3平面向量的坐标表示及线段的定比分点公式
平面向量的基本定理

(Ⅱ)点P的坐标为 ( x0 , y0 )
PM PN (1 x 0 ) 2 y 0 (1 x 0 ) 2 y 0
2
2
(4 2 x 0 )(4 2 x 0 )
2 4 x0
PM PN PM PN
2
∴ cos
3 x0 y0
2
∴ tan y0
对于各种类型的综合题一定要认真审题,抓住已 知条件引申分析,条件的发展必须用到P点坐标,所以 从设P点坐标为(x,y)开始,一步步地就可以解题, 抓住求什么?怎么求?现在知道什么?知、求有什么关 系?这个思路训练自己解题.
例3.
设平面内有两个向量,a=(cosα,sinα),b=(cosβ,sinβ) 且 0 < α < β < π.
XA 34, XB 2
∴ XA XB (3) 1 5 (1) 8
cosA B XA XB XA XB
8 34 2
4 17 17
本题考查平面向量数量积、向量的夹角公式及最值, 解题的关键是得到目标函数 XA XB 5( y 2) 2 8,以此
(Ⅰ)证明:(a+b)⊥(a-b)
(Ⅱ)若两个向量Ka+b与a-Kb的模相等,求β-α的值 (K≠0,K∈R) 分析: 欲证(a+b)⊥(a-b)只要利用向量垂直的充要条件. (a+b)· (a-b)=0,即可.再利用向量a+b与向量a-b的数 量积即可. 要求 β-α 的值,可用cos(β-α),向量的夹角公式解决,再 根据给定的范围,来确定 β-α 的值.
因此点 P 一定通过 ΔABC 的内心. ∴ 选(B)
平面向量定比分点定理

平面向量定比分点定理1. 引言大家好,今天咱们要聊聊一个数学中非常有趣的话题——平面向量定比分点定理。
听上去是不是有点高大上?别担心,咱们会把它说得简单易懂,甚至还有点幽默,让你轻松get到这个知识点。
毕竟,数学也可以很有趣,不是吗?1.1 什么是定比分点定理?先来捋捋,这个定理到底是个什么东西。
简单来说,定比分点定理就是告诉我们,如何通过某些特定的比例来确定一个点在两点之间的位置。
想象一下,假如你在一个超市里,想要在两排货架之间找到一个完美的购物位置,你就可以用这个定理来帮助你,当然,前提是你得知道你要的东西在哪儿,对吧?1.2 公式与例子那具体的公式是什么呢?假设你有两个点A(x1, y1)和B(x2, y2),如果我们希望找一个点P,按照比例m:n来分割AB线段,P的坐标就可以用这个公式表示:P(x, y) = ((mx2 + nx1) / (m + n), (my2 + ny1) / (m + n))。
听起来复杂?其实不然,我们来举个例子。
比如说,有两位朋友A和B,A在(1, 2)的位置,B在(3, 4)的位置。
如果你想找一个P点,使得它在A和B之间,比例是1:3,那么用公式计算一下,你就能找到P在(2.5, 3)的位置。
就像是找到朋友聚会的最佳位置,嘿嘿!2. 应用场景2.1 生活中的实际应用说到这儿,你可能会问:“这跟我的生活有什么关系?”其实还真有!想象一下,你在一个公园里散步,突然发现两个大树之间有个超级适合拍照的地方。
你可以用定比分点定理来判断这个地方的最佳位置,分出一段合理的距离。
生活中,许多设计、建筑、甚至是游戏开发,都离不开这个定理的支持,简直是个“万能钥匙”!2.2 动手实践而且,定比分点定理还可以用来做一些小实验。
比如说,你可以带着朋友们去外面,找两个标志性的位置,然后用比例来确定一个新位置,看看是不是大家都觉得这个位置最合适。
就像你们在决定去哪吃饭时,总得有人说:“咱们去那个小店吧,它的蛋糕好吃得不得了!”这种分点定理的思路,恰好就适合用来做决策,嘿!3. 总结与感悟3.1 直观与趣味总之,平面向量定比分点定理并不是个冷冰冰的公式,它其实可以为我们的生活增添一些乐趣和便利。
高三数学向量专题复习(高考题型汇总及讲解)(1)

向量专题复习向量是高考的一个亮点,因为向量知识,向量观点在数学、物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视。
一、平面向量加、减、实数与向量积 (一)基本知识点提示1、重点要理解向量、零向量、向量的模、单位向量、平行向量、反向量、相等向量、两向量的夹角等概念。
2、了解平面向量基本定理和空间向量基本定理。
3、向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。
4、向量形式的三角形不等式:||a |-|b ||≤|a ±b |≤|a |+|b |(试问:取等号的条件是什么?);向量形式的平行四边形定理:2(|a |2+|b |2)=|a -b |2+|a +b |25、实数与向量的乘法(即数乘的意义)实数λ与向量的积是一个向量,记λ,它的长度与方向规定如下:(1)|λa |=|λ|²|a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λ=,方向是任意的.6、共线向量定理的应用:若≠,则∥⇔存在唯一实数对λ使得=λ⇔x 1y 2-x 2y 1=0(其中=(x 1,y 1),=(x 2,y 2)) (二)典型例题例1、O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足).,0[||||+∞∈++=λλAC AB 则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心+是在∠BAC 的平分线上,∴选B例2、对于任意非零向量与,求证:|||-|||≤|±|≤||+||证明:(1)两个非零向量与不共线时,+的方向与,的方向都不同,并且||-||<|±|<||+||(3)两个非零向量a 与b 共线时,①a 与b 同向,则a +b 的方向与a 、b 相同且|a +b |=|a |+|b |.②a 与b 异向时,则a +b 的方向与模较大的向量方向相同,设|a |>||,则|+|=||-||.同理可证另一种情况也成立。
人教A版(2019)高一数学必修第二册 讲义 6

6.3 平面向量基本定理及坐标表示一、平面向量基本定理1.平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.2.基底:若e1,e2不共线,我们把{e1,e2}叫做表示这一平面内所有向量的一个基底.二、用基底表示向量用基底表示向量的一般方法(1)根据平面向量基本定理可知,同一平面内的任何一个基底都可以表示该平面内的任意向量.用基底表示向量,实质上是利用三角形法则或平行四边形法则,进行向量的线性运算.(2)基底的选取要灵活,必要时可以建立方程或方程组,通过方程或方程组求出要表示的向量.三、平面向量基本定理的应用(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.四、平面向量的坐标表示1.把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.2.在平面直角坐标系中,设与x轴、y轴方向相同的两个单位向量分别为i,j,取{i,j}作为基底.对于平面内的任意一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使得a=x i+y j,则有序数对(x,y)叫做向量a的坐标.3.坐标表示:a=(x,y).4.特殊向量的坐标:i=(1,0),j=(0,1),0=(0,0).五、平面向量加、减法的坐标表示设向量a=(x1,y1),b=(x2,y2),则有下表,符号表示加法a+b=(x1+x2,y1+y2)减法a-b=(x1-x2,y1-y2)重要结论已知A(x1,y1),B(x2,y2),则AB→=(x2-x1,y2-y1)六、平面向量坐标运算的应用坐标形式下向量相等的条件及其应用(1)条件:相等向量的对应坐标相等.(2)应用:利用坐标形式下向量相等的条件,可以建立相等关系,由此可以求出某些参数的值或点的坐标.七、数乘运算的坐标表示已知a=(x,y),则λa=(λx,λy),即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.八、向量共线的判定设a=(x1,y1),b=(x2,y2),其中b≠0.向量a ,b 共线的充要条件是x 1y 2-x 2y 1=0.向量共线的判定应充分利用向量共线定理或向量共线的坐标表示进行判断,特别是利用向量共线的坐标表示进行判断时,要注意坐标之间的搭配. 九、 利用向量共线的坐标表示求参数 利用向量平行的条件处理求值问题的思路 (1)利用向量共线定理a =λb (b ≠0)列方程组求解. (2)利用向量共线的坐标表示直接求解.提醒:当两向量中存在零向量时,无法利用坐标表示求值. 十、有向线段定比分点坐标公式及应用对任意的λ(λ≠-1),P 点的坐标为⎝ ⎛⎭⎪⎫x 1+λx 21+λ,y 1+λy 21+λ. 注意点:(1)λ的值可正、可负.(2)分有向线段的比与线段长度比不同. 十一、平面向量数量积的坐标表示 设非零向量a =(x 1,y 1),b =(x 2,y 2), 则a·b =x 1x 2+y 1y 2.进行数量积运算时,要正确使用公式a·b =x 1x 2+y 1y 2,并能灵活运用以下几个关系 (1)|a |2=a ·a .(2)(a +b )·(a -b )=|a |2-|b |2. (3)(a +b )2=|a |2+2a ·b +|b |2. 十二、平面向量的模1.若a=(x,y),则|a|2=x2+y2或|a|=x2+y2.2.若A(x1,y1),B(x2,y2),则|AB|=x2-x12+y2-y12.求向量a=(x,y)的模的常见思路及方法(1)求模问题一般转化为求模的平方,即a2=|a|2=x2+y2,求模时,勿忘记开方.(2)a·a=a2=|a|2或|a|=a2=x2+y2,此性质可用来求向量的模,可以实现实数运算与向量运算的相互转化.十三、平面向量的夹角、垂直问题设a,b都是非零向量,a=(x1,y1),b=(x2,y2),a与b的夹角为θ.1.cos θ=a·b|a||b|=x1x2+y1y2x21+y21x22+y22.2.a⊥b⇔x1x2+y1y2=0.考点一 平面向量的基本定理【例1】(2021·陕西)下列各组向量中,可以作为基底的是( ) A .()()120,0,1,2e e == B .()()121,2,5,7e e =-=C .()()123,5,6,10e e ==D .()12132,3,,24e e ⎛⎫=-=- ⎪⎝⎭【答案】B【解析】对A :因为零向量和任意向量平行,故A 中向量不可作基底; 对B :因为710-≠,故B 中两个向量不共线;对C :因为31056⨯=⨯,故C 中两个向量共线,故C 中向量不可作基底;对D :因为312342⎛⎫⨯-=-⨯ ⎪⎝⎭,故D 中两个向量共线,故D 中向量不可作基底.故选:B.【练1】(2020·广东云浮市·高一期末)下列各组向量中,可以作为基底的是( ). A .()10,0e =,()21,2e =- B .()11,2e =-,()25,7e =C .()13,5e =,()26,10e =D .()12,3e =-,213,24e ⎛⎫=- ⎪⎝⎭【答案】B【解析】因为()11,2e =-与()25,7e =不共线,其余选项中1e 、2e 均共线,所以B 选项中的两向量可以作为基底.故选:B考点二 加减数乘的坐标运算【例2】(2020·咸阳百灵学校高一月考)已知点M (-3,3),N (-5,-1),那么MN 等于( ) A .(-2,-4) B .(-4,-2) C .(2,4) D .(4,2)【答案】A【解析】M (-3,3),N (-5,-1),()=2,4MN ∴--.故选:A【练2】(2020·苍南县树人中学高一期中)已知()1,1A ,()1,1B --,则向量AB 为( ) A .()0,0 B .()1,1 C .()2,2-- D .()2,2【答案】C【解析】由题意可得()()()1,11,12,2AB =---=--.故选:C. 考点三 共线定理的坐标表示【例3】(2020·全国高一)若()0,2A ,()1,0B -,(),2-C m 三点共线,则实数m 的值是( ) A .6 B .2- C .6- D .2【答案】B【解析】因为三点()0,2A ,()1,0B -,(),2C m -共线,所以(1,2),(1,2)AB BC m =--=+- ,若()0,2A ,()1,0B -,(),2C m -三点共线,则AB 和BC 共线 可得:(1)(2)(2)(1)m --=-+,解得2m =-;故选:B【练3】(2020·新绛县第二中学高一月考)已知()13A ,,()41B -,,则与向量AB共线的单位向量为( )A .4355⎛⎫ ⎪⎝⎭,或4355⎛⎫- ⎪⎝⎭,B .3455⎛⎫- ⎪⎝⎭,或3455⎛⎫- ⎪⎝⎭, C .4355⎛⎫-- ⎪⎝⎭,或4355⎛⎫⎪⎝⎭, D .3455⎛⎫-- ⎪⎝⎭,或3455⎛⎫⎪⎝⎭, 【答案】B【解析】因为()13A ,,()41B -,,所以向量()3,4AB =-, 所以与向量AB 共线的单位向量为3455⎛⎫- ⎪⎝⎭,或3455⎛⎫- ⎪⎝⎭,.故选:B 考点四 向量与三角函数的综合运用【例4】(2021·湖南)已知向量(cos 2sin ,2)a θθ=-,(sin ,1)b θ=,若a //b ,则tan 2θ的值为( )A .14B .34C .815D .415【答案】C【解析】因为a //b ,故可得22cos sin sin θθθ-=,故可得14tan θ=,又22284211tan 15116tan tan θθθ===--.故选:C【练4】(2020·平凉市庄浪县第一中学高一期中)若(3,cos ),(3,sin ),a b αα==且a //b ,则锐角α=__________ . 【答案】3π【解析】∵a //b ,∴3sin 3cos 0αα-=,又α为锐角,cos 0α≠,∴tan 3α=,3πα=.故答案为:3π.考点五 奔驰定理解三角形面积【例5】(2020·河南安阳市·林州一中高一月考)已知O 为ABC ∆内一点,且有23OA OC BC +=,则OBC ∆和ABC ∆的面积之比为( ) A .16B .13C .12D .23【答案】C【解析】设D 是AC 的中点,则2OA OC OD +=, 又因为23OA OC BC +=,所以223OD BC =,3BC OD =,//OD BC , 所以12OBC DBC ABC ABC S S DC S S AC ∆∆∆∆===故选:C 【练5】(2020·江西)在ABC 中,D 为BC 的中点,P 为AD 上的一点且满足3BA BC BP +=,则ABP △与ABC 面积之比为( )A .14B .13C .23 D .16【答案】B【解析】设AC 的中点为点E ,则有2BA BC BE +=,又3BA BC BP +=,所以23BP BE =,则点P 在线段BE 上,因为D 为BC 的中点,所以得点P 为ABC 的重心,故ABP △与ABC 面积之比为13.故选:B考点六 数量积的坐标运算【例6】(2020·银川市·宁夏大学附属中学高一期末)向量()()2112a b =-=-,,,,则()2a b a +⋅=( ) A .1 B .1- C .6- D .6【答案】D【解析】因为()()2112a b =-=-,,,所以()()23,0(2,1)3206a b a +⋅=⋅-=⨯+=故选:D【练6】(2021·深圳市龙岗区)已知向量()1,3a =-,()5,4b =-,则⋅=a b ( ) A .15 B .16 C .17 D .18【答案】C【解析】因为向量()1,3a =-,()5,4b =-,所以()()153417a b ⋅=-⨯-+⨯=,故选:C考点七 巧建坐标解数量积【例7】(2020·山东济南市·)在ABC 中,2BAC π∠=,2AB AC ==,P 为ABC所在平面上任意一点,则()PA PB PC ⋅+的最小值为( )A .1B .12-C .-1D .-2【答案】C【解析】如图,以,AB AC 为,x y 建立平面直角坐标系,则(0,0),(2,0),(0,2)A B C ,设(,)P x y ,(,)PA x y =--,(2,)PB x y =--,(,2)PC x y =--,(22,22)PB PC x y +=--,∴()22(22)(22)2222PA PB PC x x y y x x y y⋅+=----=-+-22112()2()122x y =-+--,∴当11,22x y ==时,()PA PB PC ⋅+取得最小值1-.故选:C .【练7】(2020·安徽省亳州市第十八中学高一期中)如图,在矩形ABCD 中,4AB =,3AD =,点P 为CD 的中点,点Q 在BC 上,且2BQ =.(1)求AP AQ ⋅;(2)若AC AP AQ λμ=+(λ,μ∈R ),求λμ的值. 【答案】(1)14;(2)23λμ=. 【解析】如图,分别以边AB ,AD 所在的直线为x 轴,y 轴, 点A 为坐标原点,建立平面直角坐标系,则()0,0A ,()2,3P ,()4,0B ,()4,3C ,()4,2Q .(1)∵()2,3AP =,()4,2AQ =,∴243214AP AQ ⋅=⨯+⨯=. (2)∵()4,3AC =,()2,3AP =,()4,2AQ =,由AC AP AQ λμ=+,得()()4,324,32λμλμ=++,∴244,323,λμλμ+=⎧⎨+=⎩解得1,23,4λμ⎧=⎪⎪⎨⎪=⎪⎩∴23λμ=. 考点八 数量积与三角函数综合运用【例8】向量(sin ,2),(1,cos )a b θθ=-=,且a b ⊥,则2sin 2cos θθ+的值为( ) A .1 B .2 C .12D .3【答案】A【解析】由题意可得 sin 2cos 0a b θθ⋅=-=,即 tan 2θ=.∴222222sin cos cos 2tan 1sin 2cos 1cos sin 1tan θθθθθθθθθ+++===++,故选A . 【练8】(2020·河南安阳市·林州一中高一月考)已知向量(4sin ,1cos ),(1,2)a b αα=-=-,若2a b ⋅=-,则22sin cos 2sin cos αααα=-( )A .1B .1-C .27-D .12-【答案】A【解析】由2a b ⋅=-,得4sin 2(1cos )2αα--=-,整理得1tan 2α=-,所以2221sin cos tan 2112sin cos 2tan 112αααααα-===---,故选:A . 考点九 数量积与几何的综合运用【例9】(2020·陕西渭南市·高一期末)已知向量()3,4OA =-,()6,3OB =-,()5,3OC m m =---.(1)若点A ,B ,C 能够成三角形,求实数m 应满足的条件; (2)若ABC 为直角三角形,且A ∠为直角,求实数m 的值. 【答案】(1)12m ≠;(2)74m =. 【解析】(1)已知向量()3,4OA =-,()6,3OB =-,()5,3OC m m =---, 若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与BC 不共线.()3,1AB =,()2,1AC m m =--,故知()312m m -≠-,∴实数12m ≠时,满足条件.(2)若ABC 为直角三角形,且A ∠为直角,则AB AC ⊥,∴()()3210m m -+-=,解得74m =. 【练9】(2020·辽宁)已知向量.(1)若ΔABC 为直角三角形,且∠B 为直角,求实数λ的值.(2)若点A、B、C能构成三角形,求实数λ应满足的条件.【答案】(1)λ=2;(2)λ≠−2.【解析】∵即:−7(6−λ)+7(3λ−2)=0,∴λ=2(2)∵若点A、B、C能构成三角形,则A、B、C不共线∴−7(3λ−2)≠7(6−λ)∴实数λ应满足的条件是λ≠−2课后练习1. (2021·内江模拟)已知空间三点 O(0,0,0) , A(−1,1,0) , B(0,1,1) ,在直线 OA 上有一点 H 满足 BH ⊥OA ,则点 H 的坐标为. A.(12,−12,0) B.(−12,12,0) C.(−2,2,0) D.(2,−2,0) 【答案】 B【考点】平面向量数量积的运算【解析】由O (0,0,0),A (﹣1,1,0),B (0,1,1), ∴ OA ⃗⃗⃗⃗⃗ = (﹣1,1,0),且点H 在直线OA 上,可设H (﹣λ,λ,0), 则 BH ⃗⃗⃗⃗⃗⃗ = (﹣λ,λ﹣1,﹣1), 又BH ⊥OA , ∴ BH⃗⃗⃗⃗⃗⃗ • OA ⃗⃗⃗⃗⃗ = 0, 即(﹣λ,λ﹣1,﹣1)•(﹣1,1,0)=0, 即λ+λ﹣1=0, 解得λ =12 ,∴点H ( −12 , 12 ,0). 故答案为:B .【分析】根据已知中空间三点O(0,0,0),A(−1,1,0),B(0,1,1),根据点H 在直线OA上,我们可以设出H点的坐标(含参数λ) ,进而由BH⊥OA,根据向量垂直数量积为0,构造关于λ的方程,解方程即可得到答案.2.(2021高二上·辽宁月考)若a=(2,2,0),b⃗=(1,3,z),<a ,b⃗>=π3,则z等于()A. √22B. −√22C. ±√22D. ±√42【答案】C【考点】数量积表示两个向量的夹角【解析】由空间向量夹角的余弦公式得cos<a ,b⃗>=a⃗ ⋅b⃗|a⃗ |⋅|b⃗|=2×1+2×3+0×z2√2×√12+32+z2=2√2√10+z2=12,解得z=±√22。
平面向量的所有公式归纳总结

平面向量的所有公式归纳总结平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。
平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
1、向量的加法满足平行四边形法则和三角形法则.ab+bc=ac.a+b=(x+x',y+y').a+0=0+a=a.2、向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).如果a、b就是互为恰好相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0ab-ac=cb.即“共同起点,指向被减”a=(x,y)b=(x',y')则a-b=(x-x',y-y').1、定义:已知两个非零向量a,b.作oa=a,ob=b,则角aob称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量内积(内积、点内积)就是一个数量,记作ab.若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣.2、向量的数量积的坐标表示:ab=xx'+yy'.3、向量的数量内积的运算律ab=ba(交换律);(λa)b=λ(ab)(关于数乘法的结合律);(a+b)c=ac+bc(分配律);4、向量的数量内积的性质aa=|a|的平方.a⊥b〈=〉ab=0.|ab|≤|a||b|.5、向量的数量内积与实数运算的主要不同点(1)向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2.(2)向量的数量积不满足用户解出律,即为:由ab=ac(a≠0),推不出b=c.(3)|ab|≠|a||b|(4)由|a|=|b|,推不出a=b或a=-b.1、实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣.当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任一.当a=0时,对于任意实数λ,都有λa=0.备注:按定义言,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,则表示向量a的存有向线段在原方向(λ>0)或反方向(λ<0)上弯曲为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.2、数与向量的乘法满足用户下面的运算律结合律:(λa)b=λ(ab)=(aλb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘坐向量的解出律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ.1、定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b 和a×b按这个次序构成右手系.若a、b共线,则a×b=0.2、向量的向量内积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a‖b〈=〉a×b=0.3、向量的向量内积运算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.备注:向量没乘法,“向量ab/向量cd”就是没意义的.1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;①当且仅当a、b逆向时,左边挑等号;②当且仅当a、b同向时,右边取等号.2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.①当且仅当a、b同向时,左边取等号;②当且仅当a、b逆向时,右边挑等号.定比分点公式(向量p1p=λ向量pp2)设p1、p2就是直线上的两点,p就是l上不同于p1、p2的任一一点.则存有一个实数λ,并使向量p1p=λ向量pp2,λ叫作点p棕斑向线段p1p2阿芒塔的比.若p1(x1,y1),p2(x2,y2),p(x,y),则有op=(op1+λop2)(1+λ);(的定比分点向量公式)x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ).(的定比分点座标公式)我们把上面的式子叫做有向线段p1p2的定比分点公式1、三点共线定理若oc=λoa+μob,且λ+μ=1,则a、b、c三点共线2、三角形战略重点推论式在△abc中,若ga+gb+gc=o,则g为△abc的重心3、向量共线的关键条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb. a//b的关键条件就是xy'-x'y=0.4、零向量0平行于任何向量.5、向量横向的充要条件a⊥b的充要条件是ab=0.a⊥b的充要条件就是xx'+yy'=0.6、零向量0垂直于任何向量.。
定比、定比分点公式

(3)定比、定比分点公式一、教学内容分析本节是的第三节课,是学习向量坐标表示及运算、向量的模与平行之后的又一个新的知识点.它既是对前两节内容复习与巩固,又是对向量知识的进一步深化与拓展,如式子 12PP PP λ=中的λ由实数推广到定比.同时,经历定比分点公式的推导过程,让学生领悟定比分点的多元化表示方法.本节的教学重点是定比分点公式的形成、深化、拓展与应用.难点是定比λ的理解、确定及定比分点公式中分点、始点、终点坐标位置的识别.根据本节特点,教师采取启发、提问为主的教学方法;学生则进行自主学习.即课前进行主动预习,课中进行讨论与交流,课后进行探索研究. 二、教学目标设计1理解定比的概念,掌握定比分点公式;2通过定比分点公式的推导过程,巩固向量的运算方法; 感悟定比分点的几种表达方式;3通过本节的学习,提升发现能力、推理能力,渗透数形结合思想. 三、教学重点及难点定比的概念,定比分点公式的推导和应用. 四、教学流程设计五、教学过程设计一、 情景引入观察思考,引入新课问题1:设)1,2(A ,)1,2(--B ,)2,4(C 三点共线,可知BA ∥AC ,即存在实数λ,使BA = λAC ??,那么实数λ= . 而若?BC CA λ=,则λ= .[说明](1)本问题由共线三点坐标求实数λ,它既是对前一节向量平行的复习与巩固,同时又为定比λ的产生作好铺垫(2)通过本题可以看出使两向量平行的实数λ的取值可正可负. 问题2:设1P (1,1),2P (4,4), λ=1.当12PP PP λ=时,你能求出点P的坐标吗(引出课题)[说明]问题2是由共线三点中的两点坐标和定比λ的值求第三点坐标,本题给出的点具有一定的特殊性,这样便于学生利用数形结合思想猜出结果,尝试成功的快乐. 二、学习新课 1.定比分点公式一般地,设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一点,且满足 12PP PP λ=,求点P 的坐标.解:由12PP PP λ= ,可知{)()(2121x x x x y y y y -=--=-λλ,因为λ≠-1, 所以⎩⎨⎧++=++=λλλλ112121x x x y y y ,这就是点P 的坐标.师生通过上面的结论共同解决(一)中的问题2.[说明]此例题的结论可作为公式掌握,此公式叫线段21P P 的定比分点公式. 2.小组交流(1)定比分点公式中反映了那几个量之间的关系当λ=1时,点P的坐标是什么 (2)满足式子12PP PP λ=的点P 称为向量 12PP 的分点.思考:上式中正确反映 P 1,P ,2P 三点位置关系的是( ) A 、 始→分,分→终.B 、始→分,终→分.C 、终→分,分→始 (3)关于定比λ和分点P 叙述正确的序号是1)点P 在线段21P P 中点时,λ=1;2)点P 在线段21P P 上时,λ≥0 3)点P 在线段21P P 外时,λ﹤0; 4)定比λR ∈[说明]由定比分点公式可知λ=1 时有⎪⎩⎪⎨⎧+=+=222121x x x y y y ,此公式叫做线段21P P 的中点公式. 此公式应用很广泛.3.例题辨析例1、已知平面上A 、B 、C 三点的坐标分别为A (),11y x , ),(22y x B , ),(33y x C ,G 是△ABC 的重心,求点G 的坐标.解:由于点G 是△ABC 的重心,因此CG 与AB 的交点D 是AB 的中点,于是点D 的坐标是(2,22121y y x x ++). 设点G 的坐标为),(y x ,且2CG GD =则由定比分点公式得 ⎪⎩⎪⎨⎧+++=+++=21222122213213x x x x y y y y ,整理得 ⎪⎩⎪⎨⎧++=++=3332121x x x x y y y y 这就是△ABC 的重心G 的坐标.[说明]本题难度不大,但综合性却比较强.不仅涉及到定比的概念,而且用到了中点公式、定比分点公式.(2)此结论可作为三角形重心的坐标公式.例2、)15,12(),0,3(),5,2(21P P P - 且有12PP PP λ=求实数λ的值.解1: 由已知可求 1(10,10)PP =,2(15,15)PP λλ=-- 故10=λ .(-15), 所以定比λ=-32.解2: 因为12PP PP λ=,所以P 1,P ,2P 三点共线,由定比分点公式得12=λλ+-⨯+1)3(2 解出实数λ=-32.解3:由图形可知点P 在线段21P P 外,故λ﹤0 ,又21PP PP = 32,所以λ=-32 .[说明] 本题已知三点坐标求定比λ的值,学生往往偏爱第一种解法;解法二是定比分点公式的一个应用,其前提是三点共线,代公式时要注意始点、终点、分点坐标的位置;解法三是求定比λ的有效方法,简洁方便,鼓励学生大胆去尝试.三、演练反馈,巩固知识1设12PP PP λ= ,21P P PPλ'= ,则下列正确的是( ) (A )λλ'= (B )λλ'=- (C ) 1λλ=' (D )1λλ=-'2、△ABC 中,A (2,3),B (-3,4),重心G (-)34,32,求C 点的坐标.3、已知:A (3,-1),B (-4,-2),点P 在直线AB 上,且2AP =3BP ,求P 点坐标.四、知识梳理,提升思维1知识与技能小结:(1)主要的知识点有定比λ的概念,中点公式、定比分点公式,及定比分点公式的多元化表示.(2)主要的应用有定比λ的意义与范围,三点共线问题,三角形重心公式及综合应用.2 学生的体会和感悟:对本节学习过程的认识、理解和体会;提出新的疑点和问题.五、作业布置,课后探究 1、填空题(1)已知三点A 、B 、C 满足AB =2BC ,设1AC CB λ=2BA AC λ=则=•21λλ(2)△ABC 中,A (1,2),B (-2,3),C (4,-1),D 为BC 中点,且 3= ,则G 点坐标是 2、选择题(1)若 2143PP P -=,则下列各式中不正确的是( ) (A ) 12P P =P P 131 (B )P P 1234= (C ) 2113P P P -= (D )1224P PP =(2) 设点P 是12PP 反向延长线上任意一点且12PP PP λ=,则实数λ的范围是( )(A )(-∞,0) (B )(—∞,-1) (C )(-1,0) (D )[-1,0)3、解答题(1)△ABC 中,已知A (3,1),AB 的中点D (2,4),△ABC 的重心G (3,4),求B 、C 两点的坐标.(2)已知设1P (3,2),2P (-8,3) , P (12,y ),若12PP PP λ=,求λ与y 的值.。
高一数学第五章(第8课时)线段的定比分点

课 题:线段的定比分点教学目的: 1掌握线段的定比分点坐标公式及线段的中点坐标公式; 2熟练运用线段的定比分点坐标公式及中点坐标公式; 3理解点P 分有向线段21P P 所成比λ的含义; 4明确点P 的位置及λ范围的关系教学重点:线段的定比分点和中点坐标公式的应用教学难点:用线段的定比分点坐标公式解题时区分λ>0还是λ<0授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1向量的加法:求两个向量和的运算,叫做向量的加法向量加法的三角形法则和平行四边形法则2.向量加法的交换律:a +b =b +a3.向量加法的结合律:(a +b ) +c =a + (b +c )4.向量的减法向量a 加上的b 相反向量,叫做a 与b的差即:a - b = a + (-b )5.差向量的意义: OA = a , OB = b , 则BA = a - b即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量6.实数与向量的积:实数λ与向量a ρ的积是一个向量,记作:λa ρ(1)|λa ρ|=|λ||a ρ|;(2)λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ=0 7.运算定律 λ(μa ρ)=(λμ)a ρ,(λ+μ)a ρ=λa ρ+μa ρ,λ(a ρ+b ρ)=λa ρ+λb ρ8. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ9.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e (1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一 λ1,λ2是被a ρ,1e ,2e 唯一确定的数量 10.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=11.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=12.a ρ∥b ρ (b ρ≠0)的充要条件是x 1y 2-x 2y 1=0二、讲解新课:1.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)2定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比 设P 1=λ2PP点P 1, P, P 2坐标为(x 1,y 1) (x,y) (x 2,y 2),由向量的坐标运算 P 1=(x-x 1,y-y 1) ,2PP=( x 2-x, y 2-y) ∵P 1=λ2PP∴ (x-x 1,y-y 1) =λ( x 2-x, y 2-y) ∴⎩⎨⎧-=--=-)()(2121y y y y x x x x λλ ⎪⎩⎪⎨⎧++=++=⇒λλλλ112121y y y x x x 定比分点坐标公式(1-≠λ) 点P 分12P 所成的比与点P 分21P P 所成的比是两个不同的比,要注意方向 3P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点特别地,当λ=1时,有P 1=2PP,即点P 是线段P1P2之中点,其坐标为(2,22121y y x x ++) ②当λ<0(1-≠λ)时,P 1与2PP 反向共线,这时称点P 为21P P 的外分点 探究:若P1、P2是直线l 上的两点,点P 是l 上不同于P1、P2的任意一点,则存在一个实数λ,使P P 1=λ2PP ,λ叫做P 分有向线段21P P 所成的比而且,当点P 在线段P1P2上时,λ>0;当点P 在线段P1P2或P2P1的延长线上时,λ<0对于上述内容,逆过来是否还成立呢?(1)若λ>0,则点P 为线段P1P2的内分点;(2)若λ<0,则点P 为线段P1P2的外分点一般来说,(1)是正确的,而(2)却不一定正确这是因为,当λ=-1时,定比分点的坐标公式x=λλ++121x x 和y=λλ++121y y 显然都无意义,也就是说,当λ=-1时,定比分点不存在由此可见,当点P 为线段P1P2的外分点时,应有λ<0且λ≠-1 4线段定比分点坐标公式的向量形式: 在平面内任取一点O ,设1OP =a,2OP =b, 由于P P 1=OP -1OP =OP -a,2PP =2OP -OP =b-OP 且有21P P =λ2PP,所以OP -a =λ(b -OP )即可得 OP =b a b a λλλλλ+++=++1111 这一结论在几何问题的证明过程中应注意应用三、讲解范例:例1已知A (1,3),B (-2,0),C(2,1)为三角形的三个顶点,L 、M 、N 分别是BC 、CA 、AB 上的点,满足BL ∶BC =CM ∶CA =NA ∶AB=1∶3,求L 、M 、N 三点的坐标分析:所给线段长度的比,实为相应向量模的比,故可转换所给比值为点L 、M 、N 分向量BC 、CA 、AB 所成的比,由定比分点坐标公式求三个点的坐标另外,要求L 、M 、N 的坐标,即求OL 、OM 、ON 的坐标(这里O 为坐标原点),为此,我们可借用定比分点的向量形式下面给出第二种解法解:∵A(1,3),B(-2,0),C(2,1),∴OA =(1,3),OB =(-2,0),OC =(2,1)又∵BL∶BC=CM∶CA=AN∶AB=1∶3∴可得:L 分CB ,M 分AC ,N 分BA 所成的比均为λ=2∴OL =λ+11OC +λ+11OB =31(2,1)+32(-2,0)=(-32,31) OM =λ+11OA +λλ+1OC =31 (1,3)+ 32(2,1)=(35,35) ON =λ+11OB +λλ+1OA =31(-2,0)+32(1,3)=(0,2) ∴L(-32,31)、M(35,35)、N(0,2)为所求 上述两种解题思路,各有特色,各有侧重,望同学们比较选择,灵活应用例2已知三点A (0,8),B (-4,0),C(5,-3),D点内分AB 的比为1∶3,E 点在BC 边上,且使△BDE 的面积是△ABC 面积的一半,求DE 中点的坐标 分析:要求DE 中点的坐标,只要求得点D 、E 的坐标即可,又由于点E 在BC 上,△BDE 与△ABC 有公共顶点B ,所以它们的面积表达式选定一公用角可建立比例关系求解解:由已知有AD =31DB ,则得AB DB=34又21=∆∆ABC BDES S ,而S△BDE=21|DB |·|BE |·sin ∠DBE ,S△ABC=21|AB |·|BC |sin ∠ABC ,且∠DBE =∠ABC∴21=⋅⋅BC AB BEDB ,即得:32=BCBE又点E 在边BC 上,所以2=BCBE,∴点E 分BC 成比λ=2由定比分点坐标公式有⎪⎪⎩⎪⎪⎨⎧-=+-⨯+==+⨯+-=221)3(20221524E E y x ,即E(2,-2),又由⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+=-=+-⨯+=631181311)4(310D D y x ,有D (-1,6)记线段DE 的中点为M (x ,y ),则⎪⎪⎩⎪⎪⎨⎧=+-==-+=2262212)1(2y x ,即M (21,2)为所求 四、课堂练习: 1.已知点A (-2,-3),点B(4,1),延长AB 到P ,使|AP |=3|PB |,求点P 的坐标解:因为点P 在AB 上的延长线上,P 为AB 的外分点,所以,AP =λPB ,λ<0,又根据|AP |=3|PB |,可知λ=-3,由分点坐标公式易得P 点的坐标为(7,3).2.已知两点P 1(3,2),P2(-8,3),求点P (21,y)分21P P 所成的比λ及y的值解:由线段的定比分点坐标公式得⎪⎪⎩⎪⎪⎨⎧+⨯+=+-+=λλλλ1321)8(321y ,解得⎪⎪⎩⎪⎪⎨⎧==2249175y λ 五、小结六、课后作业:1已知点A 分有向线段BC 的比为2,则在下列结论中错误的是( )A 点C 分AB 的比是-31B 点C 分BA 的比是-3 C 点C 分AC 的比是-32D 点A 分CB 的比是22已知两点P 1(-1,-6)、P2(3,0),点P (-37,y)分有向线段21P P 所成的比为λ,则λ、y的值为( )A -41,8B 41,-8C -41,-8D 4,81 3ABC 的两个顶点A (3,7)和B (-2,5),若AC 的中点在x 轴上,BC 的中点在y 轴上,则顶点C 的坐标是( ) A (2,-7) B (-7,2) C (-3,-5) D (-5,-3)4已知点A (x ,2),B (5,1),C (-4,2x )在同一条直线上,那么x =5△ABC 的顶点A (2,3),B (-4,-2)和重心G (2,-1),则C 点坐标为 6已知M 为△ABC 边AB 上的一点,且S△AMC=81S△ABC,则M 分AB 所成的比为7已知点A (-1,-4)、B (5,2),线段AB 上的三等分点依次为P 1、P2,求P1、P2点的坐标以及A 、B 分21P P 所成的比λ.8过P 1(1,3)、P2(7,2)的直线与一次函数5852+=x y 的图象交于点P ,求P 分21P P 所成的比值9已知平行四边形ABCD 一个顶点坐标为A (-2,1),一组对边AB 、CD 的中点分别为M (3,0)、N (-1,-2),求平行四边形的各个顶点坐标参考答案:1D 2C 3A 42或27 5(8,-4) 6 71 7P 1(1,-2),P 2(3,0),A 、B 分21p p 所成的比λ1、λ2分别为-21,-2 8 125 9B(8,-1),C(4,-3),D(-6,-1) 七、板书设计(略)八、课后记:。
高二数学课本知识点总结归纳(8篇)

高二数学课本知识点总结归纳(8篇)高二数学课本知识点总结归纳(8篇)你知道哪些高二数学知识点是真正对我们有帮助的吗在平凡的学习生活中,大家都背过各种知识点吧知识点就是一些常考的内容,或者考试经常出题的地方。
下面是小编给大家整理的高二数学课本知识点总结归纳,仅供参考希望能帮助到大家。
高二数学课本知识点总结归纳篇1高二数学知识点11、导数的定义:在点处的导数记作、2、导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。
V=s/(t)表示即时速度。
a=v/(t)表示加速度。
3、常见函数的导数公式:4、导数的四则运算法则:5、导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
高二数学知识点2等差数列:对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。
那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:将以上n—1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n—1个d,如此便得到上述通项公式。
此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。
值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。
等比数列:对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. 3平面向量的坐标表示及线段的定比分点公式要点透视:1•要清楚向量的坐标与表示该向量的有向线段的起点、终点的具体位置无关,只与其相对位置有关.2•遇到共线向量与平行有关问题,一般应考虑运用向量平行的充要条件.3•线段的定比分点公式,要注意求定比分点A的值,以便顺利求出分点坐标.活题解析:例1. (2002年天津卷)平面直角坐标系中, O是坐标原点,已知两点A(3,1),B( — 1, 3),若点 C 满足 OC =aOA+POB,其中 a 氏 R 且 a+3=1,则点 C的轨迹方程是()2 2A. 3x+ 2y— 11 = 0B. (x— 1) + (y—2)=25C. 2x— y= 0 T D士+ 2 y— 5=0^要点精析:I 设OC =(x, y),OA = (3, 1),OB =(— 1,3),T T T Ta OA=(3 a a, 3OB =( — 3, 3 3,又 aOA+ 3OB =(3 a— 3, a+3 3,I X =3*^ — P二(x, y)= (3a— 3 a+ 33,;$ n ,[y =a +3卩又a+ 3= 1,因此得x+ 2y= 5,所以选D .思维延伸:本题主要考查向量法和坐标法的相互关系及转换方法.I I例2. (2003年江苏卷)已知常数a>0,向量c=(0, a),i = (1, 0),经过原点 O以c+Xi为方向向量的直线与经过定点 A(0, a)以i — 2Xc为方向向量的直线相交于点P,其中疋R,试问是否存在两个定点E, F,使得|PE| + |PF|为定值?若存在,求出E, F的坐标;若不存在,说明理由.要点精析:本题考查平面向量的概念和计算、求轨迹的方法、椭圆的方程和性质、利用方程判定曲线的性质、曲线与方程的关系等解析几何的基本思想和综合解题能力.解:根据题没条件,首先求出点P满足的方程,据此再判断是否存在两定点,使得P到两定点的距离之和为定值.因为1=(° 0), c = (0, a),所以 c + xi =( X, a), i — 2 入c = (1, — 2 Xa).因此直线OP和AP的方程分别为?y=ax和y— a= — 2 Xx,消去参数入得点P(X, y)的坐标满足y(y — a)= — 2a 2x 2, x 2 (y-1)2 整理得二+— =18 (2)'因为a>0,所以得(1)当&=亚时,方程①表示圆,故不存在合乎题意的定点2[2(2)当 Ovav* 2 为合乎题意的两个定点; (3)当a^—时,方程①表示椭圆,焦点 E(0, 2 1 —))为合乎题意的两个定点。
2 时,方程①表示椭圆,焦点叫卜込,F (— 2卜2鳥)2^2 2 (a 十 T)和 F(0,—如图所示,平行四边形 ABCD 顶点A 的 坐标为(一2, 1), 一组对边AB, CD 的中点分别是 M(3, 0), N(— 1,— 2),求其余顶点坐标.例3. cA#X 要点精析:抓住平行四边形是中心对称图形,用中点坐标即可求解.解法1:设其余三个顶点B ,C ,D 的坐标分别为(XI, yi),(X2, y2), 因为M 是AB 的中点, (X3, y3), —2+xi=3 『-8 < 2 ,解得 4 X ^ ,所以 B(8,— 1).ig r -o y —1L 2MN 的中点为 P(1,— 1),且P 是AC 中点,可得 C(4,— 3).J1 再由N 为CD 中点,可得D( — 6,— 1).所求顶点坐标为 B(8,— 1), C(4,— 3),D( — 6,— 1).解法 2 :设 B 点坐标(X, y),则 AM = MB ,即(5, — 1) = (x —3, y), X = 8解得《 ,所以B(8, — 1). l y = -1X-3=5I y = T 同理,由 AM=DN=NC,求得 C(4, — 3), D( — 6, —1).思维延伸:本题的两种解法体现了线段的定比分点坐标公式与向量坐标运算 的统一性.同时,还体现了向量坐标运算的优越性.E 和F;练习题 一、选择题 1.已知平行四边形三个顶点的坐标为(一1, 0), (3, 0), (1,- 5),则第四点的 坐标为() A. (1, 5)或(5,- 5) C. (5, — 5)或(-3, — 5) 2 .在梯形 ABCD 中,AB//CD , B. (1, 5)或(—3,— 5) D . (1 , 5)或(—3, — 5)或(5,— 5) 且|AB |=?|DC 1(;^ 0).若 AB=i, 7D=b,则AC 等于() I I A.入a+ b I I B. a + 入b C.I 3.已知 a = (— 2, A. (-4, 10) I I5), |b|= 2|a|.若 b 与a 反向,I 则b 等于()B. (4,— 10)C. (— 1, -) D . (1 .—-)2 24•设点P( 2, 3)分有向线段RP 2所成之比为丄,点P1的坐标为(1, 2),贝U P2的坐标是() A. (2, 3)B. (5, 4)C. (4, 5)D. (5, 6) 5•已知△ ABC 的三个顶点 A(0, 分割成面积相等的两部分,则实数 A. 73 B. 1 +晅 2 3), B(3, 3), a 的值为( C.1鱼 3 C(2, 0).若直线 x=a 将^ ABC ) 6.在△ ABC 中,A( 0, 7), B(-4, 5),重心 G(0,7221 -),则^ABC 为() 37. 8. A.锐角三角形 B.等边三角形 C.钝角三角形 D .直角三角形 、填空题: 」 已知两个向量a=(3, 4), b=(2,— 1),若a+xb 与a — b 平行,则x= 11114 4 4 4■■I■已知A(— 3, 2), AB =( 8, 0),则线段AB 中点的坐标为 _______________ . I I ,11 II II I设a , b 是不共线的两个向量, 已知AB =2a+kb , BC = a + b , CD =a — 2b , 9. 若A, B, D 三点共线,则k 的值为 __________________ .10. 已知三点A(1, 1), B(2,— 4), C(x,— 9)共线,贝U x 的值是 三、解答题:I I I11.已知向量 a=(8, 2), b=(3, 3), c=(6,12), P=(6, 4).问:是否存在实数 x, y, z,同时满足下列两个条件:①P =xa+yb+zc,②x+y+ z= 1?如果存在, 请求出x, y, z 的值;如果不存在,请说明理由.12•如图所示,已知三点 A(X1, y1), B(x2, y2), C(X3, y3), D 点分AB 的比是-,E 在BC 上,且使△ BDE 的3面积是△ ABC 的一半,求向量DE 的坐标.鱼如图所示,已知四边形 ABCD 是正方形,BE//AC , AC=CE, EC 的延长线交BA 的延长线于 F 点,求证AF = AE 。
14. 运用向量的观点求cos 7 7715. 已知点 O( 0, 0), A( 1 , 2), B( 4, 5)及 OP = OA +1 AB ,试问:(1) t 为何值时,P 在x 轴上?在y 轴上?在第二象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的 t 的值;若不 能,请说明理由。
空+cos 竺+cos 竺的值。
台匕2.[5.31导解,第四点的塑标有三个.导解,命所以花=AD+DC =卜+・#Mtfr=-2fl=-2X(-2.5) = (4U0).说明,本《是两个向量共线充宴条件的应用•利用AB 、BD «个向*共线就可以列出关于*的方程•这种用待定 系数法列方程(组)通过消元法解方程组的方法需很好隼^W :AB=(I.-5),^=(j-l,-10), VAB 与花共线・:・—5(j —1) = —10■解得 x = 3- 11.解:因为■r<i+y* + 2C ・(8z + 3y+6N ・2jr+3y+12z)・p-(6.4)>所以 8j+3y+6z-6 且 2工+3,+12星-4・又才 += y.x=y»l 足条件.12.解個为D 点内分AB 的比为专.所以霭■$扇冲臥设E 分有向线段的比为5有麗"兽-宇嚴| ■隔■召|圈・IBCI 入1+^1 » —► 1 Q —► 1 —*Sg 专 IBDIlBEkin 皆号 X*|BA|命 IBCIsinA SAiwc* Y |BA| IBCIsin 件1 q > 1 » ] 1 ■ —► 所以yX^lEAl 命|BC|sinA*X*|BA||BCZn 弘所以所以2"2・4. 导-斗背且3-罕铮.得Pt(4,5).5. ^ttiyaXaXy-yX3X3Xy. Aa-A6.导解 *C 点的塑标为(4>-in,|AB|-yT6 + 4- ^20.7.IBCI = “64 + 256=・ IACI » 716+324= ^340, -1导]B*由两向•平行可知• 9.(1,2)导解;••线段AB 的中点的塑标为<1.2). -1导解:由巳知•必存在实数入•使而前《 就+U5-(<l+b 》+«<I-2b)-2a-儿•••2<I+*b-入(2a- fr)=^2Ao-Ah.于是2-2儿解得{一严3-10. 3 y t «— I •解得 J — 2 •,一 36 •所以存在X — 2・y所以E 点的坐标为(空苧1,遥纽D 是AB 的内分点•且入一y ・所以丿D (帘,啥” 灵—(=2+2工,yi+2力)_( 3工1 +矶 3"+力1213.证明,以正方形ABCD 的边CD 所在直线为;r tt •以点C 为原点建立ft 角坐标系.设正方形的边长为1・«点A.B 的坐标分别为:(-1>1)和 (0.1). 若点 E 的坐标为(j.y)>BiJ^-=(j,y-l),AC=(U-l). 因为辰〃花•所以x(-l) + l(>-l)-0.又因为I 应I- I 花I.所以F+b-2. 解得E 点的坐标为(1:专匣.上尹). 如果点F 的坐标为(m. 1).由U 乍-(气匡,号i)共线得’气匣加一气匣-0■得F 点的坐标为,所以 |AF| = |AE| = 1+松.即 AE H AF.14-解;将边长是1的正七边形ABCDEFO ft 人宜角坐标系• 以 O 为原点.OA 为 H tt ,m OA - (!• 0). AB - f cos 竽.sin 竽)♦ BC(Ey.srny). DE = (cos y.siny), EF - (cos 器sin字)JS=(COS 字,3in ^).VOA-H A S + BC+CD+DE+^ + F 5=0./.a 些向■的横坐标之N H a ! 2代. 4n , 6買 8貳, 和是0•即 1 + eos 〒-+ CO3 〒+co8 cos 〒 + gs 攀+ C8 字-0.由三角函ft 的诱导公式•可得in 6 穴 IO T 4X I2n 2K cos —«cos —•coft— •cos npNCOS —・J •上 rt 为 l + 2(cn^ 亨+co* 夢+ eo» 竽 g 升T+心升士*12(m ・1〉・CE因为布=(一1-7^0〉,旋=(进匣•二(】• 0) =0M,(nAB = (3.3>,OP=OA*/AB = <l + 3“2 + 3"•若P 5.2Sxtth»J2-t 3(-0.W»/--y.若F 左y « 上.則1+肪・0・解得若P在第二ft限•则解3 \2 + 3r>0 得-yV<-*(2)7UA-<b2),^-PO*c3-<3-3/,3-3/),若四边形OARP为平抒WaiJ^.WCA-P&W 无thU-3/=2 边形OABP不可能为平行W边形.。