记为P ,则P =4-π4. 选:A .同类题型4.2 如图,边长为2的正方形ABCD 中,AE 平分∠DAC ,AE 交CD 于点F ,CE ⊥AE ,垂足为点E ,EG ⊥CD ,垂足为点G ,点H 在边BC 上,BH =DF ,连接AH 、FH ,FH 与AC 交于点M ,以下结论:①FH =2BH ;②AC ⊥FH ;③S △ACF =1;④CE = 12AF ;⑤EG 2 =FG ﹒DG ,其中正确结论的个数为( )A .2B .3C .4D .5解:①②如图1,∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠D =90°,∠BAD =90°,∵AE 平分∠DAC ,∴∠FAD =∠CAF =22.5°,∵BH =DF ,∴△ABH ≌△ADF ,∴AH =AF ,∠BAH =∠FAD =22.5°,∴∠HAC =∠FAC ,∴HM =FM ,AC ⊥FH ,∵AE 平分∠DAC ,∴DF =FM ,∴FH =2DF =2BH ,故选项①②正确;③在Rt △FMC 中,∠FCM =45°,∴△FMC 是等腰直角三角形,∵正方形的边长为2,∴AC =2 2 ,MC =DF =2 2 -2,∴FC =2-DF =2-(22-2)=4-2 2 , S △AFC =12CF ﹒AD ≠1, 所以选项③不正确;④AF =AD 2+DF 2=22+(22-2)2=24-2 2 ,∵△ADF ∽△CEF ,∴AD CE =AF FC,∴2CE =24-224-22, ∴CE =4-2 2 ,∴CE =12AF , 故选项④正确;⑤延长CE 和AD 交于N ,如图2,∵AE⊥CE,AE平分∠CAD,∴CE=EN,∵EG∥DN,∴CG=DG,在Rt△FEC中,EG⊥FC,∴EG 2=FG﹒CG,∴EG 2=FG﹒DG,故选项⑤正确;本题正确的结论有4个,故选C.同类题型4.3 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是 ______________.(1)EF= 2 O E;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF= 2 OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=34;(5)OG﹒BD=AE2+CF2.解:(1)∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE =∠COF , 在△BOE 和△COF 中, ⎩⎪⎨⎪⎧∠BOE =∠COFOB =OC∠OBE =∠OCF, ∴△BOE ≌△COF (ASA ), ∴OE =OF ,BE =CF , ∴EF = 2 OE ;故正确;(2)∵S 四边形OEBF =S △BOE +S △BOE =S △BOE +S △COF =S △BOC =14S 正方形ABCD ,∴S 四边形OEBF :S 正方形ABCD =1:4;故正确;(3)∴BE +BF =BF +CF =BC = 2 OA ;故正确; (4)过点O 作OH ⊥BC , ∵BC =1,∴OH =12BC =12,设AE =x ,则BE =CF =1-x ,BF =x , ∴S △BEF +S △COF =12BE ﹒BF +12CF ﹒OH =12x (1-x )+12(1-x )×12=-12(x -14)2+932,∵a =-12 <0,∴当x =14时,S △BEF +S △COF 最大;即在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE =14;故错误;(5)∵∠EOG =∠BOE ,∠OEG =∠OBE =45°, ∴△OEG ∽△OBE , ∴OE :OB =OG :OE ,∴OG ﹒OB =OE 2,∵OB =12 BD ,OE =22EF ,∴OG ﹒BD =EF 2,∵在△BEF 中,EF 2=BE 2+BF 2,∴EF 2=AE 2+CF 2 ,∴OG ﹒BD =AE 2+CF 2.故正确. 故答案为:(1),(2),(3),(5).同类题型4.4 如图,四边形ABHK 是边长为6的正方形,点C 、D 在边AB 上,且AC =DB =1,点P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作正方形AMNP 和正方形BRQP , E 、F 分别为MN 、QR 的中点,连接EF ,设EF 的中点为G ,则当点P 从点C 运动到点D 时,点G 移动的路径长为 _____________.解:如图,设KH 的中点为S ,连接PE ,PF ,SE ,SF ,PS , ∵E 为MN 的中点,S 为KH 的中点, ∴A ,E ,S 共线,F 为QR 的中点,S 为KH 的中点, ∴B 、F 、S 共线,由△AME ∽△PQF ,得∠SAP =∠FPB , ∴ES ∥PF ,△PNE ∽△BRF ,得∠EPA =∠FBP , ∴PE ∥FS ,则四边形PESF 为平行四边形,则G 为PS 的中点, ∴G 的轨迹为△CSD 的中位线, ∵CD =AB -AC -BD =6-1-1=4,∴点G 移动的路径长12×4=2.方程、不等式中的含参问题例1.已知三个非负实数a ,b ,c 满足:3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,则m 的最小值为__________.同类题型1.1 已知x +2y -3z =0,2x +3y +5z =0,则x +y +zx -y +z=________.同类题型1.2 方程组⎩⎨⎧4x +3m =28x -3y =m的解x ,y 满足x >y ,则m 的取值范围是( )A .m > 910B .m > 109C .m > 1910D .m > 1019例2.关于x 的方程x 2 +mx -9=0和x 2-3x +m 2+6m =0有公共根,则m 的值为________.同类题型 2.1 已知a 是一元二次方程x 2-2018x +1=0的一个根,则代数式a 2-2017a + 2018a 2+1的值是___.同类题型2.2 已知关于x 的方程(k 2-1)x 2+(2k -1)x +1=0有两个不相等的实数根,那么实数k 的取值范围为_____________.同类题型2.3 已知α、β是方程x 2 -2x -4=0的两个实数根,则α3+8β+6的值为 ( )A .-1B .2C .22D .30例3.已知方程x + 1x =a + 1a 的两根分别为a ,1a ,则方程x + 1x -1=a + 1a -1 的根是( ) A .a ,1a -1B .1a -1 ,a -1 C .1a,a -1 D .a ,aa -1同类题型3.1 若关于x 的方程2x -bx -1 =3的解是非负数,则b 的取值范围是________.同类题型3.2 观察分析下列方程:①x + 2x =3;②x + 6x =5;③x + 12x=7.请利用它们所蕴含的规律,求关于x 的方程x + n 2+nx -4=2n +5(n 为正整数)的根,你的答案是_________________.同类题型3.3 已知关于x 的方程2x -1- a +1x +2= 3a (x -1)(x +2)只有整数解,则整数a 的值为_____________.例4.[x ]表示不超过x 的最大整数.如,[π]=3,[2]=2,[-2.1]=-3.则下列结论: ①[-x ]=-[x ];②若[x ]=n ,则x 的取值范围是n ≤x <n +1;③当-1<x <1时,[1+x ]+[1-x ]的值为1或2; ④x =-2.75是方程4x -2[x ]+5=0的唯一一个解. 其中正确的结论有_________(写出所有正确结论的序号).同类题型4.1 设[x ]表示不大于x 的最大整数,{x }表示不小于x 的最小整数,(x )表示最接近x 的整数(x ≠n +0.5,n 为整数).例如[3.4]=3,{3.4}=4,(3.4)=3.则不等式8≤2x +[x ]+3{x }+4(x )≤14的解为 ( )A .0.5≤x ≤2B .0.5<x <1.5或1.5<x <2C .0.5<x <1.5D .1.5<x <2同类题型4.2规定:[x ]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x ≠n +0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是___________.(写出所有正确说法的序号) ①当x =1.7时,[x ]+(x )+[x )=6; ②当x =-2.1时,[x ]+(x )+[x )=-7;③方程4[x ]+3(x )+[x )=11的解为1<x <1.5;④当-1<x <1时,函数y =[x ]+(x )+x 的图象与正比例函数y =4x 的图象有两个交点.同类题型4.3 如果关于x 的不等式(a +b )x +2a -b >0的解集是x < 52 ,那么关于x 的不等式(b -a )x +a +2b ≤0的解集是____________.同类题型 4.4 若关于x 的不等式组⎩⎪⎨⎪⎧x +43> x 2+1x -a <0解集为x <2,则a 的取值范围是___________.同类题型4.5 按如图的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有___________.参考答案例1.已知三个非负实数a ,b ,c 满足:3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,则m 的最小值为__________.解:由题意可得⎩⎪⎨⎪⎧3a +2b +c =52a +b -3c =1m =3a +b -7c ,解得a =7﹒(m +2)3 -3,b =7-11﹒(m +2)3 ,c =m +23 ,由于a ,b ,c 是三个非负实数,∴a ≥0,b ≥0,c ≥0, ∴-111≥m ≥-57 .所以m _(最小值)=-57 .故本题答案为:-57.同类题型1.1 已知x +2y -3z =0,2x +3y +5z =0,则x +y +zx -y +z=________.解:由题意得:⎩⎨⎧x +2y -3z =0①2x +3y +5z =0②,①×2-②得y =11z , 代入①得x =-19z , 原式=x +y +z x -y +z =-19z +11z +z -19z -11z +z =729.同类题型1.2 方程组⎩⎨⎧4x +3m =28x -3y =m的解x ,y 满足x >y ,则m 的取值范围是( )A .m > 910B .m > 109C .m > 1910D .m > 1019解:⎩⎨⎧4x +3m =2①8x -3y =m ②由①得x =2-3m 4 ,代入②得,8×2-3m 4 -3y =m ,y =4-7m3 .∵x >y ,即2-3m 4>4-7m 3 ,解得m >1019 .选D .例2.关于x 的方程x 2 +mx -9=0和x 2-3x +m 2+6m =0有公共根,则m 的值为________. 解:设这个公共根为α.则方程x 2 +mx -9=0的两根为α、-m -α;方程x 2-3x +m 2+6m =0的两根为α、3-α,由根与系数的关系有:α(-m -α)=-9,α(3-α)=m 2+6m , 整理得,α2 +m α=9①,α2-3α+m 2+6m =0②, ②-①得,m 2+6m -3α-m α=-9, 即(m +3)2-α(m +3)=0, (m +3)(m +3-α)=0, 所以m +3=0或m +3-α=0, 解得m =-3或α=m +3, 把α=m +3代入①得, (m +3)2+m (m +3)=9,m 2+6m +9+m 2+3m =9,m (2m +9)=0,所以m =0或2m +9=0, 解得m =0或m =-4.5,综上所述,m 的值为-3,0,-4.5.同类题型 2.1 已知a 是一元二次方程x 2-2018x +1=0的一个根,则代数式a 2-2017a + 2018a 2+1的值是___.解:由题意,把根a 代入x 2 -2018x +1=0,可得:a 2-2018a +1=0, ∴a 2 -2017a -a +1=0,a 2+1=2018a ; ∴a 2-2017a =a -1,∴a 2-2017a +2018a 2+1=a -1+20182018a =a +1a -1=a 2+1a -1=2018a a-1=2018-1, =2017.同类题型2.2 已知关于x 的方程(k 2-1)x 2+(2k -1)x +1=0有两个不相等的实数根,那么实数k 的取值范围为_____________.解:由题意知,k ≠±1,△=(2k -1)2-4(k 2-1)=5-4k >0 ∴k <54 且k ≠±1.同类题型2.3 已知α、β是方程x 2 -2x -4=0的两个实数根,则α3+8β+6的值为( ) A .-1B .2C .22D .30解:∵α、β是方程x 2-2x -4=0的两个实数根, ∴α+β=2,α2-2α-4=0, ∴α2=2α+4∴α3+8β+6=α﹒α2+8β+6 =α﹒(2α+4)+8β+6 =2α2+4α+8β+6 =2(2α+4)+4α+8β+6 =8α+8β+14=8(α+β)+14=30, 故选D .例3.已知方程x + 1x =a + 1a 的两根分别为a ,1a ,则方程x + 1x -1=a + 1a -1 的根是( ) A .a ,1a -1B .1a -1,a -1 C .1a,a -1D .a ,aa -1解:方程x +1x -1=a +1a -1 可以写成x -1+1x -1=a -1+1a -1的形式, ∵方程x +1x =a +1a 的两根分别为a ,1a,∴方程x -1+1x -1=a -1+1a -1 的两根的关系式为x -1=a -1,x -1=1a -1,即方程的根为x =a 或aa -1,∴方程x +1x -1=a +1a -1 的根是a ,a a -1. 选D .同类题型3.1 若关于x 的方程2x -bx -1 =3的解是非负数,则b 的取值范围是________.解:去分母得,2x -b =3x -3∴x =3-b∵x ≥0 ∴3-b ≥0 解得,b ≤3 又∵x -1≠0 ∴x ≠1即3-b ≠1,b ≠2则b 的取值范围是b ≤3且b ≠2.同类题型3.2 观察分析下列方程:①x + 2x =3;②x + 6x =5;③x + 12x=7.请利用它们所蕴含的规律,求关于x 的方程x + n 2+nx -4=2n +5(n 为正整数)的根,你的答案是_________________.解:x +1×2x=3,解得:x =2或x =1;x +2×3x =5,解得:x =2或x =3;x +3×4x=7,解得:x =3或x =4,得到规律x +mn x=m +n 的解为:x =m 或x =n , 所求方程整理得:x -4+n (n +1)x -4=2n +1, 根据规律得:x -4=n 或x -4=n +1, 解得:x =n +4或x =n +5. 同类题型3.3 已知关于x 的方程2x -1- a +1x +2= 3a (x -1)(x +2)只有整数解,则整数a 的值为_____________.解:方程两边同乘以(x -1)(x +2), 得:2(x +2)-(a +1)(x -1)=3a , 解得:x =2a -51-a =-2-31-a,∵方程只有整数解,∴1-a =3或1或-3或-1,当1-a =3,即a =-2时,x =-2-1=-3, 检验,将x =-3代入(x -1)(x +2)=4≠0,故x =-3是原分式方程的解; 当1-a =1,即a =0时,x =-2-3=-5, 检验,将x =-5代入(x -1)(x +2)=18≠0,故x =-7是原分式方程的解; 当1-a =-3,即a =4时,x =-2+1=-1, 检验,将x =-1代入(x -1)(x +2)=-2≠0,故x =-1是原分式方程的解; 当1-a =-1,即a =2时,x =1, 检验,将x =1代入(x -1)(x +2)=0,故x =1不是原分式方程的解; ∴整数a 的值为:-2,0或4.例4.[x ]表示不超过x 的最大整数.如,[π]=3,[2]=2,[-2.1]=-3.则下列结论:①[-x]=-[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当-1<x<1时,[1+x]+[1-x]的值为1或2;④x=-2.75是方程4x-2[x]+5=0的唯一一个解.其中正确的结论有_________(写出所有正确结论的序号).解:①当x=-3.5时,[-3.5]=-4,-[x]=-3,不相等,故原来的说法错误;②若[x]=n,则x的取值范围是n≤x<n+1是正确的;③当-1<x<0时,[1+x]+[1-x]=0+1=1;当x=0时,[1+x]+[1-x]=1+1=2;当0<x<1时,[1+x]+[1-x]=1+0=1;故当-1<x<1时,[1+x]+[1-x]的值为1或2是正确的;④x-[x]的范围为0~1,4x-2[x]+5=0,-5≤2x<-7,即-2.5≤x<-3.5,x=-2.75或x=-3.25都是方程4x-2[x]+5=0,故原来的说法错误.故答案为:②③.同类题型4.1设[x]表示不大于x的最大整数,{x}表示不小于x的最小整数,(x)表示最接近x的整数(x≠n+0.5,n为整数).例如[3.4]=3,{3.4}=4,(3.4)=3.则不等式8≤2x+[x]+3{x}+4(x)≤14的解为()A.0.5≤x≤2 B.0.5<x<1.5或1.5<x<2C.0.5<x<1.5 D.1.5<x<2解:根据题意得:x>0,若x≥2,则2x≥4,[x]≥2,3{x}≥6,4(x)≥8,不等式不成立.故只需分析0<x<2时的情形即可,①0<x≤0.5时,不等式可化为:8≤2x+0+3+0≤14,解得:2.5≤x≤5.5,不符合不等式;②当0.5<x≤1时,不等式可化为:8≤2x+0+3+4≤14,解得:0.5≤x≤3,因此0.5<x ≤1,符合不等式;③当1<x<1.5时,不等式可化为:8≤2x+1+6+4≤14,解得:-1.5≤x≤1.5,因此1<x<1.5,符合不等式;④当1.5<x<2时,不等式可化为:8≤2x+1+6+8≤14,解得:-3.5≤x≤-0.5,不符合不等式.故原不等式的解集为:0.5<x<1.5.故选C.同类题型4.2规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是___________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=-2.1时,[x]+(x)+[x)=-7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当-1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.解:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7) =1+2+2=5,故①错误; ②当x =-2.1时, [x ]+(x )+[x )=[-2.1]+(-2.1)+[-2.1)=(-3)+(-2)+(-2)=-7,故②正确; ③4[x ]+3(x )+[x )=11, 7[x ]+3+[x )=11, 7[x ]+[x )=8,1<x <1.5,故③正确; ④∵-1<x <1时,∴当-1<x <-0.5时,y =[x ]+(x )+x =-1+0+x =x -1, 当-0.5<x <0时,y =[x ]+(x )+x =-1+0+x =x -1, 当x =0时,y =[x ]+(x )+x =0+0+0=0,当0<x <0.5时,y =[x ]+(x )+x =0+1+x =x +1, 当0.5<x <1时,y =[x ]+(x )+x =0+1+x =x +1,∵y =4x ,则x -1=4x 时,得x =-13 ;x +1=4x 时,得x =13 ;当x =0时,y =4x =0,∴当-1<x <1时,函数y =[x ]+(x )+x 的图象与正比例函数y =4x 的图象有三个交点,故④错误,故答案为:②③.同类题型4.3 如果关于x 的不等式(a +b )x +2a -b >0的解集是x < 52 ,那么关于x 的不等式(b -a )x +a +2b ≤0的解集是____________. 解:∵关于x 的不等式(a +b )x +2a -b >0的解集是x <52 ,∴x <b -2aa +b, ∴b -2a a +b =52,且a +b <0, 即b =-3a ,a +b <0, ∴a -3a <0,即a >0, ∴b -a =-4a <0,∴关于x 的不等式(b -a )x +a +2b ≤0的解集是x ≥-a -2bb -a ,∵-a -2b b -a =-a +6a -3a -a =-54,∴关于x 的不等式(b -a )x +a +2b ≤0的解集是x ≥-54.同类题型 4.4 若关于x 的不等式组⎩⎪⎨⎪⎧x +43> x 2+1x -a <0解集为x <2,则a 的取值范围是___________.解:由x +43>x2+1,得 2x +8>3x +6, 解得x <2, 由x -a <0, 得x <a ,又因关于x 的不等式组⎩⎪⎨⎪⎧x +43>x 2+1x -a <0解集为x <2,所以a ≥2.同类题型4.5 按如图的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有___________.解:∵最后输出的数为656, ∴5x +1=656,得:x =131>0, ∴5x +1=131,得:x =26>0, ∴5x +1=26,得:x =5>0, ∴5x +1=5,得:x =0.8>0;∴5x +1=0.8,得:x =-0.04<0,不符合题意, 故x 的值可取131,26,5,0.8共4个.函数的几何综合问题例1.如图,在平面直角坐标系中,直线l :y =33x - 33与x 轴交于点B 1 ,以OB 1 为边长作等边三角形A 1OB 1 ,过点A 1 作A 1B 2 平行于x 轴,交直线l 于点B 2 ,以A 1B 2 为边长作等边三角形A 2A 1B 2 ,过点A 2 作A 2B 3 平行于x 轴,交直线l 于点B 3 ,以A 2B 3 为边长作等边三角形A 3A 2B 3 ,…,则点A 2017 的横坐标是____________.同类题型1.1 如图,直线l :y =x +1交y 轴于点A 1 ,在x 轴正方向上取点B 1 ,使OB 1=OA 1 ;过点B 1 作A 2B 1 ⊥x 轴,交l 于点A 2 ,在x 轴正方向上取点B 2 ,使B 1B 2=B 1A 2 ;过点B 2 作A 3B 2 ⊥x 轴,交l 于点A 3 ,在x 轴正方向上取点B 3 ,使B 2B 3=B 2A 3 ;…记△OA 1B 1 面积为S 1 ,△B 1A 2B 2 面积为S 2 ,△B 2A 3B 3 面积为S 3 ,…则S 2017 等于()A.24030B.24031C.24032D.24033同类题型1.2 如图,已知直线l:y=33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为()A.(0,128)B.(0,256)C.(0,512)D.(0,1024)同类题型1.3 如图,在平面直角坐标系中,直线l:y=33x+1交x轴于点B,交y轴于点A,过点A作AB1⊥AB交x轴于点B1,过点B1作B1A1⊥x轴交直线l于点A2…依次作下去,则点B n的横坐标为____________.例2.高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离y1、y2(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的坐标为(7,180),其中正确的有_________(把所有正确结论的序号都填在横线上).同类题型2.1 甲、乙两辆汽车沿同一路线从A 地前往B 地,甲车以a 千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a 千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B 地,比甲车早30分钟到达.到达B 地后,乙车按原速度返回A 地,甲车以2a 千米/时的速度返回A 地.设甲、乙两车与A 地相距s (千米),甲车离开A 地的时间为t (小时),s 与t 之间的函数图象如图所示.下列说法:①a =40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t 的值为5.25;④当t =3时,两车相距40千米,其中不正确的个数为 ( )A .0个B .1个C .2个D .3个同类题型2.2 甲、乙两车从A 地驶向B 地,并以各自的速度匀速行驶,甲车比乙车早行驶2h ,并且甲车途中休息了0.5h ,如图是甲乙两车行驶的距离y (km )与时间x (h )的函数图象.则下列结论:(1)a =40,m =1;(2)乙的速度是80km/h ;(3)甲比乙迟74h 到达B 地;(4)乙车行驶94 小时或194小时,两车恰好相距50km .正确的个数是( )A .1B .2C .3D .4同类题型2.3 甲、乙两人从科技馆出发,沿相同的路线分别以不同的速度匀速跑向极地馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向极地馆.如图是甲、乙两人在跑步的全过程中经过的路程y (米)与甲出发的时间x (秒)的函数图象.则下列四种说法:①甲的速度为1.5米/秒;②a =750;③乙在途中等候甲100秒;④乙出发后第一次与甲相遇时乙跑了375米.其中正确的个数是 ( )A .1个B .2个C .3个D .4个例3.如图,已知动点P 在函数y = 12x(x >0)的图象上运动,PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,线段PM 、PN 分别与直线AB :y =-x +1交于点E ,F ,则AF ﹒BE 的值为 ( )A .4B .2C .1D .12同类题型3.1 如图,在反比例函数y = 32x 的图象上有一动点A ,连接AO 并延长交图象的另一支于点B ,在第二象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数y = k x的图象上运动,若tan ∠CAB =2,则k 的值为( )A .-3B .-6C .-9D .-12同类题型3.2 如图,在平面直角坐标系中,点A 在x 轴的正半轴上,点B 在第一象限,点C 在线段AB 上,点D 在AB 的右侧,△OAB 和△BCD 都是等腰直角三角形,∠OAB =∠BCD =90°,若函数y = 6x(x >0)的图象经过点D ,则△OAB 与△BCD 的面积之差为( )A .12B .6C .3D .2同类题型3.3 如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数y = 1x 和y = 9x在第一象限的图象于点A ,B ,过点B 作 BD ⊥x 轴于点D ,交y = 1x的图象于点C ,连结A C .若△ABC 是等腰三角形,则k 的值是___________.例4.如图,一次函数y =x +b 的图象与反比例函数y = k x的图象交于点A (3,6)与点B ,且与y 轴交于点C ,若点P 是反比例函数y = k x图象上的一个动点,作直线AP 与x 轴、y 轴分别交于点M 、N ,连结BN 、CM .若S △ACM =S △ABN ,则AP AN的值为__________.同类题型4.1 当12 ≤x ≤2时,函数y =-2x +b 的图象上至少有一点在函数y = 1x的图象下方,则b 的取值范围为 ( )A .b >2 2B .b < 92C .b <3D .2 2<b < 92同类题型4.2 方程x 2+3x -1=0的根可视为函数y =x +3的图象与函数y = 1x的图象交点的横坐标,那么用此方法可推断出方程x 2+2x -1=0的实数根x 0 所在的范围是 ( )A .-1<x 0 <0B .0<x 0 <1C .1<x 0 <2D .2<x 0 <3。
2018年全国各地中考数学压轴题汇编:选择、填空(湖北专版)(原卷)

2018年全国各地中考数学压轴题汇编(湖北专版)选择、填空一.选择题(共22小题)1.(2018•天门)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5 2.(2018•武汉)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB 的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.3.(2018•黄石)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A.B.C.2πD.4.(2018•天门)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④5.(2018•黄石)已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是()A.x<﹣1或x>4 B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4 D.x<﹣1或0<x<4 6.(2018•宜昌)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B.C.D.7.(2018•黄石)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x 秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A.B.C.D.8.(2018•宜昌)如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2)B.(2,﹣2)C.(2,5)D.(﹣2,5)9.(2018•襄阳)已知二次函数y=x2﹣x+m﹣1的图象与x轴有交点,则m的取值范围是()A.m≤5 B.m≥2 C.m<5 D.m>2 10.(2018•宜昌)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40°D.45°11.(2018•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2C.D.212.(2018•宜昌)如图,一块砖的A,B,C三个面的面积比是4:2:1.如果A,B,C 面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为p=,其中P是压强,F是压力,S是受力面积,则p1,p2,p3,的大小关系正确的是()A.p1>p2>p3B.p1>p3>p2C.p2>p1>p3D.p3>p2>p1 13.(2018•荆门)如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(2,﹣3)14.(2018•孝感)如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.15.(2018•荆门)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有()A.1个B.2个C.3个D.4个16.(2018•黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1 B.2 C.0或2 D.﹣1或2 17.(2018•咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5D.5 18.(2018•随州)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.19.(2018•咸宁)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个B.2个C.3个D.4个20.(2018•恩施州)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.12 21.(2018•随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个B.3个C.2个D.1个22.(2018•恩施州)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.5二.填空题(共14小题)23.(2018•天门)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.24.(2018•襄阳)如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=,则AP的长为.25.(2018•武汉)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC 上一点.若DE平分△ABC的周长,则DE的长是.26.(2018•孝感)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则方程ax2=bx+c的解是.27.(2018•黄冈)如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.28.(2018•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.29.(2018•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).30.(2018•孝感)如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为.31.(2018•咸宁)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E 的坐标为(2,3),则点F的坐标为.32.(2018•随州)如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交与点C,若tan∠AOC=,则k的值为.33.(2018•咸宁)如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A 关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:①AD=CD;②∠ACD的大小随着α的变化而变化;③当α=30°时,四边形OADC为菱形;④△ACD面积的最大值为a2;其中正确的是.(把你认为正确结论的序号都填上).34.(2018•随州)如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为.35.(2018•恩施州)在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC 沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为.(结果不取近似值)36.(2018•随州)如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.给出以下判断:①AC垂直平分BD;②四边形ABCD的面积S=AC•BD;③顺次连接四边形ABCD的四边中点得到的四边形可能是正方形;④当A,B,C,D四点在同一个圆上时,该圆的半径为;⑤将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,当BF⊥CD 时,点F到直线AB的距离为.其中正确的是.(写出所有正确判断的序号)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题1 四边形的综合问题例1.如图,△APB中,AB=2 2 ,∠APB=90°,在AB的同侧作正△ABD、正△APE和△BPC,则四边形PCDE面积的最大值是__________.同类题型1.1 如图,△APB中,AP=4,BP=3,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是___________.同类题型1.2 如图,在□ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB 交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①② B.只有①②③ C.只有③④ D.①②③④同类题型1.3 如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=P C.其中正确的有______________.(填序号)同类题型1.4 如图,在□ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE例2.图甲是小明设计的带菱形图案的花边作品.该作品由形如图乙的矩形图案拼接而成(不重叠、无缝隙).图乙中AB BC = 67,EF =4cm ,上下两个阴影三角形的面积之和为54cm 2 ,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为____________.同类题型2.1 如图,在菱形ABCD 中,AB =4cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为____________.同类题型2.2 如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是____________.同类题型2.3 如图,在菱形ABCD 中,边长为10,∠A =60°.顺次连接菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1 ;顺次连接四边形A 1B 1C 1D 1 各边中点,可得四边形A 2B 2C 2D 2 ;顺次连接四边形A 2B 2C 2D 2 各边中点,可得四边形A 3B 3C 3D 3 ;按此规律继续下去…,则四边形A 2017B 2017C 2017D 2017 的周长是______________.例3. 如图,在矩形ABCD 中,点E 为AB 的中点,EF ⊥EC 交AD 于点F ,连接CF (AD >AE ),下列结论:①∠AEF =∠BCE ;②S △CEF =S △EAF +S △CBE ;③AF +BC >CF ; ④若BC CD = 32,则△CEF ≌△CDF .其中正确的结论是____________.(填写所有正确结论的序号)同类题型3.1 如图,在矩形ABCD 中,AD = 2 AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①AED =∠CED ;②AB =HF ,③BH =HF ;④BC -CF =2HE ;⑤OE =OD ;其中正确结论的序号是____________.同类题型3.2 如图,在矩形ABCD 中,BC = 2 AB ,∠ADC 的平分线交边BC 于点E ,AH ⊥DE 于点H ,连接CH 并延长交AB 边于点F ,连接AE 交CF 于点O ,给出下列命题:①AD =DE ②DH =2 2 EH ③△AEH ∽△CFB ④HO =12AE 其中正确命题的序号是________________(填上所有正确命题的序号)同类题型3.3 如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .23例4.已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂线AP 交DE 于点P .若AE =AP =1,PB = 6 ,下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 2 ;③EB ⊥ED ;④S △APD +S △APB =1+ 6 .⑤S 正方形ABCD =4+ 6.其中正确结论的序号是___________________.同类题型4.1 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B →C →D →A →B 滑动到B 止.点N 是正方形ABCD 内任一点,把N 点落在线段QR 的中点M 所经过的路线围成的图形内的概率记为P ,则P =( )A .4-π4B .π4C .14D .π-14同类题型4.2 如图,边长为2的正方形ABCD 中,AE 平分∠DAC ,AE 交CD 于点F ,CE ⊥AE ,垂足为点E ,EG ⊥CD ,垂足为点G ,点H 在边BC 上,BH =DF ,连接AH 、FH ,FH 与AC 交于点M ,以下结论:①FH =2BH ;②AC ⊥FH ;③S △ACF =1;④CE = 12AF ;⑤EG 2 =FG ﹒DG ,其中正确结论的个数为( )A .2B .3C .4D .5同类题型4.3 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是 ______________.(1)EF= 2 OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF= 2 OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=34;(5)OG﹒BD=AE2+CF2.同类题型4.4 如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF的中点为G,则当点P从点C运动到点D时,点G移动的路径长为 _____________.参考答案例1.如图,△APB中,AB=2 2 ,∠APB=90°,在AB的同侧作正△ABD、正△APE和△BPC,则四边形PCDE面积的最大值是__________.解:如图,延长EP交BC于点F,∵∠APB =90°,∠APE =∠BPC =60°,∴∠EPC =150°,∴∠CPF =180°-150°=30°,∴PF 平分∠BPC ,又∵PB =PC ,∴PF ⊥BC ,设Rt △ABP 中,AP =a ,BP =b ,则CF =12CP =12b ,a 2+b 2 =8, ∵△APE 和△ABD 都是等边三角形,∴AE =AP ,AD =AB ,∠EAP =∠DAB =60°,∴∠EAD =∠PAB ,∴△EAD ≌△PAB (SAS ),∴ED =PB =CP ,同理可得:△APB ≌△DCB (SAS ),∴EP =AP =CD ,∴四边形CDEP 是平行四边形,∴四边形CDEP 的面积=EP ×CF =a ×12b =12ab , 又∵(a -b )2=a 2-2ab +b 2 ≥0,∴2ab ≤a 2+b 2 =8,∴12ab ≤2, 即四边形PCDE 面积的最大值为2.同类题型1.1 如图,△APB 中,AP =4,BP =3,在AB 的同侧作正△ABD 、正△APE 和正△BPC ,则四边形PCDE 面积的最大值是___________.解:∵△APE 和△ABD 是等边三角形,∴AE =AP =4,AB =AD ,∠EAP =∠DAB =60°,∴∠EAD =∠PAB =60°-∠DAP ,在△EAD 和△PAB 中⎩⎪⎨⎪⎧AE =AP∠EAD =∠PAB AD =AB∴△EAD ≌△PAB (SAS ),∴DE =BP ,同理△DBC ≌△ABP ,∴DC=AP,∵△APE和△BPC是等边三角形,∴EP=AP,BP=CP,∴DE=CP=3,DC=PE=4,∴四边形PCDE是平行四边形,当CP⊥EP时,四边形PCDE的面积最大,最大面积是3×4=12.同类题型1.2 如图,在□ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB 交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①② B.只有①②③ C.只有③④ D.①②③④解:∵△ABE、△ADF是等边三角形∴FD=AD,BE=AB∵AD=BC,AB=DC∴FD=BC,BE=DC∵∠B=∠D,∠FDA=∠ABE∴∠CDF=∠EBC∴△CDF≌△EBC,故①正确;∵∠FAE=∠FAD+∠EAB+∠BAD=60°+60°+(180°-∠CDA)=300°-∠CDA,∠FDC=360°-∠FDA-∠ADC=300°-∠CDA,∴∠CDF=∠EAF,故②正确;同理可得:∠CBE=∠EAF=∠CDF,∵BC=AD=AF,BE=AE,∴△EAF≌△EBC,∴∠AEF=∠BEC,∵∠AEF+∠FEB=∠BEC+∠FEB=∠AEB=60°,∴∠FEC=60°,∵CF=CE,∴△ECF是等边三角形,故③正确;在等边三角形ABE中,∵等边三角形顶角平分线、底边上的中线、高和垂直平分线是同一条线段∴如果CG⊥AE,则G是AE的中点,∠ABG=30°,∠ABC=150°,题目缺少这个条件,CG ⊥AE不能求证,故④错误.选B.同类题型1.3 如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=P C.其中正确的有______________.(填序号)解:证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.答案为①②③④.同类题型1.4 如图,在□ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE解:∵四边形ABCD 是平行四边形,∴AH ∥BG ,AD =BC ,∴∠H =∠HBG ,∵∠HBG =∠HBA ,∴∠H =∠HBA ,∴AH =AB ,同理可证BG =AB ,∴AH =BG ,∵AD =BC ,∴DH =CG ,故C 正确,∵AH =AB ,∠OAH =∠OAB ,∴OH =OB ,故A 正确,∵DF ∥AB ,∴∠DFH =∠ABH ,∵∠H =∠ABH ,∴∠H =∠DFH ,∴DF =DH ,同理可证EC =CG ,∵DH =CG ,∴DF =CE ,故B 正确,无法证明AE =AB ,选D .例2.图甲是小明设计的带菱形图案的花边作品.该作品由形如图乙的矩形图案拼接而成(不重叠、无缝隙).图乙中AB BC = 67,EF =4cm ,上下两个阴影三角形的面积之和为54cm 2 ,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为____________.解:如图乙,H 是CF 与DN 的交点,取CD 的中点G ,连接HG ,,设AB =6a cm ,则BC =7a cm ,中间菱形的对角线HI 的长度为x cm ,∵BC =7a cm ,MN =EF =4cm ,∴CN =7a +42,∵GH ∥BC , ∴GH CN =DG DC , ∴7a -x 27a +42=12, ∴x =3.5a -2…(1); ∵上下两个阴影三角形的面积之和为54cm 2 ,∴6a ﹒(7a -x )÷2=54,∴a (7a -x )=18…(2);由(1)(2),可得a =2,x =5,∴CD =6×2=12(cm ),CN =7a +42=7×2+42=9(cm) , ∴DN =122+92 =15(cm ), 又∵DH =DG 2+GH 2=62+(7×2-52)2 =7.5(cm ), ∴HN =15-7.5=7.5(cm ),∵AM ∥FC ,∴KN HK =MN CM =49-4=45, ∴HK =54+5×7.5=256(cm) , ∴该菱形的周长为:256×4=503(cm ).同类题型2.1 如图,在菱形ABCD 中,AB =4cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为____________.解:延长AB 至M ,使BM =AE ,连接FM ,∵四边形ABCD 是菱形,∠ADC =120°∴AB =AD ,∠A =60°,∵BM =AE ,∴AD =ME ,∵△DEF 为等边三角形,∴∠DAE =∠DFE =60°,DE =EF =FD ,∴∠MEF +∠DEA ═120°,∠ADE +∠DEA =180°-∠A =120°,∴∠MEF =∠ADE ,∴在△DAE 和△EMF 中,⎩⎪⎨⎪⎧AD =ME∠MEF =∠ADE DE =EF ∴△DAE ≌EMF (SAS ),∴AE =MF ,∠M =∠A =60°,又∵BM =AE ,∴△BMF 是等边三角形,∴BF =AE ,∵AE =t ,CF =2t ,∴BC =CF +BF =2t +t =3t ,∵BC =4,∴3t =4,∴t =43. 同类题型2.2 如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是____________.解:如图所示:∵MA ′是定值,A ′C 长度取最小值时,即A ′在MC 上时,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A =60°,M 为AD 中点,∴2MD =AD =CD =2,∠FDM =60°,∴∠FMD =30°,∴FD =12MD =12, ∴FM =DM ×cos30°=32, ∴MC =FM 2+CF 2=7 ,∴A ′C =MC -MA ′=7 -1.同类题型2.3 如图,在菱形ABCD 中,边长为10,∠A =60°.顺次连接菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1 ;顺次连接四边形A 1B 1C 1D 1 各边中点,可得四边形A 2B 2C 2D 2 ;顺次连接四边形A 2B 2C 2D 2 各边中点,可得四边形A 3B 3C 3D 3 ;按此规律继续下去…,则四边形A 2017B 2017C 2017D 2017 的周长是______________.解:∵菱形ABCD 中,边长为10,∠A =60°,顺次连结菱形ABCD 各边中点,∴△AA 1D 1 是等边三角形,四边形A 2B 2C 2D 2 是菱形,∴A 1D 1 =5,C 1D 1=12AC =5 3 ,A 2B 2=C 2D 2=C 2B 2=A 2D 2 =5, 同理可得出:A 3D 3=5×12 ,C 3D 3=12C 1D 1=12×5 3 , A 5D 5=5×(12)2 ,C 5D 5=12C 3D 3=(12)2×5 3 , …∴四边形A 2015B 2015C 2015D 2015 的周长是:5+5321007 .例3. 如图,在矩形ABCD 中,点E 为AB 的中点,EF ⊥EC 交AD 于点F ,连接CF (AD >AE ),下列结论:①∠AEF =∠BCE ;②S △CEF =S △EAF +S △CBE ;③AF +BC >CF ; ④若BC CD = 32,则△CEF ≌△CDF .其中正确的结论是____________.(填写所有正确结论的序号)解:延长CB ,FE 交于点G ,∵∠AEF +∠BEC =90°,∠BEC +∠BCE =90°,∴∠AEF =∠BCE ,①正确;在△AEF 和△BEG 中,⎩⎪⎨⎪⎧∠FAE =∠GBE =90°AE =BE∠AEF =∠BEG, ∴△AEF ≌△BEG (ASA ),∴AF =BG ,EF =EG ,∵CE ⊥EG ,∴S △CEG =S △CEF ,CG =CF ,∴S △CEF =S △EAF +S △CBE ,②正确;∴AF +BC =BG +BC =CG =CF ,③错误;∵BC CD =32, ∴∠BCE =30°,∴∠FCE =∠FCD =30°,在△CEF 和△CDF 中,⎩⎪⎨⎪⎧∠D =∠FEC =90°∠DCF =∠ECFCF =CF , ∴△CEF ≌△CDF (AAS ),④正确.同类题型3.1 如图,在矩形ABCD 中,AD = 2 AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①AED =∠CED ;②AB =HF ,③BH =HF ;④BC -CF =2HE ;⑤OE =OD ;其中正确结论的序号是____________.解:∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴△ABE 是等腰直角三角形,∴AE= 2 AB ,∵AD= 2 AB ,∴AE =AD ,在△ABE 和△AHD 中,⎩⎪⎨⎪⎧∠BAE =∠DAE∠ABE =∠AHD =90°AE =AD, ∴△ABE ≌△AHD (AAS ),∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED =12 (180°-45°)=67.5°,∴∠CED =180°-45°-67.5°=67.5°,∴∠AED =∠CED ,故①正确;∵∠AHB=12 (180°-45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =∠AED ,∴OE =OH ,∵∠DOH =90°-67.5°=22.5°,∠ODH =67.5°-45°=22.5°,∴∠DOH =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故⑤正确;∵∠EBH =90°-67.5°=22.5°,∴∠EBH =∠OHD ,又∵BE =DH ,∠AEB =∠HDF =45°在△BEH 和△HDF 中⎩⎪⎨⎪⎧∠EBH =∠OHDBE =DH ∠AEB =∠HDF∴△BEH ≌△HDF (ASA ),∴BH =HF ,HE =DF ,故③正确;由上述①、②、③可得CD =BE 、DF =EH =CE ,CF =CD -DF ,∴BC -CF =(CD +HE )-(CD -HE )=2HE ,所以④正确;∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB ≠HF ,故②错误;综上所述,结论正确的是①③④⑤.同类题型3.2 如图,在矩形ABCD 中,BC = 2 AB ,∠ADC 的平分线交边BC 于点E ,AH ⊥D E 于点H ,连接CH 并延长交AB 边于点F ,连接AE 交CF 于点O ,给出下列命题:①AD =DE ②DH =2 2 EH ③△AEH ∽△CFB ④HO =12AE 其中正确命题的序号是________________(填上所有正确命题的序号)解:在矩形ABCD 中,AD =BC =2AB = 2 CD ,∵DE 平分∠ADC ,∴∠ADE =∠CDE =45°,∵AD ⊥DE ,∴△ADH 是等腰直角三角形,∴AD = 2 AB ,∴AH =AB =CD ,∵△DEC 是等腰直角三角形,∴DE = 2 CD ,∴AD =DE ,∴∠AED =67.5°,∴∠AEB =180°-45°-67.5°=67.5°,∴∠AED =∠AEB ,∵AD ∥BC ,∴∠DAE =∠AEB ,∴∠DAE =∠AED ,∴AD =DE ,故①正确;设DH =1,则AH =DH =1,AD =DE = 2 ,∴HE = 2 ,∴22HE =22≠1,故②错误;∵∠AEH =67.5°,∴∠EAH =22.5°,∵DH =CD ,∠EDC =45°,∴∠DHC =67.5°,∴∠OHA =22.5°,∴∠OAH =∠OHA ,∴OA =OH ,∴∠AEH =∠OHE =67.5°,∴OH =OE ,∴OH =12 AE , 故④正确;∵AH =DH ,CD =CE ,在△AFH 与△CHE 中,⎩⎪⎨⎪⎧∠AHF =∠HCE =22.5°∠FAH =∠HEC =45°AH =CE , ∴△AFH ≌△CHE ,∴∠AHF =∠HCE ,∵AO =OH ,∴∠HAO =∠AHO ,∴∠HAO =∠BCF ,∵∠B =∠AHE =90°,∴△AEH ∽△CFB ,故③正确.答案为:①③④.同类题型3.3 如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .23解:∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∵点E 是边BC 的中点,∴BE =12BC =12AD , ∴△BEF ∽△DAF ,∴EF AF =BE AD =12, ∴EF =12AF , ∴EF =13AE , ∵点E 是边BC 的中点,∴由矩形的对称性得:AE =DE ,∴EF =13DE ,设EF =x ,则DE =3x , ∴DF =DE 2-EF 2=2 2 x ,∴tan ∠BDE =EF DF =x 22x =24;选A .例4.已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂线AP 交DE 于点P .若AE =AP =1,PB = 6 ,下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 2 ;③EB ⊥ED ;④S △APD +S △APB =1+ 6 .⑤S 正方形ABCD =4+ 6.其中正确结论的序号是___________________.解:①∵∠EAB +∠BAP =90°,∠PAD +∠BAP =90°,∴∠EAB =∠PAD ,又∵AE =AP ,AB =AD ,∵在△APD 和△AEB 中,⎩⎪⎨⎪⎧AE =AP∠EAB =∠PAD AB =AD, ∴△APD ≌△AEB (SAS );故此选项成立;③∵△APD ≌△AEB ,∴∠APD =∠AEB ,∵∠AEB =∠AEP +∠BEP ,∠APD =∠AEP +∠PAE ,∴∠BEP =∠PAE =90°,∴EB ⊥ED ;故此选项成立;②过B 作BF ⊥AE ,交AE 的延长线于F ,∵AE =AP ,∠EAP =90°,∴∠AEP =∠APE =45°,又∵③中EB ⊥ED ,BF ⊥AF ,∴∠FEB =∠FBE =45°,又∵BE =BP 2-PE 2 =2,∴BF =EF = 2 ,故此选项正确;④如图,连接BD ,在Rt △AEP 中,∵AE =AP =1,∴EP = 2 ,又∵PB = 6 ,∴BE =2,∵△APD ≌△AEB ,∴PD =BE =2,∴S △ABP +S △ADP =S △ABD -S △BDP =12 S 正方形ABCD -12×DP ×BE =12×(4+6)-12×2×2=62. 故此选项不正确.⑤∵EF =BF = 2 ,AE =1,∴在Rt △ABF 中,AB 2=(AE +EF )2+BF 2=5+2 2 ,∴S 正方形ABCD =AB 2=5+22,故此选项不正确.答案为:①②③.同类题型4.1 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B →C →D →A →B 滑动到B 止.点N 是正方形ABCD 内任一点,把N 点落在线段QR 的中点M 所经过的路线围成的图形内的概率记为P ,则P =( )A .4-π4B .π4C .14D .π-14解:根据题意得点M 到正方形各顶点的距离都为1,点M 所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,∴点M 所经过的路线围成的图形的面积为正方形ABCD 的面积减去4个扇形的面积.而正方形ABCD 的面积为2×2=4,4个扇形的面积为4×90π×12360=π, ∴点M 所经过的路线围成的图形的面积为4-π,∴把N 点落在线段QR 的中点M 所经过的路线围成的图形内的概率记为P ,则P =4-π4. 选:A .同类题型4.2 如图,边长为2的正方形ABCD 中,AE 平分∠DAC ,AE 交CD 于点F ,CE ⊥AE ,垂足为点E ,EG ⊥CD ,垂足为点G ,点H 在边BC 上,BH =DF ,连接AH 、FH ,FH 与AC 交于点M ,以下结论:①FH =2BH ;②AC ⊥FH ;③S △ACF =1;④CE = 12AF ;⑤EG 2 =FG ﹒DG ,其中正确结论的个数为( )A .2B .3C .4D .5解:①②如图1,∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠D =90°,∠BAD =90°,∵AE 平分∠DAC ,∴∠FAD =∠CAF =22.5°,∵BH =DF ,∴△ABH ≌△ADF ,∴AH =AF ,∠BAH =∠FAD =22.5°,∴∠HAC =∠FAC ,∴HM =FM ,AC ⊥FH ,∵AE 平分∠DAC ,∴DF =FM ,∴FH =2DF =2BH ,故选项①②正确;③在Rt △FMC 中,∠FCM =45°,∴△FMC 是等腰直角三角形,∵正方形的边长为2,∴AC =2 2 ,MC =DF =2 2 -2,∴FC =2-DF =2-(22-2)=4-2 2 , S △AFC =12CF ﹒AD ≠1, 所以选项③不正确;④AF =AD 2+DF 2=22+(22-2)2=24-2 2 ,∵△ADF ∽△CEF ,∴AD CE =AF FC,∴2CE =24-224-22, ∴CE =4-2 2 ,∴CE =12AF , 故选项④正确;⑤延长CE 和AD 交于N ,如图2,∵AE⊥CE,AE平分∠CAD,∴CE=EN,∵EG∥DN,∴CG=DG,在Rt△FEC中,EG⊥FC,∴EG 2=FG﹒CG,∴EG 2=FG﹒DG,故选项⑤正确;本题正确的结论有4个,故选C.同类题型4.3 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是 ______________.(1)EF= 2 O E;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF= 2 OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=34;(5)OG﹒BD=AE2+CF2.解:(1)∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE =∠COF ,在△BOE 和△COF 中,⎩⎪⎨⎪⎧∠BOE =∠COFOB =OC∠OBE =∠OCF, ∴△BOE ≌△COF (ASA ),∴OE =OF ,BE =CF ,∴EF = 2 OE ;故正确;(2)∵S 四边形OEBF =S △BOE +S △BOE =S △BOE +S △COF =S △BOC =14S 正方形ABCD , ∴S 四边形OEBF :S 正方形ABCD =1:4;故正确;(3)∴BE +BF =BF +CF =BC = 2 OA ;故正确;(4)过点O 作OH ⊥BC ,∵BC =1,∴OH =12BC =12, 设AE =x ,则BE =CF =1-x ,BF =x ,∴S △BEF +S △COF =12BE ﹒BF +12CF ﹒OH =12x (1-x )+12(1-x )×12=-12(x -14)2+932, ∵a =-12<0, ∴当x =14时,S △BEF +S △COF 最大; 即在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE =14;故错误;(5)∵∠EOG =∠BOE ,∠OEG =∠OBE =45°,∴△OEG ∽△OBE ,∴OE :OB =OG :OE ,∴OG ﹒OB =OE 2 ,∵OB =12 BD ,OE =22EF , ∴OG ﹒BD =EF 2 ,∵在△BEF 中,EF 2=BE 2+BF 2 ,∴EF 2=AE 2+CF 2 ,∴OG ﹒BD =AE 2+CF 2 .故正确.故答案为:(1),(2),(3),(5).同类题型4.4 如图,四边形ABHK 是边长为6的正方形,点C 、D 在边AB 上,且AC =DB =1,点P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作正方形AMNP 和正方形BRQP , E 、F 分别为MN 、QR 的中点,连接EF ,设EF 的中点为G ,则当点P 从点C 运动到点D 时,点G 移动的路径长为 _____________.解:如图,设KH 的中点为S ,连接PE ,PF ,SE ,SF ,PS , ∵E 为MN 的中点,S 为KH 的中点, ∴A ,E ,S 共线,F 为QR 的中点,S 为KH 的中点, ∴B 、F 、S 共线,由△AME ∽△PQF ,得∠SAP =∠FPB , ∴ES ∥PF ,△PNE ∽△BRF ,得∠EPA =∠FBP , ∴PE ∥FS ,则四边形PESF 为平行四边形,则G 为PS 的中点, ∴G 的轨迹为△CSD 的中位线, ∵CD =AB -AC -BD =6-1-1=4,∴点G 移动的路径长12×4=2.专题07 圆的综合问题例1.如图,点A是半圆上的一个三等分点,点B为弧AD的中点,P是直径CD上一动点,⊙O的半径是2,则PA+PB的最小值为()A.2 B. 5 C. 3 +1 D.2 2同类题型1.1 如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,连结CD,延长AC,BD,相交于点F.现给出下列结论:①若AD=5,BD=2,则DE=25;②∠ACB=∠DCF;③△FDA∽△FCB;④若直径AG⊥BD交BD于点H,AC=FC=4,DF=3,则cos F=4148;则正确的结论是()A.①③ B.②③④ C.③④ D.①②④同类题型1.2 一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2)所示.(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示.(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示.(4)连结AE、AF,如图(5)所示.经过以上操作小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S△AEF:S圆=3 3:4π,以上结论正确的有()A.1个 B.2个 C.3个 D.4个例2.如图,△ABC中,BC=4,∠BAC=45°,以4 2 为半径,过B、C两点作⊙O,连OA,则线段OA的最大值为______________.同类题型2.1 如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,OM=13,则sin∠CBD的值等于()A.32B.13C.2 23D.12同类题型2.2 如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC =30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点M,且MP =OM,则满足条件的∠OCP的大小为_______________.同类题型2.3 如图,△ABC中,∠BAC=90°,AC=12,AB=10,D是AC上一个动点,以AD 为直径的⊙O交BD于E,则线段CE的最小值是()A.5 B.6 C.7 D.8例3.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是()A.MN=4 3 3B.若MN与⊙O相切,则AM= 3 C.若∠MON=90°,则MN与⊙O相切 D.l1和l2的距离为2同类题型3.1 如图,已知A 、B 两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D 是⊙C 上的一个动点,射线AD 与y 轴交于点E ,则△ABE 面积的最大值是__________.同类题型3.2 我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y =kx +4 3 与x 轴、y 轴分别交于A 、B ,∠OAB =30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( ) A .6 B .8 C .10 D .12同类题型3.3 已知AC ⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列图形中⊙O 与△ABC 的某两条边或三边所在的直线相切,则⊙O 的半径为aba +b的是( ) A . B . C . D . 例4.如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EF GH的值为______________.同类题型4.1如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,以OB 为直径画圆M ,过D 作⊙M 的切线,切点为N ,分别交AC ,BC 于点E ,F ,已知AE =5,CE =3,则DF 的长是_______________.同类题型4.2 如图,已知△ABC 的外接圆⊙O 的半径为1,D 、E 分别是AB 、AC 上的点,BD =2AD ,EC =2AE ,则sin ∠BAC 的值等于线段( )A .DE 的长B .BC 的长 C .23 DE 的长D .32DE 的长例5.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 与过点C 的切线垂直,垂足为D ,直线DC 与AB 的延长线交于点P ,弦CE 平分∠ACB ,交AB 于点F ,连结BE ,BE =7 2 .下列四个结论:①AC 平分∠DAB ;②PF 2=PB ﹒PA ;③若BC = 12OP ,则阴影部分的面积为74π- 494 3 ;④若PC =24,则tan ∠PCB = 34 .其中正确的是( ) A .①② B .③④ C .①②④ D .①②③同类题型5.1 如图,在半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为_____________.同类题型5.2 某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(F ,G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,根据设计要求,若∠EOF =45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为_____________.同类题型5.3 如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O ′,B ′,连接BB ′,则图中阴影部分的面积是( ) A .2π3 B .2 3- π3 C .2 3- 2π3 D .4 3- 2π3同类题型5.4 如图,已知矩形ABCD 中,AB =3,AD =2,分别以边AD ,BC 为直径在矩形ABCD 的内部作半圆O 1 和半圆O 2 ,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且EF =2(EF 与AB 在圆心O 1 和O 2 的同侧),则由⌒AE ,EF ,⌒FB ,AB 所围成图形(图中阴影部分)的面积等于_______.参考答案例1.如图,点A是半圆上的一个三等分点,点B为弧AD的中点,P是直径CD上一动点,⊙O的半径是2,则PA+PB的最小值为()A.2 B. 5 C. 3 +1 D.2 2解:作A关于MN的对称点Q,连接CQ,BQ,BQ交CD于P,此时AP+PB=QP+PB=QB,根据两点之间线段最短,PA+PB的最小值为QB的长度,连接OQ,OB,∵点A是半圆上的一个三等分点,∴∠ACD=30°.∵B弧AD中点,∴∠BOD=∠ACD=30°,∴∠QOD=2∠QCD=2×30°=60°,∴∠BOQ=30°+60°=90°.∵⊙O的半径是2,∴OB=OQ=2,∴BQ=OB 2+OQ2=2 2 ,即PA+PB的最小值为22.选D.同类题型1.1 如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,连结CD,延长AC,BD,相交于点F.现给出下列结论:①若AD =5,BD =2,则DE = 25;②∠ACB =∠DCF ; ③△FDA ∽△FCB ;④若直径AG ⊥BD 交BD 于点H ,AC =FC =4,DF =3,则cos F = 4148;则正确的结论是( ) A .①③ B .②③④ C .③④ D .①②④解:①如图1,∵AD 平分∠BAC , ∴∠BAD =∠CAD , ∵∠CAD =∠CBD , ∴∠BAD =∠CBD , ∵∠BDE =∠BDE , ∴△BDE ∽△ADB , ∴BD AD =DE BD,由AD =5,BD =2,可求DE=45,①不正确; ②如图2,连接CD ,∠FCD +∠ACD =180°,∠ACD +∠ABD =180°, ∴∠FCD =∠ABD ,若∠ACB =∠DCF ,因为∠ACB =∠ADB , 则有:∠ABD =∠ADB ,与已知不符, 故②不正确; ③如图3,∵∠F =∠F ,∠FAD =∠FBC , ∴△FDA ∽△FCB ; 故③正确; ④如图4,连接CD ,由②知:∠FCD =∠ABD , 又∵∠F =∠F , ∴△FCD ∽△FBA , ∴FC FB =FD FA,由AC =FC =4,DF =3,可求:AF =8,FB =323,∴BD =BF -DF =233,∵直径AG ⊥BD ,∴DH =236 ,∴FH =416,∴cos F =FH AF =4148,故④正确; 故选:C .同类题型1.2 一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB ,如图(2)所示.(2)将圆形纸片上下折叠,使A 、B 两点重合,折痕CD 与AB 相交于M ,如图(3)所示. (3)将圆形纸片沿EF 折叠,使B 、M 两点重合,折痕EF 与AB 相交于N ,如图(4)所示. (4)连结AE 、AF ,如图(5)所示. 经过以上操作小芳得到了以下结论:①CD ∥EF ;②四边形MEBF 是菱形;③△AEF 为等边三角形;④S △AEF :S 圆=3 3:4π, 以上结论正确的有( ) A .1个 B .2个 C .3个 D .4个 解:∵纸片上下折叠A 、B 两点重合, ∴∠BMD =90°,∵纸片沿EF 折叠,B 、M 两点重合, ∴∠BNF =90°,∴∠BMD =∠BNF =90°, ∴CD ∥EF ,故①正确;根据垂径定理,BM 垂直平分EF ,又∵纸片沿EF 折叠,B 、M 两点重合, ∴BN =MN ,∴BM 、EF 互相垂直平分,∴四边形MEBF 是菱形,故②正确;如图,连接ME ,则ME =MB =2MN ,∴∠MEN =30°,∴∠EMN =90°-30°=60°, 又∵AM =ME (都是半径), ∴∠AEM =∠EAM ,∴∠AEM =12∠EMN =12 ×60°=30°, ∴∠AEF =∠AEM +∠MEN =30°+30°=60°,同理可求∠AFE =60°,∴∠EAF =60°, ∴△AEF 是等边三角形,故③正确;设圆的半径为r ,则MN =12 r ,EN =32r , ∴EF =2EN = 3 r ,AN =r +12r =32r , ∴S △AEF :S 圆=(12×3r ×32r ):πr 2=3 3 :4π,故④正确; 综上所述,结论正确的是①②③④共4个.选D .同类题型1.3同类题型1.4例2.如图,△ABC 中,BC =4,∠BAC =45°,以4 2 为半径,过B 、C 两点作⊙O ,连OA ,则线段OA 的最大值为______________.解:作OF ⊥BC 于F ,则BF =CF =12BC =2,如图,连结OB ,在Rt △OBF 中,OF =OB 2-BF 2=(42)2-22=27 ,∵∠BAC =45°,BC =4,∴点A 在BC 所对应的一段弧上一点,∴当点A 在BC 的垂直平分线上时OA 最大,此时AF ⊥BC ,AB =AC ,作BD ⊥AC 于D ,如图,设BD =x ,∵△ABD 为等腰直角三角形,∴AB =2BD = 2 x ,∴AC = 2 x ,在Rt △BDC 中,∵BC 2=CD 2+BD 2 ,∴42=(2x -x )2+x 2 ,即x 2=4(2+ 2 ),∵12AF ﹒BC =12BD ﹒AC ,∴AF =x ﹒2x 4=2 2 +2,∴AO =AF +OF =22+2+27 ,即线段OA 的最大值为22+2+27.同类题型2.1 如图,已知⊙O 的半径为1,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,OM ⊥AB于点M ,OM = 13,则sin ∠CBD 的值等于( ) A .32 B .13 C .2 23 D .12解:连接AO ,∵OM ⊥AB 于点M ,AO =BO ,∴∠AOM =∠BOM ,∵∠AOB =2∠C∴∠MOB =∠C ,∵⊙O 的半径为1,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,OM =13, ∴sin ∠CBD =sin ∠OBM =MO OB =131=13则sin ∠CBD 的值等于13. 选B .同类题型2.2 如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点M ,且MP =OM ,则满足条件的∠OCP 的大小为_______________.解:①根据题意,画出图(1),在△QOC 中,OC =OM ,∴∠OMC =∠OCP ,在△OPM 中,MP =MO ,∴∠MOP =∠MPO ,又∵∠AOC =30°,∴∠MPO =∠OCP +∠AOC =∠OCP +30°,在△OPM 中,∠MOP +∠MPO +∠OMC =180°,即(∠OCP +30°)+(∠OCP +30°)+∠OCP =180°,整理得,3∠OCP =120°,∴∠OCP =40°.②当P 在线段OA 的延长线上(如图2)∵OC =OM ,∴∠OMP=(180°-∠MOC )×12①, ∵OM =PM ,∴∠OPM=(180°-∠OMP )×12②, 在△OMP 中,30°+∠MOC +∠OMP +∠OPM =180°③,把①②代入③得∠MOC =20°,则∠OMP =80°∴∠OCP =100°;③当P 在线段OA 的反向延长线上(如图3),∵OC =OM ,∴∠OCP=∠OMC=(180°-∠COM )×12①, ∵OM =PM ,∴∠P =(180°-∠OMP )×12②, ∵∠AOC =30°,∴∠COM +∠POM =150°③,∵∠P=∠POM,2∠P=∠OCP=∠OMC④,①②③④联立得∠P=10°,∴∠OCP=180°-150°-10°=20°.故答案为:40°、20°、100°.同类题型2.3 如图,△ABC中,∠BAC=90°,AC=12,AB=10,D是AC上一个动点,以AD 为直径的⊙O交BD于E,则线段CE的最小值是()A.5 B.6 C.7 D.8解:如图,连接AE,则∠AED=∠BEA=90°,∴点E在以AB为直径的⊙Q上,∵AB=10,∴QA=QB=5,当点Q、E、C三点共线时,QE+CE=CQ(最短),而QE长度不变,故此时CE最小,∵AC=12,∴QC=AQ 2+AC2=13,∴CE=QC-QE=13-5=8,选D.例3.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是()A.MN=4 3 3B.若MN与⊙O相切,则AM= 3 C.若∠MON=90°,则MN与⊙O相切 D.l1和l2的距离为2解:A 、平移MN 使点B 与N 重合,∠1=60°,AB =2,解直角三角形得MN =433 ,正确; B 、当MN 与圆相切时,M ,N 在AB 左侧以及M ,N 在A ,B 右侧时,AM = 3 或33,错误; C 、若∠MON =90°,连接NO 并延长交MA 于点C ,则△AOC ≌△BON ,故CO =NO ,△MON ≌△MOC ,故MN 上的高为1,即O 到MN 的距离等于半径.正确; D 、l 1∥l 2 ,两平行线之间的距离为线段AB 的长,即直径AB =2,正确.选B .同类题型3.1 如图,已知A 、B 两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D 是⊙C 上的一个动点,射线AD 与y 轴交于点E ,则△ABE 面积的最大值是__________.解:当射线AD 与⊙C 相切时,△ABE 面积的最大.连接AC ,∵∠AOC =∠ADC =90°,AC =AC ,OC =CD ,∴Rt △AOC ≌Rt △ADC (HL ),∴AD =AO =2,连接CD ,设EF =x ,∴DE 2 =EF ﹒OE ,∵CF =1,∴DE =x (x +2) ,∵△CDE ∽△AOE ,∴CD AO =CE AE,即12=x +12+x (x +2) ,解得x =23 , S △ABE =BE ×AO 2=2×(23+1+2)2=113.同类题型3.2 我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y =kx +4 3 与x 轴、y 轴分别交于A 、B ,∠OAB =30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .12解:∵直线l :y =kx +4 3 与x 轴、y 轴分别交于A 、B ,∴B (0,4gh (3) ),∴OB =4 3 ,在RT △AOB 中,∠OAB =30°,∴OA =3OB =3×4 3 =12,∵⊙P 与l 相切,设切点为M ,连接PM ,则PM ⊥AB ,∴PM =12PA , 设P (x ,0),∴PA =12-x ,∴⊙P 的半径PM =12PA =6-12x , ∵x 为整数,PM 为整数,∴x 可以取0,2,4,6,8,10,6个数,∴使得⊙P 成为整圆的点P 个数是6.故选:A .同类题型3.3 已知AC ⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列图形中⊙O 与△ABC 的某两条边或三边所在的直线相切,则⊙O 的半径为ab a +b的是( ) A . B .C .D .解:设⊙O 的半径为r ,A 、∵⊙O 是△ABC 内切圆,∴S △ABC =12(a +b +c )﹒r =12ab , ∴r =ab a +b +c; B 、如图,连接OD ,则OD =OC =r ,OA =b -r ,∵AD 是⊙O 的切线,∴OD ⊥AB ,即∠AOD =∠C =90°,∴△ADO ∽△ACB , ∴OA :AB =OD :BC ,即(b -r ):c =r :a , 解得:r =ab a +c; C 、连接OE ,OD ,∵AC 与BC 是⊙O 的切线,∴OE ⊥BC ,OD ⊥AC ,∴∠OEB =∠ODC =∠C =90°,∴四边形ODCE 是矩形,∵OD =OE ,∴矩形ODCE 是正方形,∴EC =OD =r ,OE ∥AC ,∴OE :AC =BE :BC ,∴r :b =(a -r ):a ,∴r =ab a +b; D 、解:设AC 、BA 、BC 与⊙O 的切点分别为D 、F 、E ;连接OD 、OE ;∵AC 、BE 是⊙O 的切线,∴∠ODC =∠OEC =∠DCE =90°;∴四边形ODCE 是矩形;∵OD =OE ,∴矩形ODCE 是正方形;即OE =OD =CD =r ,则AD =AF =b -r ;连接OB ,OF , 由勾股定理得:BF 2=OB 2-OF 2 ,BE 2=OB 2-OE 2 ,∵OB =OB ,OF =OE ,∴BF =BE ,则BA +AF =BC +CE ,c +b -r =a +r ,即r =c +b -a 2. 故选C .例4.如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EFGH的值为______________.解:如图,连接AC 、BD 、OF ,设⊙O 的半径是r ,则OF =r ,∵AO 是∠EAF 的平分线,∴∠OAF =60°÷2=30°,∵OA =OF ,∴∠OFA =∠OAF =30°,∴∠COF =30°+30°=60°, ∴FI=r ﹒sin60°=32r , ∴EF=32r ×2= 3 r , ∵AO =2OI ,∴OI =12 r ,CI =r -12r =12r , ∴GH BD =CI CO =12, ∴GH =12 BD =r , ∴EFGH =3r r = 3 .同类题型4.1如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,以OB 为直径画圆M ,过D 作⊙M 的切线,切点为N ,分别交AC ,BC 于点E ,F ,已知AE =5,CE =3,则DF 的长是_______________.解:延长EF ,过B 作直线平行AC 和EF 相交于P ,∵AE =5,EC =3,∴AO =CE +OE ,即有,OE =EN =1,又∵△DMN ∽△DEO ,且MN=13 DM , ∴DE =3OE =3,又∵OE ∥BP ,O 是DB 中点,所以E 也是中点, ∴EP =DE =3,∴BP =2,又∵△EFC ∽△PFB ,相似比是3:2,∴EF=EP ×35=1.8, 故可得DF =DE +EF =3+1.8=4.8.同类题型4.2 如图,已知△ABC 的外接圆⊙O 的半径为1,D 、E 分别是AB 、AC 上的点,BD =2AD ,EC =2AE ,则sin ∠BAC 的值等于线段( )A .DE 的长B .BC 的长 C .23 DE 的长D .32 DE 的长解:如图,作直径CF ,连接BF ,在Rt △CBF 中,sin ∠F =BC CF =BC 2; ∵BD =2AD ,EC =2AE ,∴AD :AB =AE :AC =1:3,又∵∠EAD =∠CAB ,∴△EAD ∽△CAB ,∴BC =3DE ,∴sin ∠A =sin ∠F =BC 2=3DE 2=32DE . 选D .例5.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 与过点C 的切线垂直,垂足为D ,直。