数学建模毕业论文--葡萄酒的评价

合集下载

数学建模A题葡萄酒质量的评价

数学建模A题葡萄酒质量的评价

2012高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A(隐去论文作者相关信息)日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):2012高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒质量的评价摘要葡萄酒质量的好坏主要依赖于评酒员的感观评价,由于人为主观因素的影响,对于酒质量的评价总会存在随机差异,为此找到一种简单有效的客观方法来评酒,就显得尤为重要了。

本文通过研究酿酒葡萄的好坏与所酿葡萄酒的质量的关系,以及葡萄酒和酿酒葡萄检测的理化指标的关系,以及葡萄酒理化指标与葡萄酒质量的关系,旨在通过客观数据建立数学模型,用客观有效的方法来评价葡萄酒质量。

首先,采用双因子可重复方差分析方法,对红、白葡萄酒评分结果分别进行检验,利用Matlab软件得到样品酒各个分析结果,结合01-数据分析,发现对于红葡酒有70.3%的评价结果存在显著性差异,对于白葡萄酒只有53%的评价结果存在显著性差异。

通过比较可知,两组评酒员对红葡萄酒的评分结果更具有显著性差异,而对于白葡萄酒的评分,评价差异性较为不明显。

数学建模葡萄酒评价优秀论文

数学建模葡萄酒评价优秀论文

葡萄酒的评价模型摘要近年来,我国掀起了一场葡萄酒热,对葡萄酒的需求与日俱增。

特别是随着食品科学技术的发展,人们不再满足传统感官评价葡萄酒的水平。

如何运用数据资料定量研究葡萄酒的品质,加快建立葡萄酒市场指标规则成为人们关注的焦点。

本文通过对感官评价分析,结合葡萄酒和酿酒葡萄的理化指标和芳香物质的大量数据,建立了客观可靠的葡萄酒质量综合评价模型。

针对问题一:本题需要检验两组品酒员的评价结果是否存在显著差异,并选出更可靠的一组。

我们将各种葡萄酒的10个二级指标得分,相加得到每种酒的总分。

在判断知每组品酒员的评价总分均服从正态分布后,用t检验分析两组品酒员对各葡萄酒评价的差异性,由此计算得到两组评价的显著性差异率为13.36%,即总体上两组品酒员的评价不存在显著差异。

但由于两组品酒员的评价仍存在部分差异,我们比较两组品酒员对55种葡萄酒评价的方差,发现第二组评分的方差普遍小于第一组,所以第二组的评价结果更可信。

针对问题二:为了对酿酒葡萄进行分级,我们将葡萄的理化指标作为媒介。

先根据国际指标制定适用于本题评分的分级标准,将葡萄酒进行分级,再根据理化指标经标准化之后的数值,利用欧氏距离对酿酒的55种酿酒葡萄进行Q型聚类分析。

聚类得到红白葡萄各六个分类后,再把各类酿酒葡萄对应至相应葡萄酒的等级,将酿酒红葡萄和酿酒白葡萄各分为五级。

针对问题三:由于各种酿酒葡萄的理化指标种类复杂,我们用主成分分析的方法,从酿酒红葡萄和酿酒白葡萄的27个有效指标中各提取出了8个和9个主要成分。

考虑到酿酒葡萄经化学反应酿造成葡萄酒的过程中各项理化指标一般存在线性关系,我们建立多元线性回归模型,得出酿酒葡萄和葡萄酒各项有效理化指标的正负相关关系。

关键词:显著性检验;聚类分析;主成分分析;多元回归。

一、问题的重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

全国大学生数学建模竞赛一等奖论文2021年葡萄酒的评价

全国大学生数学建模竞赛一等奖论文2021年葡萄酒的评价

全国大学生数学建模竞赛一等奖论文2021年葡萄酒的评价篇一:2021年数学建模葡萄酒的评价一等奖论文2021高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话): 20212129 所属学校(请填写完整的全名):参赛队员 (打印并签名) :1. 2.3. 指导教师或指导教师组负责人(打印并签名):日期: 2021年 9月 9日赛区评阅编号(由赛区组委会评阅前进行编号):2021高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A题葡萄酒的评价一,摘要第一问中,我们通过T-检验来判断两组评酒员的评价结果有无显著性差异,结果发现两组评酒员的评价结果无显著性差异;对红,白葡萄各自两组的可信度分析,我们引入稳定性指标X,即将每一组的十位品酒师对于同一样品所有指标所给的分求标准差并根据指标所占分数进行相应的加权求和。

最后求出总平均稳定性指标,数值较小的可信度较高。

结果发现红,白葡萄酒均是第二组品尝评分较合理。

第二问中,首先对酿酒葡萄的一些特殊理化指标进行简化处理(如Ph值,芳香物质,果皮颜色),接着采用用无量纲化对所有数据进行处理。

将指标分级后运用熵值法求出各个指标所占权重。

【精品】葡萄酒的评价全国数学建模大赛优秀

【精品】葡萄酒的评价全国数学建模大赛优秀

2012高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆工商大学参赛队员(打印并签名):1.伍家棋2.杜静3.黄丹指导教师或指导教师组负责人(打印并签名):日期:2012 年 9月10日赛区评阅编号(由赛区组委会评阅前进行编号):2012高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定的程度上反映葡萄酒和葡萄的质量。

本论文主要研究葡萄酒的评价、酿酒葡萄的分级以及酿酒葡萄与葡萄酒的理化指标之间的相互关系问题。

对于问题一:我们从假设检验的角度出发分析,对两组的评分进行均值和方差运算,并在零假设成立的前提下通过使用Matlab 做T 检验,得出两组评酒员对于红葡萄酒的评价结果无显著性差异,而对于白葡萄酒的评价结果存在显著性差异的结果。

再建立可信度模型=H ,计算结果如下表,对于问题二:根据葡萄酒质量的综合得分,将其划分为优、良、合格、不合格四个等的偏相关系矩阵。

葡萄酒的评价论文(1) (1)

葡萄酒的评价论文(1) (1)

葡萄酒的评价摘要随着时代的进步,经济的发展,葡萄酒渐渐地走进百姓的生活。

评判葡萄酒的方法则是通过聘请一批有资质的评酒员进行品评。

评酒员品尝葡萄酒并对其打分,通过求和确定葡萄酒的质量。

本文通过对所给数据的观察分析,先对数据预处理,再建立相对较好的模型评价葡萄酒的质量。

对于问题一,首先我们利用MATLAB软件制作Q-Q图,根据所得到的图观察得到,这些点可近似拟合成一条直线,从而证明该组数据满足正态分布。

然后利用T-检验方法判断评酒员的评价有无显著差异,最终得出两组评酒员的评价结果存在显著性差异的结论。

关于哪组评价结果更可信的问题,我们采用了方差分析法,根据所得到的红、白葡萄酒均值和方差表,经过计算比较,我们发现第二组的方差小于第一组的方差。

由于方差越小则数据越稳定,于是我们得到第二组评酒员的评价结果更可信的结论。

对于问题二,我们选择利用灰色关联分析法。

我们根据附件一中评分员的评分得出葡萄酒的得分,并对其标准化,将所得的数据作为葡萄酒质量的评分。

对于酿酒葡萄的理化指标,首先我们通过参考文献确定对葡萄酒影响较大的酿酒葡萄的理化指标,再采用均值化无差异法对数据求标准化值,然后利用变异系数法求得筛选出来的葡萄的理化指标的权重,通过计算权重和标准化值最后求得酿酒葡萄的综合评分。

再用均值化无差异法求葡萄和葡萄酒的标准化值。

将所得到的两组数据做和并排序,从而将酿酒葡萄划分为优、良、中、差四个等级。

对于问题三,我们采用了单个拟合和综合拟合的方法。

题目中要求寻找酿酒葡萄和葡萄酒的理化指标的关系,我们首先从参考文献中找到了对葡萄酒的主要理化指标有重大影响的酿酒葡萄的理化指标。

然后利用MATLAB软件进行拟合,建立线性回归方程,从而得出酿酒葡萄的部分理化指标对葡萄酒的理化指标的影响系数和两者之间的函数表达式,可见表N,为了进一步确定两者之间的相关关系,我们又对附件二和附件三中的数据进行处理,利用MATLAB软件再次进行拟合,从而得出酿酒葡萄与葡萄酒的理化指标之间呈正相关关系的结论。

葡萄酒的评价数学建模论文A

葡萄酒的评价数学建模论文A

葡萄酒的评价摘要我们对两种葡萄和葡萄酒都单独进行分析。

问题一:经过处理附表1的数据,分别得到两组酒评酒员对每一个红葡萄酒样品评分的平均值,将这两组数据看成两个相互独立的样本,用SPSS软件分别对两组数据进行参数和非参数假设检验,进而判断两组评酒员对红葡萄酒的评价结果是否有显著性差异。

根据两组评酒员的评分,分别求出每一个红葡萄样品10位评酒员评分的标准差,然后求和,通过比较两组标准差和的大小,结果比较小的,评分更稳定,更可信。

最后得到的结论是: 1、两组评酒员的评价结果有显著性差异。

2、第二组评酒员的结果更可信。

以下用到葡萄酒质量的评分都是以第二组评酒员的分数为标准。

问题二:我们采用相关分析和聚类方法对酿酒葡萄进行分级。

首先,对酿酒葡萄的多项理化指标与葡萄酒质量评分进行相关分析,得出一些与葡萄酒质量评分相关系数比较高的葡萄理化指标。

接着,这些指标和评酒员对葡萄酒的质量评分一起作为标准,对葡萄样品聚类分析,从而得出葡萄的分级。

得出,对红葡萄分成五级,对白葡萄分成四级,为了对分级的合理进行检验,我们定义一种对葡萄划分的检验方法,以评酒员对葡萄酒的评分作为标准,通过检验得出,红葡萄划分有误率为25.9%,白葡萄划分有误率为14.3%,可以认为结论合理。

问题三:根据附表2和附表3所给的数据,分别对酿酒葡萄和葡萄酒的理化指标进行相关性分析,得出相关矩阵,对于多个相关性比较明显的理化指标选出一个代表性理化指标,先对红葡萄和红葡萄酒指标进行分析,选出红葡萄中的7个代表性理化指标,红葡萄酒的8个代表性理化指标,然后用选取的这15个理化指标进行典型相关分析,得出酿酒葡萄和葡萄酒的理化指标之间的联系。

分析的结果要考虑相关分析后被掩盖的理化指标。

对于白葡萄和白葡萄的理化指标同样分析,选出白葡萄的6个代表性理化指标,白葡萄酒的7个代表性理化指标,然后用选取的这13个理化指标进行典型相关分析,得出酿酒葡萄和葡萄酒的理化指标之间的联系。

2012葡萄酒的评价

2012葡萄酒的评价

2012葡萄酒的评价
(原创实用版)
目录
一、引言
二、葡萄酒的评价标准
三、参数检验在葡萄酒评价中的应用
四、基于秩的非参数检验在葡萄酒评价中的应用
五、结论
正文
一、引言
在 2012 年全国大学生数学建模竞赛中,有一道题目是关于葡萄酒的评价。

葡萄酒的质量评价主要取决于感官评价,其质量是由酿酒葡萄的成分决定的。

本文将探讨参数检验和基于秩的非参数检验在葡萄酒评价中的应用。

二、葡萄酒的评价标准
葡萄酒的评价主要依赖于感官评价,包括外观、口感和香气等。

此外,还可以通过理化指标来评价葡萄酒的质量,如酸度、糖度、酒精度等。

三、参数检验在葡萄酒评价中的应用
参数检验要求样本来源于正态总体(服从正态分布),且这些正态总体拥有相同的方差。

在这种基本假定(正态性假定和方差齐性假定)下,可以检验各总体均值是否相等。

然而,当数据不满足正态性和方差齐性假定时,参数检验可能会给出错误的答案。

此时,应采用基于秩的非参数检验。

四、基于秩的非参数检验在葡萄酒评价中的应用
基于秩的非参数检验不要求样本来自正态总体,也不要求方差齐性。

它通过对数据进行排序,利用数据的秩次(等级)进行推断。

在葡萄酒评价中,基于秩的非参数检验可以应用于评价酿酒葡萄的等级和酿酒葡萄的理化成分与葡萄酒自身品质之间的理化关系。

五、结论
通过对 2012 年全国大学生数学建模竞赛中葡萄酒评价问题的探讨,我们可以发现参数检验和基于秩的非参数检验在葡萄酒评价中都有广泛
的应用。

全国大学生数学建模竞赛一等奖论文葡萄酒的评价

全国大学生数学建模竞赛一等奖论文葡萄酒的评价

第二十一篇葡萄酒质量的影响因素分析宇文皓月2012年A题葡萄酒的评价确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请测验考试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差别,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?附件1:葡萄酒品尝评分表(含4个表格);附件2:葡萄和葡萄酒的理化指标(含2个表格);附件3:葡萄和葡萄酒的芳香物质(含4个表格);原题详见2012年全国大学生数学建模竞赛A题。

葡萄酒质量的影响因素分析*摘要:本文针对葡萄酒和葡萄质量的评价问题,通过t检验、模糊聚类分析、相关性分析等多种方法,综合分析了评酒员葡萄酒品尝评分结果、葡萄和葡萄酒的理化指标以及葡萄和葡萄酒的芳香物质数据,建立了葡萄和葡萄酒的理化指标对葡萄以及葡萄酒质量的影响关系多元线性回归数学模型,运用EXCEL、Matlab软件得出了酿酒葡萄和葡萄酒之间的理化关系。

最后,将模型结果和实际酿酒过程相结合,做出了根据酿酒葡萄和葡萄酒理化指标对葡萄酒质量进行评价的模型,对如何固化葡萄酒质量评判尺度提出了相关可行性方案。

针对问题一,根据评酒员对葡萄酒品尝评分结果数据,分别对红葡萄和白葡萄,首先运用t检验分析建立了显著性差别的成对数据t检验模型,分析出两组评酒员的评酒结果具有显著性差别;再运用方差分析建立了方差分析模型,分析出第二组评酒员的评价结果更为可信。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模毕业论文--葡萄酒的评价
葡萄酒的评价是一项复杂的任务,涉及多个因素,包括葡萄品种、酿造过程、年份、产地和存储条件等。

在数学建模中,我们可以利用统计分析和机器学习算法来对葡萄酒进行评价,以预测其质量和特征。

首先,我们可以采集一定数量的葡萄酒样本,并测量其相关属性,如酒精含量、酸度、pH值、残留糖分、挥发性酸、柠檬
酸等。

利用统计分析方法,我们可以探索这些属性与葡萄酒质量之间的关系,建立相应的数学模型。

例如,可以使用线性回归分析来确定具体属性与葡萄酒得分之间的相关性。

另一方面,机器学习算法可以帮助我们构建更复杂的评价模型。

可以使用聚类算法将葡萄酒样本分成不同的类别,以发现具有相似特征的葡萄酒群体。

此外,可以使用分类算法或回归算法来预测葡萄酒的质量评分。

这些算法可以利用已知的葡萄酒样本数据进行训练,并在新样本上进行预测。

除了属性数据,我们还可以考虑其他因素对葡萄酒评价的影响。

例如,可以考虑葡萄酒的价格、评分和消费者评价等因素,以构建更综合的评价模型。

可以使用模糊数学方法来处理这些不确定性和主观性因素,以得出更准确的评价结果。

最后,为了验证模型的准确性和稳定性,可以使用交叉验证或留一验证的方法进行模型评估。

这些方法可以帮助我们评估模型的泛化能力,并进行必要的调整和改进。

数学建模可以帮助我们对葡萄酒进行评价,为葡萄酒生产商、消费者和酒评人提供有关葡萄酒质量和特征的有价值信息。

相关文档
最新文档