煤基活性炭制备及其表征

合集下载

活性炭的制备及吸附性能表征

活性炭的制备及吸附性能表征

实验三 活性炭的制备及吸附性能的表征一、实验目的1. 掌握活性炭比表面积的计算方法;2. 学会用朗格缪尔吸附方程求解活性炭的饱和吸附量 二、实验原理活性炭是一种具有高度发达的孔隙结构和极大的内表面积的人工碳材料制品。

它主要由碳元素(87—97%)组成,也含有氢、氧、硫和氮等元素以及一些无机矿物质。

活性炭最显著特征是吸附作用,它可以从气相或液相中吸附各种物质,并且吸附能力很强活性炭的制备:材料:几乎任何一种天然或合成的含碳物质,如木质原料(木材、果壳、果核)、煤化植物(泥炭、褐煤)、所有不同变质程度的煤和酚醛树脂等合成物质,都可以生产活性炭。

干燥-粉碎-碳化(马弗炉)-活化碳化,也称热解,是在隔绝空气的条件下对原材料加热,一般在600度。

经碳化后会分解放出水气、CO 、CO2、H2等。

原料分解成碎片后,并重新结合成稳定结构,这些碎片可能有一些微晶体组成。

活化,是在氧化剂的作用下,对碳化后的材料加热,以生产活性炭产品。

活化过程中,烧掉了碳化时吸附的碳氢化合物,把原有空隙之间烧穿活化使活性炭变成一种良好的多孔结构。

活性炭的表征:比表面积测定仪测定比表面积和孔径的分布;扫描电镜表面性质分析和孔径微观结构分析;IR 进行表面官能团的分析。

吸附性能表征:碘值,表征活性炭吸附性能的一个指标,一般认为其数值高低与活性炭中微孔的多少有关联。

亚甲基兰吸附,也是表征活性炭吸附性能的一个指标,由于分子直径大,数值主要表征中孔数量。

本实验以活性炭为原料,通过在醋酸水溶液中对醋酸的吸附作用,计算活性炭的比表面积。

通过朗格缪尔吸附方程求饱和吸附量。

活性炭的吸附性能表征: 1.弗朗特里希经验方程:1n xkc mτ==τ表示吸附能力(每克吸附剂上吸附溶质的量),x 为吸附溶质的量(mol ),m 为吸附剂的量(g ),c 为吸附平衡时溶液的浓度(mol/L ),n 和k 为经验常数,由温度、溶剂、吸附质与吸附剂性质决定。

对上式取对数: 1l g l g l g c k nτ=+,以lg τ对lgc 做图,可得一条直线,由斜率和截距可得n 和k 。

煤基活性炭制备工艺研究

煤基活性炭制备工艺研究

煤基活性炭制备工艺研究煤基活性炭是一种重要的吸附材料,具有高比表面积、孔隙度大、吸附能力强等优点。

本文对煤基活性炭的制备工艺进行研究。

制备原料:本实验采用的原料为褐煤,煤质为干基灰分12.5%,挥发分45.6%,固定碳34.8%,全硫1.78%,水分1.2%。

制备工艺:将褐煤粉末置于加热炉中进行焦化,焦化过程中,褐煤中的挥发分慢慢被热解出来,同时固定碳逐渐浓缩。

煅烧时分为两个阶段,第一阶段煅烧温度升至300℃,煅烧时间5小时,主要用于除去原料中的水、气态成分和杂质物质。

第二阶段煅烧温度升至800℃,煅烧时间4小时,将固体褐煤焦进行再生,使其分解出一部分孔洞,提高了其比表面积。

在煅烧的第二个时期中,将焦化后的煤粉放置于加热炉中,保持煅烧温度在800℃,加入氮气或水蒸气至2MPa的压力下进行水蒸气或煤气活化。

将煤基原料在800℃高温下气化,使其产生很多孔洞,增加其表面积和孔隙度,提高其吸附性能。

活化后,经水洗、干燥、烘烤后制成煤基活性炭。

控制工艺参数:在煅烧和活化的过程中,要注意控制工艺参数,以保证制备出的煤基活性炭具有较好的吸附性能。

控制的参数主要包括煅烧温度、煅烧时间、流动速率、气氛等。

煅烧温度适合在800℃左右,这样可以保证充分焦化并生成大量活性基团。

煅烧时间在5-6小时内,可以达到焦化的目的。

在活化过程中,气氛要尽量保持惰性气体,以免对煅焦样品产生影响。

流量速率适合在20-30mL/min,可以保证反应充分。

检测煤基活性炭的吸附性能:通过检测制备出的煤基活性炭的吸附性能,可以评价其质量是否合格。

常使用的检测方法有恒重法、氮气吸附法、甲醇蒸汽吸附法等。

其中,氮气吸附法是一种比较直接、简单的检测方法,可以获得煤基活性炭的比表面积、孔径分布、孔体积等指标。

一般来说,制备出的煤基活性炭的比表面积应该在800-1200m2/g之间。

煤基活性炭制备工艺研究

煤基活性炭制备工艺研究

煤基活性炭制备工艺研究引言活性炭是一种具有优异吸附性能的吸附材料,广泛应用于水处理、空气净化、食品加工、医药等领域。

煤基活性炭是指以煤为原料制备的活性炭,具有丰富的资源、低成本和多孔结构等优点,因此备受关注。

本文将围绕煤基活性炭制备工艺展开研究,探讨煤基活性炭的制备方法、工艺参数优化以及其应用前景。

一、煤基活性炭的制备方法1. 物理法物理法制备煤基活性炭是指利用物理方法进行煤的活化处理,不引入化学试剂。

常见的物理法包括高温蒸汽活化法、热解法和微波活化法等。

高温蒸汽活化法是将煤料置于高温蒸汽中,使煤料结构发生变化,增加孔隙结构,提高活性炭的吸附性能。

热解法则是通过高温热解煤料,使其发生结构改变,在不同温度下制备不同孔隙结构的活性炭。

微波活化法则是利用微波加热技术,使煤料在短时间内快速升温,从而形成活性炭。

2. 化学法化学法制备煤基活性炭是指在煤料活化过程中引入化学试剂进行处理,常见的化学法包括酸碱活化法、盐活化法和气相活化法等。

酸碱活化法是指将煤料浸泡在酸碱溶液中,通过酸碱的腐蚀作用使煤料表面形成大量微孔结构,提高活性炭的比表面积和孔隙度。

盐活化法是将含有碱金属盐的混合物与煤料一起进行高温处理,使煤料活化形成孔隙结构。

气相活化法则是将气体(如二氧化碳、水蒸汽等)引入煤料,在高温条件下使煤料发生活化反应,形成活性炭。

3. 组合法组合法是指将物理法和化学法相结合,利用物理和化学共同作用的方式进行煤基活性炭的制备。

采用酸碱活化法和高温热解法相结合,可以在不同温度下分别进行酸碱处理和高温热解,形成丰富的孔隙结构和独特的表面化学性质,提高活性炭的吸附性能。

二、煤基活性炭制备工艺参数优化1. 原料选择煤基活性炭的原料选择对活性炭的性能具有重要影响。

一般来说,煤基活性炭的原料主要包括无烟煤、褐煤和木质素等,其中无烟煤是较为理想的原料,因其含碳量高、结构致密,制备活性炭具有较高的吸附性能。

2. 活化剂选择活化剂的选择对制备煤基活性炭也具有重要影响。

煤基活性炭制备工艺研究

煤基活性炭制备工艺研究

煤基活性炭制备工艺研究煤基活性炭是一种具有高比表面积、孔隙度大等优点的重要工业材料。

其制备工艺的研究是制备高品质煤基活性炭的关键。

本文将从煤基活性炭制备的工艺流程、制备工艺参数优化以及材料特性等方面综述煤基活性炭制备工艺的研究进展。

1. 工艺流程煤基活性炭的制备工艺流程主要包括原料处理、干燥、炭化、活化等步骤。

1.1 原料处理煤作为煤基活性炭的主要原料,需要进行物理、化学处理,除去其中的杂质、灰分、硫等,以保证制备出的煤基活性炭品质良好。

此外,原料的粒度大小和煤种选择也会影响活性炭的品质。

1.2 干燥为了避免活化过程中水分蒸发带来的影响,需要将原料进行干燥处理,使其含水率降至一定水平。

1.3 炭化炭化是指在一定条件下将原料进行热解,使其中的有机物转化成碳酸盐以及一部分煤醚。

炭化的条件包括温度、时间、升降温速度等,会直接影响煤基活性炭的孔隙度、比表面积等特性。

炭化后的煤基材料需要进行活化。

活化过程可以分为化学活化和物理活化两种类型。

化学活化是将炭化的材料进行氧化处理,使其中的碳酸盐分解,产生大量二氧化碳和水,从而形成大量的孔隙结构;物理活化则是在相对较高的温度和压力下将炭化的材料与蒸汽或空气等作用剂接触,形成孔隙结构。

活化条件的选择与活化剂的种类、浓度密切相关。

在活化过程中,需要控制的参数包括活化温度、时间、活化剂种类和浓度等。

2. 工艺参数的优化研究表明,煤基活性炭的制备工艺参数对活性炭的孔隙度、比表面积等特性有着十分显著的影响。

下面就几个重要参数进行阐述。

炭化温度直接影响煤基活性炭的孔隙度。

随着炭化温度的上升,煤基材料的孔隙结构不断变大,孔径不断增大,孔隙度也不断提高。

但当炭化温度过高时,孔隙结构的增长速率减缓,同时炭与氧气反应的副反应也会增加,使得孔隙可操作空间缩小,煤基活性炭的吸附性能下降。

2.2 活化温度活化温度也是影响煤基活性炭孔隙度和比表面积的重要因素。

活化温度较大时,孔隙结构增大,但过大的活化温度也会导致孔隙结构破坏,产生孔堵塞现象。

煤基活性炭制备

煤基活性炭制备

等)、化学物理活化法
4
应用领域
用途
制糖
葡萄糖、饴糖、蔗糖脱色、去蛋白胶质
制药
原料药、中间体的脱色精制,口服炭片
食品
味精的半成品脱色、酒类的脱色、去杂味,果汁饮料等脱色、去杂质
油脂
植物油、动物油、甘油、鱼油等脱色,防止油脂变质
炼油
石油及其它矿物油的精制,石油化工产品精制
冶金
提取黄金,分离提取稀有元素;湿法镍冶炼去除铜、铅、锌杂质,作浮选剂
活化工艺控制的主要操作条件包括活化温度、活化时间、活化
剂的流量及温度、加料速度、活化炉内的氧含量等。
13
上述活化反应均为吸热反应,炉内活化反应区域温度逐渐下降, 当低于800℃时活化反应不能进行,因此通过喷射空气(二次风) 与反应生成的可燃气体燃烧放热,维持炉温,较少煤气消耗。
2H(2 g) O(2 g) 2H2O(g),H 241.8KJ/mol 2CO(g) O(2 g) 2CO(2 g),H 285.6KJ/mol
水处理
工业和生活废水净化,饮用水净化、灭菌水的制取,电子工业高纯水的制取
有机酸
胱氨酸、柠檬酸、乳酸、酒石酸等脱色
无机物
无机酸、碱、盐的脱色精制,从海水中提取钠
化学分析 色层分离,化学试剂
废液回收 回收贵金属、油脂、有机溶剂
溶剂回收 凡使用有机溶剂的场合,用活性炭均可有效回收利用
空气净化 生化、制药、半导体工业净化空气,地下工程及一般室内空气净化
2
2.制备活性炭的原料及产业布局
煤基:山西(大同和太原周边地区,大同烟煤为原料,原煤破 碎活性炭、压块破碎活性炭及粉碳,用于水处理和液体 净化) 宁夏(宁夏北部地区,太西无烟煤为原料,柱状活性炭, 用于气体净化和水净化) 新疆(米东地区,神华集团,压块破碎活性炭等多种)

煤基活性炭制备工艺研究

煤基活性炭制备工艺研究

煤基活性炭制备工艺研究煤基活性炭是一种常见的吸附材料,具有优异的吸附能力和很高的表面积。

由于其制备工艺直接影响到其吸附性能和使用范围,因此对煤基活性炭制备工艺的研究非常重要。

煤基活性炭的制备工艺通常分为两个步骤:炭疽化和活化。

炭疽化是将煤炭高温处理,使其变为炭黑,同时释放出volatile matter。

活化是通过进一步高温处理,使炭黑表面生成大量的微孔结构,从而增加其比表面积和吸附容量。

炭疽化可以通过两种方法进行:物理炭疽化和化学炭疽化。

物理炭疽化是将煤炭加热至较高温度,使其发生干馏,从而分离出volatile matter和炭黑。

这种方法的优点是能够得到高质量的炭黑,但操作条件较为严格,成本较高。

化学炭疽化是将煤炭与化学试剂反应,生成可挥发成分,然后进行热解,得到炭黑。

这种方法的优点是操作条件相对简单,成本较低,但得到的炭黑质量较低。

活化通常可以通过两种方法进行:物理活化和化学活化。

物理活化是将炭黑加热至高温,在活化剂(例如水蒸气、二氧化碳等)的作用下,炭黑表面发生物理变化,生成多孔结构。

这种方法的优点是操作相对简单,产品质量较高,但活化效果较差。

化学活化是将炭黑与活化剂进行反应,在高温下发生化学反应,形成大量的微孔结构。

这种方法的优点是活化效果好,但活化剂的选择和使用需要谨慎,成本较高。

在煤基活性炭制备工艺中,关键问题包括炭疽化温度、炭疽化时间、活化温度、活化时间、活化剂种类和用量等。

通过调控这些参数,可以得到具有不同吸附性能的煤基活性炭。

还可以通过添加助剂、改变煤炭种类等方法来改善煤基活性炭的吸附性能。

煤基活性炭制备工艺的研究对于提高煤基活性炭的吸附性能和扩大其应用范围具有重要意义。

通过调控炭疽化和活化的条件和参数,可以得到具有不同吸附性能的煤基活性炭,满足不同领域和应用的需求。

还可以通过添加助剂、改变煤炭种类等方法来改善煤基活性炭的吸附性能。

希望相关科研人员能够继续深入研究,并开发出更高性能的煤基活性炭制备工艺。

活性炭的制备与表征

活性炭的制备与表征

活性炭的制备与表征活性炭是一种广泛应用的多孔性材料,具有高度的吸附能力,能够吸附有害气体和颗粒物,也可以用于净水和净化土壤,是环保领域内的重要材料之一。

本文将介绍活性炭的制备与表征。

一、活性炭的制备方法活性炭的制备方法有多种,例如麻花烟煤、木质素等物质在高温下燃烧生成的活性炭、炭化后通过化学方法激活的活性炭、从天然矿物中提取活性炭等。

其中,炭化后通过化学方法激活的活性炭技术得到了广泛应用。

该技术的步骤主要包括:1.炭化原料;2.将炭化后的原料进行化学活化;3.对活化后的原料进行水洗、脱色等处理。

在活化过程中,使用的活化剂有多种,例如氢氧化钾、氢氧化钠、磷酸等。

这些物质都能够破坏原料的晶格结构,从而增加活性炭的孔隙度和表面积。

此外,也有专门的活性炭制备设备,例如流态化床制备活性炭的设备。

该设备能够使用无氧气体对炭材料进行热解,并同时通过流态化技术激活活性炭。

二、活性炭的表征方法对于一种材料来说,准确地表征其特性是非常重要的。

接下来,将介绍几种常用的活性炭表征方法。

1. 肌电图法肌电图法是一种比表面积测试方法,其原理是利用活性炭中孔道内的气体对电极表面电位的影响进行测定,从而推导出活性炭孔隙结构的信息。

该方法适用于测试孔径小于200Å的活性炭材料。

2. 红外光谱法红外光谱法是一种使用红外光谱仪进行物质分析的方法。

其原理是通过红外光的吸收来确定特定化学键的存在。

使用此方法可以测定活性炭中非晶态有机物的含量和分布。

3. 毛细管质谱法毛细管质谱法是一种能够得出活性炭中大分子物质化学组成的方法。

活性炭中含有各种复杂的有机化合物,包括芳香烃和多环脂肪族化合物等,这些物质都是可以被毛细管质谱法检测到的。

4. SEM及TEM扫描电子显微镜(SEM)和透射电子显微镜(TEM)是现代科技在表征活性炭方面最强大的工具。

通过SEM和TEM可以直观地看到活性炭的孔隙结构和形貌,从而获取一系列有关活性炭孔隙分布和孔径大小的信息。

煤基活性炭制备工艺研究

煤基活性炭制备工艺研究

煤基活性炭制备工艺研究煤基活性炭是一种重要的吸附材料,具有广泛的应用领域,如环境保护、水处理、气相净化等。

煤基活性炭制备工艺对其吸附性能和应用效果具有重要影响。

本文将从煤基活性炭的制备原理、工艺条件和研究进展等方面展开讨论,旨在探讨煤基活性炭制备工艺的最新研究进展和发展趋势。

一、煤基活性炭的制备原理煤基活性炭是在一定的条件下,通过煤的热解、气化和活化等过程制备而成的一种多孔材料。

其原理主要包括以下几点:1. 煤的热解:煤在高温下经过一定时间的加热,发生热解反应,生成固体焦炭和气体产物。

这是煤基活性炭制备的起始步骤。

2. 煤的气化:煤在气化剂的作用下,发生气化反应,生成可燃气体和灰渣。

气化是活性炭制备中的关键步骤,通过控制气化剂的种类和用量,可以调控活性炭的孔结构和表面化学性质。

3. 活化过程:经过煤的热解和气化后,得到的焦炭还不能满足活性炭的性能要求,需要进行活化处理。

活化是指将焦炭与活化剂(一般为水蒸气或二氧化碳)接触,使其在高温下发生气相反应,生成更多的活性位点和孔结构,提高活性炭的孔隙度和比表面积。

在实际生产中,煤基活性炭的制备工艺条件是影响其品质和性能的重要因素。

主要包括原料选择、炭化温度、气化剂种类和用量、活化温度和时间等。

1. 原料选择:煤基活性炭的原料主要是煤,而煤的种类、含量和组成对活性炭的性能有很大影响。

一般来说,煤中挥发分和固体碳含量较高的品种适合制备高孔隙度的活性炭,而灰分含量的增加可能会影响活性炭的孔结构和吸附性能。

2. 炭化温度:炭化温度是指煤在高温下发生热解反应的温度。

合适的炭化温度可以保证煤在热解过程中产生足够的焦炭,并且不会烧穿燃烧室。

一般来说,炭化温度在800 ~ 1000℃之间较为适宜。

3. 气化剂种类和用量:气化剂对活性炭的孔结构和表面化学性质有重要影响。

一般来说,二氧化碳气化得到的活性炭比水蒸气气化得到的活性炭具有更多的微多孔和介孔结构,但水蒸气气化更有利于提高活性炭的表面化学性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仪器:电热恒温干燥箱;高温管式炉;氮气钢瓶; 电炉;马沸炉;电子天平
3.1 活3、性实炭验的步制骤备
1原状)料,将破然碎KO后H在1、:1高K优O温H质管无式烟炉低煤温中样脱5水按50重℃5量的80为条℃1件:下1的进高比行温活例炭化混化合,成189h0糊后℃ 通入氮气并按5℃/min的速度加热至890℃活化处理1h左 右,冷却后得到粗活性炭。
干燥灰皿
烘干试样
取样
灰化
灼烧
称量
结束实验
△m>0.0010g
4.1煤基4活、性实炭验水数分据测及量分数析据计算
瓶重:24.7514g m=25.0906g m1=25.0754g
样品:0.3392g m2=25.0728g m3=25.0725g
含水量 m样m 品 样 -(m3品 m)10% 0 0.339 ( - 2 5 .0722 54 .75) 1410% 05.23 %
0.3392
4.2 碘吸附值的测定数据处理及误差分析
m1=0.1900g v1=4.5mL
m2=0.2394g v2=12.5mL
硫代硫酸钾与碘反应 2K2S2O3+I2=K2S4O6+2NaI 碘的浓度:0.1mol/L 硫代硫酸钾标准溶液的浓度:0.001mol/L
总的碘量:0.1×10×10-3=1.0×10-3 mol 滴定消耗的硫代硫酸钾标准溶液:n1=0.001×4.5×10-3=4.5×10-6 mol
煤基活性炭的制备及其性能表征
1、实验原理
在制备活性炭的过程中.必须首先经过高温活化,尽可能除去原煤中的焦油和 灰分,形成发达的孔结构。
制备方式 KOH作为活化剂,在300—600℃时主要发生分交联或缩 聚反应,该阶段一 些非碳元素外焦油类物质挥发出来的
在KOH溶液浸润时,物钾理物法种可以嵌入到原煤中碳的化结学构法中使碳原子层扩张。在温 度升高时,KOH可发生脱水产生K2O。当温度进一步升高后,K2O可在惰性气氛 中与碳发生反在应惰被性还气原氛为中K炭,化而碳元素以 CO•煤或与CO碱2混逸合出成。糊形状成活性炭的孔结构。
取1.0g试样在电热恒温干燥箱中(150±5)℃下K烘2S干2O23h,置于干燥器内冷却至室 温2摇试5。动0样m称使l干取活不烘燥不性均干的分同 碳磨质浸口试量润样的。锥1两拔形分去瓶1制塞中0m备子,lHC震好,用l、荡的加移摇试热液动样至管、加,沸取热精,10确微.0取m至沸过滤l盐03滤0.液0酸s0,0加4除入g.去每将干个试橙扰锥样黄的形分色硫瓶别,中放变冷蓝,入却塞容至好量试室玻为样温璃。塞, 用移液管取10.0试m样l的2碘标准溶液依次加入上述各锥形瓶(碘标准溶液使用前规标定), 立即塞好玻璃塞,置于振荡器上振荡15min,静置5min后用漏斗过滤。各取5.0ml滤 液分别放入250ml的锥形瓶中,用硫代硫酸钾标准溶液进行滴定,当溶液成蓝橙色黄消失色时, 加入2ml淀粉指示液,并继续滴定至蓝色消失为止。分别记下消耗的硫代硫酸钾标准 溶液的体积。
3.3.碘吸附值的测定
中分,多碘配配将次标置置干加液碘燥水标的(每准碘次溶和大液碘约:化5称m钾取L混),3合.1直,75至往g总碘烧量、杯达4中.7到加7(55(g20碘~~化56)0钾m)mL,水L均。搅称混拌准合均至溶匀0液。.0至0在0少搅1g放拌。置过移4程入h,中烧以继杯保续 证的所容有量晶瓶体中完 ,全稀溶释解至。刻在线放,置保存4h在内棕要色偶玻尔璃搅瓶拌中,。以此助时溶碘解溶。液将淀的混粉浓合溶液度溶即液为转0移K.12至mS22oO5l/30L。ml
3.4 灰分的测定
先称量干燥且干净灰皿的质量。将试样置于(150±5)℃电热恒
温干燥箱内,干燥2h,然后放于干燥器中冷却至室温备用。将试样粉 碎,称取试样,置于灼烧过的灰皿内,与马沸炉中灰化3-5h,然后再 (800±25)℃下灼烧2h。将灰皿置于干燥器内,冷却至室温(约 30min),然后迅速称量,精确至0.0002g。以后每灼烧30min称量 一次,直至质量变化不超过0.0010g为止。
n2=0.001×12.5×10-3=1.25×10-5 mol 没有被吸附的碘的量:n碘1=0.5×4.5×10-6=2.25×10-6 mol
n碘2=0.5×1.25×10-5 =6.25×10-6mol 被吸附的碘的量: n吸1=1.0×10-3-0.00225×10-3=0.9975×10-3 mol
n吸2=1.0×10-3-0.00625×10-3=0.99375×10-3 mol 碳对碘的吸附能力: x1=M*n吸1/ m1=254×0.9975×10-3/0.1900=1.33g/g
x2= M*n吸2/ m2=254×0.99375×10-3/0.2394=1.05g/g
∴x=(x1+x2)/2=1.19g/g
4KOH + =CH2→K2CO3+K2O+3H2↑ •高温炭化
8KOH+2≡与C水H蒸→气K,2CCOO32+2K2O+5H2↑ 加酸,加热过滤,干
进行活化反应
K2O+C→2K+CO↑

K2CO3+2C→2K +3CO↑
2、原料、试剂及设备
原料:优质无烟煤
试剂:氢氧化钾(化学纯);碘(分析纯);碘 化钾(分析纯);硫代硫酸钾(分析纯);可溶 性淀粉;盐酸(分析纯)
4.3灰分的测定数据处理灰皿 Nhomakorabea质量 M=9.6110g
2)粗活性炭:HCl(36%)=1:0.25,加水稀释至浓度约为 H5C%l酸,洗经电炉煮沸2热0水m洗in,将液体倒过掉滤 ,用热水洗活涤性过炭滤 ,将滤饼在110℃温度下干燥,最后得到活性炭。
3.2 煤基活性炭水分测量
用预先烘干并恒重的称量瓶,称取试样0.3g(精确到 0.0001g),并使试样厚度均匀。将装有试样的称量瓶打开 盖子,置于温度调至(150±5)℃的电热恒温干燥箱内, 干燥2h.取出称量瓶,盖上盖子,放入干燥器内,冷却至 室温后称量(精确至0.0001g)。以后每干燥30min,再 称一次,直至质量变化不大于0.0010g为止,视为干燥质 量,如果质量增加,应取前一次的质量为准。
相关文档
最新文档