用变分法求解最优控制问题共104页
合集下载
变分法与最优控制

2.1 变分法概述
1、泛函定义
定义: 如果变量y对于某一函数类中的每一个函数 x(t),都有一个确定的值与之对应,那么就 称变量y为依赖于函数x(t)的泛函,记为: y=J [x(t)]。
说明:由于函数的值是由自变量的选取而确定的,而泛函 的值是由自变量的函数的选取而确定的,所以将泛函理解 为“函数的函数”。
点向较低的B点滑动,如果不考
虑各种阻力的影响,问应取怎样 的路径,才能使所经历的时间最 短?
结论:最速降线是一条圆滚线。
B(xf,yf)
y
在A、B两点所在的竖
直平面内选择一坐标系,
如上图所示。A点为坐 标原点,水平线为x轴, 铅垂线为y轴。
向量欧拉方程
对于向量空间的泛函,也存在着欧拉方程,不 过是欧拉方程组(即向量欧拉方程)。
若给定曲线x(t)的始端x(t0)= x0和终端x(tf)= xf,
J[x(t) ] tf L[x(t)x ,(t)t,]dt t0
达到极值的必要条件是,曲线x(t)满足欧拉方程
Lx ddtLx0 或
欧拉(Euler)方程
其中x(t)应有连续的二阶导数, L[x(t)x ,(t)t,] 则至少应是二次连续可微的。 (证明略)
2.2 无约束最优化问题
1、无约束固定端点泛函极值必要条件
问题 2-1 无约束固定终端泛函极值问题为:
其中, L[x(t),及x(tx)(,tt)]在[t0,tf]上连续可微, t0及tf固定, x(t0)= x0,x(tf)= xf, x(t)Rn
求满足上式的极值轨线x*(t)。
边界条件
定理2-5 则泛函
(证明略)
定理2-2 连续泛函J(x)的二次变分定义为
(证明略)
最优控制变分法

x(t ) x (t ) (t )
将式(1· 2—5)两边对 t 求导,可得
将式(1· 2—5)、(1· 2—6)代入式(1· 2—3),又得
x(t ) x (t ) (t )
(1· 2—6)
J [ x] L[ x (t ) (t ), x (t ) (t ), t ]dt (1· 2—7) 在式(1· 2—7)中,每选择一个 (t ) ,都可作一条 J [x] 曲 线。选择各式各样的容许的 (t ),可以作出一族 J [x] 曲线,
二、固定端点时间、无约束条件的变分问题 这一节,我们讨论一类最简单的变分问题,即无约束条件、 端点时间固定,只有一个自变量函数的拉格郎问题。通过这个问 题来引出欧拉方程和横截条件。 求解变分问题,就是要把使泛函达到极值的那个自变量函数 找出来,这就需要利用欧拉方程和横截条件。因此,欧拉方程和 横截条件是求解变分问题的基础。 在推导欧拉方程和横截条件时要使用一个定理,这个定理叫 作变分法的基本颈备定理。 本节首先介绍基本预备定理,接着推导欧拉方程,然后讨论 横截条件,最后讨论泛函取极值的充分条件。
2. 欧拉方程 现在,我们来推导欧拉方程和相应的横截条件。首先讨论固定 端点问题,然后讨论未定端点问题。 考虑最简单的泛函
(1· 2—3) L 的极值。其中x(t ) 是 t 二次可微函数; [ x(t ), x(t ), t ],是变量 x, x和 t 连函函数,并且有连续二阶偏导数,端点时间 t 0 和 t f 固定。 首先研究容许函数(或曲线)端点固定的情况,即规定 x(t 0 ) x0 和 x(t f ) x f 。图1—4示出了一族容许函数。现在的 的问题是要从这一族容许函数(或曲线)中找出使泛函J取极值的函数(或 曲线),即极值函数或极值曲线。
第6章 用变分法求解最优控制问题

x(t) = x*(t) +εη(t) = x*(t) +δ x(t)
§6-2 泛函与变分的基本概念
3.泛函的变分 ● 泛函的增量 由自变量函数 x(t) 的变分δ x(t)引起泛函 J[ x(t)]的增量
∆J = J[ x*(t) +δ x(t)] − J[x*(t)] 为泛函 J[ x(t)] 的增量。
§6-2 泛函与变分的基本概念
一. 泛函与泛函的变分 1. 泛函的定义 对于某一类函数集合{x(t)} 中的每一个函数 x(t),均有一个确定的数 J 与之对应,则称 J 为依赖于函数 x(t) 的泛函,记作
J = J[x(⋅)] = J[x(t)]
函数值。 例泛函:
J[x(t)] 中的 x(t)应理解为某一特定函数的整体,而不是对应于 t 的
α = ∫ 2[x(t) + δ x(t)]δ x(t)dt α=0
0
1
= ∫ 2x(t)δ x(t)dt
0
1
§6-2 泛函与变分的基本概念
二. 泛函的极值 1. 泛函极值的定义 如果泛函 J[x(t)] 在 x(t) = x (t) 的邻域内,其增量
*
∆J = J[x(t) − x*(t)] = J[x(t)] − J[x*(t)] ≥ 0
∂ J[x*(t) +αδ x(t)] α=0 = 0 ∂α ∂ J[x*(t) +αδ x(t)] α=0 = δ J[x*(t)] = 0 ∂α
§6-3 无约束条件的变分问题
引理:如果函数 F(t) 在区间 [t0, t f ] 上是连续的,而且对于只满足某些 一般条件的任意选定的函数
η(t) 有
第六章 用变分法求解最优控制问题
现代控制理论最优控制(1)

1)泛函自变量的变分
δ x x(t ) x (t )
*
2)泛函的变分 泛函的增量:由自变量函数x(t)的变分δx(t)的泛函J[x(t)]
增量为
Δ J [x] J [x(t) δ x(t)] J [x(t)] L[x(t ), δ x(t)] o[x(t), δ x(t)]
泛函的变分:泛函J[x(t)]的增量ΔJ[x(t)]的线性主部称为 泛函的一阶变分,简称泛函变分记为δJ,即
J J [ x(t ) x(t )] 0 L[ x(t ), x(t )]
类比于函数y=f(x),其增量为 Δy= f(x+Δx)-f(x)=f’(x)dx+o(Δx) y=f(x)的微分 dy=f’(x)dx
2. 确定容许控制域
对于r维控制向量u(t),要满足客观约束条件
i ( x, u ) 0 j 1, 2,, m mr 把u {u (t ) i ( x, u ) 0}称为控制域
满足u (t ) u的u (t )称为容许控制
3.确定始端与终端条件 若系统的初始时刻t0确定,则:
3) 泛函的极值
若泛函J[x(t)]在曲线x(t)= x*(t)上达到极值,则有
J J [ x(t ) x(t )] 0 0
若
ΔJ=J[x(t)]-J[x*(t)] ≥0
则称泛函J[x(t)]在曲线x*(t)上达到极小值;若
ΔJ=J[x(t)]-J[x*(t)] ≤0
3)综合型性能指标( 波尔扎型)
J x t , u t , t dt x(t f ), t f t 0 L 或J x(k f ), k f L[ x (k ), u ( k ), k ]
变分法求解最优控制

控制的最优化性能指标:
J (u(t )) (t f , x(t f )) F (t, x(t ), u(t ))dt
t0 tf
性能指标J(u(t))在数学上称为泛函,在控 制系统中称为损失函数。
变分法基本概念
1.泛函
设S 为一函数集合,若对于每一个函数 x(t)∈S有一个实数J 与之对应,则称J 是 定义在S 上的泛函,记作J (x(t))。S 称为 J 的容许函数集。
t0
tf
再令 J 1 0 ,由 便得:
dt f ,x(t f ),x,u, 的任意性,
(i) x * , * 必满足正则方程: 1.状态方程
x H f (t, x, u)
2.协态方程
H x
* *
(ii)哈密顿函数 H (t, x , u, ) 作为u的函数,也 必须满足
定义一个标量函数:
H (t, x, u, ) F (t, x, u) T (t ) f (t, x, u)
称为哈密顿函数。所以新的性 能指标为
J 1 ( x, u, ) (t f , x(t f )) [ H (t, x, u, ) T x]dt
t0 tf
t0 tf
d (dt fy) [t f fF xt ,yxdx , t ) t t f F'( ) y ) ( (, ) , u dy a (
T
b( y )
] [x(t f )] x (t f )
T
T tf
[(x) H x (u) H u ( ) H ( ) x]dt (t f )x t t f (x)T dt t0 f y ( x, y)dx f [b( y), y)]b' ( y) f [a( y), y)]at'0( y)
J (u(t )) (t f , x(t f )) F (t, x(t ), u(t ))dt
t0 tf
性能指标J(u(t))在数学上称为泛函,在控 制系统中称为损失函数。
变分法基本概念
1.泛函
设S 为一函数集合,若对于每一个函数 x(t)∈S有一个实数J 与之对应,则称J 是 定义在S 上的泛函,记作J (x(t))。S 称为 J 的容许函数集。
t0
tf
再令 J 1 0 ,由 便得:
dt f ,x(t f ),x,u, 的任意性,
(i) x * , * 必满足正则方程: 1.状态方程
x H f (t, x, u)
2.协态方程
H x
* *
(ii)哈密顿函数 H (t, x , u, ) 作为u的函数,也 必须满足
定义一个标量函数:
H (t, x, u, ) F (t, x, u) T (t ) f (t, x, u)
称为哈密顿函数。所以新的性 能指标为
J 1 ( x, u, ) (t f , x(t f )) [ H (t, x, u, ) T x]dt
t0 tf
t0 tf
d (dt fy) [t f fF xt ,yxdx , t ) t t f F'( ) y ) ( (, ) , u dy a (
T
b( y )
] [x(t f )] x (t f )
T
T tf
[(x) H x (u) H u ( ) H ( ) x]dt (t f )x t t f (x)T dt t0 f y ( x, y)dx f [b( y), y)]b' ( y) f [a( y), y)]at'0( y)
最优控制变分法

AB
x2 x1
1 y ' 2 dx
通过A,B两点的函数若为 y f (x) ,则不同的函数有不同的 弧长,即弧长是 y 的函数,记为 J ( y ) ,即
x2 1 y 2 dx J ( y ) AB x1
因此,求弧长的定积分是一种变换,它把x1与x2之间各点相应 的y变换为标量(弧长)。由此例可以看出定积分为泛函。 以下是各章经常要用到下列形式的目标函数
以下计算第二个积分,实际上是估计余项。 按泛函求极值的
ˆ 与 y 的一级距离应落入ε邻区内(由于本节的泛函 定义, y
只对 y 与 y’提出要求,故只用到一级距离),即令
ˆ y| d 0 max | y
x [ x 0 , x1 ]
ˆ ' y ' | d 1 max | y
x [ x 0 , x1 ]
第一章
变分法
1.1 泛函 1.2变分的推演 1.3Euler方程 1.4向量情形 1.5有约束的情形 1.6端点可变情形 1.7变分的另一种定义
1.1 泛函
(1)定义(泛函)
泛函是一映射L : J K , J Y , Y为一向量空间, K 一般为实数 域R或复数域C。 这说明泛函是一种变换,它把向量空间Y中某一子集J 映射为 K的某个子集。 例:曲线的弧长 在xy平面上过A(x1 ,y1),B(x2,y2)两点之间的曲线弧长公式为
| [ ( Fy Fy ) ' (F y ' Fy ' )]dx | | |dx
x0 x0
x1
x1
[| (Fy Fy ) | | ' ( F y ' Fy ' ) |]dx
用变分法求解最优控制问题

t
tt0 f F xx F xx o (x )2 ,(x )2 d t
上式中 o[(x)2,(x)2]是高阶项。
(泰勒级数展开)
根据定义,泛函的变分 J 是 J的线性
主部,即
J
tf t0
F xx F x x dt
对上式第二项作分部积分,按公式
可得
tf t0
5.1 变分法基础回顾
相关的定义:
1、泛函: 如果对某一类函数X(t)中的每一个函
数X (t),有一个实数值J与之相对应,则称J为依赖于
函数X (t) 的泛函,记为
JJX(t)
简单来说,泛函是以函数为自变量的函数。
2、泛函的连续性:若对任给的 0,存在 0
当 X(t)Xˆ(t) 时,就有
J(X)J(Xˆ)
为了判别是极大还是极小,要计算二阶变 分 2 J。但在实际问题中根据问题的性质容易
判别是极大还是极小,故一般不计算 2 J 。
5.2 无约束条件的泛函极值问题
5.2.1 泛函的自变量函数为标量函数的情况
为简单起见,先讨论自变量函数为标量函数 (一维)的情况。我们要寻求极值曲线 x(t)x*(t), 使下面的性能泛函取极值
于是有约束条件的泛函 J 的极值问题化为无约
束条件的增广泛函 J a 的极值问题。 再引入一个标量函数
H (X ,U ,,t) F (X ,U ,t) T f(X ,U ,t) (5-18)
它称为哈密顿(Hamilton)函数,在最优控制中 起着重要的作用
于是J a 可写成
J aX ( tf)tf, tt 0 f H (X ,U ,,t) T X dt
的线性主部。
6、泛函的极值:若存在 0 ,对满足的 X X* 一切X,J(X)J(X*)具有同一符号,则
变分法及其在最优控制中的应用

2.欧拉方程的全导数形式
基础知识:设函数 z f (x, y, z)
则: dz f dx f dy f dz dt x dt y dt z dt
在<10>式中, d 为全导数
dt x(t)
令
z
d dt
x
g(x, x,t)
dz dt
d dt
x
x
x
dx dt
x
x
dx dt
t
x
dt dt
当 : x(t) t 2 x(t) 0.2t 时
x(t)
(1,1) (1,0.2) (1,0.1)
t
J 10.2t 3dt 1
0
20
J
1
0.4t
3dt
1
0
10
< 定理1 > 如果泛函J[ y(x)] 是可微的,则泛函的变分为:
J[ y(x)] J[ y(x) y(x)]
0
证明从略,见P 46页 证明进一步,多元函数的变分为: 即:
t0
tf
注: = + t f t f t0 t0
tf t0 t0
t f t f tf
— = — — t0 t0
t0
t0 t0
tf
tf
t0
对 函数 L 在[x, x,t] 处进行泰勒展开,则:
J t f L(x, x,t)dt t0
tf t0
(
L x
h
L x
h)dt
t f L(x, x,t)dt t0
x(t f )
xf t
<4> 端点变动的情况:(3.2.2)
1>自由端点,无约束条件的变分,如图:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用变分法求解最优控制问题
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
பைடு நூலகம்
104
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
▪
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
பைடு நூலகம்
104
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
▪