【人教版】八年级上学期数学《期末检测题》及答案解析
八年级上学期数学《期末检测试卷》及答案解析

人 教 版 数 学 八 年 级 上 学 期期 末 测 试 卷一.细心选一选(本大题共10个小题,每小题3分,满分30分.每小题有四个选择支,其中只有一个符合题意,请将序号填入题后的括号中)1. 下列计算正确的是( )A. 0(5)0-=B. 235x x x +=C. 2325()ab a b =D. 22a ·12a a -= 2. 要使分式5x 1-有意义,则x 的取值范围是( ) A. x 1≠ B. x 1> C. x 1< D. x 1≠- 3. 下列等式成立的是( )A. 123a b a b+=+ B.212a b a b =++ C. 2ab a ab b a b =-- D. a a a b a b =--++ 4. 如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE .则说明这两个三角形全等的依据是[来( )A. SASB. ASAC. AASD. SSS 5. 若关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是( ) A. m >-1 B. m ≥-1 C. m >-1且m ≠1 D. m ≥-1且m ≠1 6. 若一个多边形的外角和与它的内角和相等,则这个多边形是( )A. 三角形B. 四边形C. 五边形D. 六边形 7. 如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是( )A. SSSB. SASC. ASAD. AAS8. 如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A. △ABC三边垂直平分线的交点B. △ABC三条角平分线的交点C. △ABC三条高所在直线的交点D. △ABC三条中线的交点9. 把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A. a=2,b=3B. a=-2,b=-3C. a=-2,b=3D. a=2,b=-310. 如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A. AC=BDB. ∠CAB=∠DBAC. ∠C=∠DD. BC=AD二、精心填一填(本大题共10小题,每小题3分,满分30分)11. 某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为_______________.12. 分解因式234x x--=________________.13. 如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=6,则点P 到BC的距离是_______.14. a ,b 互为倒数,代数式22211()a ab b a b a b++÷++的值为__. 15. 若分式方程211x m x x -=--有增根,则m =________. 16. 若()22316x m x +-+是完全平方式,则m 的值等于_____.17. 如图是一副三角尺拼成图案,则∠AEB=_____度.18. 如图,已知△ABC 为等边三角形,BD 为中线,延长BC 至点E ,使CE=CD=1 ,连接DE ,则BE=________.19. 如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有________条对角线. 20. 如图,在△ABC 中,∠A=50°,O 是△ABC 内一点,且∠ABO=20°,∠ACO=30°.∠BOC 的度数是_________.三、耐心做一做(本大题共9个小题,满分60分)21. 化简:(1)2()()()2a b a b a b ab ++-+-;(2)2232(2)()a b ab b b a b --÷--.22. 因式分解:(1)22mx my -;(2)(1)(3)1x x --+.23. 先化简:222122(1)1211x x x x x x x x ++-+÷+--+-,然后从22x -<≤的范围内选取一个合适的整数为x 的值代入求值.24. 如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村P ,使这个度假村P 到三条公路的距离相等请在图中用直尺和圆规作出P 点.25. (1)已知6x y +=,7xy =,求33x y xy +的值;(2)已知3m x =,2n x =,求32m n x +的值. 26. 已知△ABC ,AB=AC ,将△ABC 沿BC 方向平移到△DCE .(1)如图(1),连接AE ,BD ,求证:AE=BD ;(2)如图(2),点M 为AB 边上一点,过点M 作BC 的平行线MN 分别交边AC ,DC ,DE 于点G ,H ,N ,连接BH ,GE .求证:BH =GE .27. 如图,△ABC 为等腰三角形,AC=BC ,△BDC 和△CAE 分别为等边三角形,AE 与BD 相交于点F ,连接CF 并延长,交AB 于点G .求证:∠ACG=∠BCG .28. 已知:△ACB 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°,连接AE ,BD 交于点O ,AE 与DC 交于点M ,BD 与AC 交于点N .(1)如图1,求证:A E=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.29. 某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?答案与解析一.细心选一选(本大题共10个小题,每小题3分,满分30分.每小题有四个选择支,其中只有一个符合题意,请将序号填入题后的括号中)1. 下列计算正确的是( )A. 0(5)0-=B. 235x x x +=C. 2325()ab a b =D. 22a ·12a a -=【答案】D【解析】【分析】直接利用零指数幂、合并同类项、积的乘方、同底数幂的乘除、负整数指数幂的运算法则分别化简进而得出答案.【详解】A 、0(5)1-=,错误,该选项不符合题意; B 、23x x +不能合并,该选项不符合题意;C 、2362()ab a b =,错误,该选项不符合题意;D 、22a ·12a a -=,正确,该选项符合题意;故选:D .【点睛】本题主要考查了负整数指数幂,同底数幂的乘除,积的乘方,合并同类项,零指数幂,正确应用相关运算法则是解题关键.2. 要使分式5x 1-有意义,则x 的取值范围是( ) A. x 1≠B. x 1>C. x 1<D. x 1≠-【答案】A【解析】【分析】根据分式分母不为0的条件进行求解即可.【详解】由题意得x-1≠0,解得:x ≠1,故选A.3. 下列等式成立的是( )A. 123a b a b +=+B. 212a b a b =++C. 2ab a ab b a b =--D. a a a b a b =--++ 【答案】C【解析】【分析】 根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a aba +=+,故A 错误; B 、22a b+,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.4. 如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是[来( )A. SASB. ASAC. AASD. SSS【答案】D【解析】 试题解析:在△ADC 和△ABC 中,AD AB DC BC AC AC ⎧⎪⎨⎪⎩===,∴△ADC ≌△ABC (SSS ),∴∠DAC=∠BAC ,即∠QAE=∠PAE .故选D .5. 若关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是( ) A. m >-1B. m ≥-1C. m >-1且m ≠1D. m ≥-1且m ≠1 【答案】D【解析】【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是非负数”建立不等式求m 的取值范围.【详解】去分母得,()121m x -=-, ∴12m x +=, ∵方程的解是非负数,∴10m +≥即1m ≥-,又因为10x -≠,∴1x ≠, ∴112m +≠, ∴1m ≠,则m 的取值范围是1m ≥-且1m ≠.故选:D .【点睛】本题考查了分式方程的解,解答本题时,易漏掉1m ≠,这是因为忽略了10x -≠这个隐含的条件而造成的,这应引起同学们的足够重视.6. 若一个多边形的外角和与它的内角和相等,则这个多边形是( )A. 三角形B. 四边形C. 五边形D. 六边形 【答案】B【解析】【分析】任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可.【详解】解:设多边形的边数为n .根据题意得:(n-2)×180°=360°,解得:n=4.故选:B.【点睛】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360°和多边形的内角和公式是解题的关键.7. 如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A. SSSB. SASC. ASAD. AAS【答案】C【解析】【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8. 如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A. △ABC三边垂直平分线交点B. △ABC三条角平分线的交点C. △ABC三条高所在直线的交点D. △ABC三条中线的交点【答案】A【解析】【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【详解】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等,∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选A.【点睛】本题考查线段垂直平分线的性质,掌握三角形三边垂直平分线的交点到三个顶点的距离相等是本题的解题关键.9. 把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A. a=2,b=3B. a=-2,b=-3C. a=-2,b=3D. a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 10. 如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A. AC=BDB. ∠CAB=∠DBAC. ∠C=∠DD. BC=AD【答案】A【解析】【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【详解】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B 、在△ABC 与△BAD 中,ABC BAD AB BA CAB DBA ∠=∠⎧⎪=⎨⎪∠=∠⎩,△ABC ≌△BAD (ASA ),故B 正确;C 、在△ABC 与△BAD 中,C D ABC BAD AB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ABC ≌△BAD (AAS ),故C 正确;D 、在△ABC 与△BAD 中,BC AD ABC BAD AB BA =⎧⎪∠=∠⎨⎪=⎩,△ABC ≌△BAD (SAS ),故D 正确;故选:A .【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、精心填一填(本大题共10小题,每小题3分,满分30分)11. 某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为_______________.【答案】9.5×10-7 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.00000095米用科学记数法表示为9.5×10-7, 故答案为9.5×10-7. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12. 分解因式234x x --=________________.【答案】(4)(1)x x -+【解析】【分析】把-4写成-4×1,又-4+1=-3,所以利用十字相乘法分解因式即可.【详解】∵-4=-4×1,又-4+1=-3∴234(4)(1)x x x x --=-+.故答案为:(4)(1)x x -+【点睛】本题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键.13. 如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD=6,则点P 到BC 的距离是_______.【答案】3【解析】分析:过点P 作PE ⊥BC 于E ,根据角平分线上的点到角的两边的距离相等,可得PA=PE ,PD=PE ,那么PE=PA=PD ,又AD=6,进而求出PE=3.详解:如图,过点P 作PE ⊥BC 于E ,∵AB ∥CD ,PA ⊥AB ,∴PD ⊥CD ,∵BP 和CP 分别平分∠ABC 和∠DCB ,∴PA=PE ,PD=PE ,∴PE=PA=PD ,∵PA+PD=AD=6,∴PA=PD=3,∴PE=3.故答案为3.点睛:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线是解题的关键.14. a ,b 互为倒数,代数式22211()a ab b a b a b++÷++的值为__. 【答案】1【解析】对待求值的代数式进行化简,得22211a ab b a b a b ++⎛⎫÷+ ⎪+⎝⎭()2a b a b a b ab ++⎛⎫=÷ ⎪+⎝⎭()ab a b a b =+⋅+ ab =∵a ,b 互为倒数,∴ab =1.∴原式=1.故本题应填写:1.15. 若分式方程211x m x x-=--有增根,则m =________. 【答案】-1【解析】【分析】首先根据分式方程的解法求出x 的值,然后根据增根求出m 的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.16. 若()22316x m x +-+是完全平方式,则m 的值等于_____. 【答案】7或1-【解析】【分析】由222)2(a ab b a b ±+=±,观察积的2倍项的系数特点得2(3)8,2(3)8m m -=-=-可得答案.【详解】解:因为:222)2(a ab b a b ±+=±,所以2(3)8,2(3)8m m -=-=-解得:7m =或1m =-故答案为:7或1-【点睛】本题考查完全平方式的特点,熟练掌握两个完全平方式是解题关键.17. 如图是一副三角尺拼成图案,则∠AEB=_____度.【答案】75º【解析】【分析】根据三角板的特殊角和三角形的内角和是180度求解即可.【详解】由图知, ∠A=60°, ∠ABE=∠ABC-∠DBC=90°-45°=45°,∴∠AEB=180°-(∠A+∠ABE)= 180°-(60°+45°)=75° .故答案为:7518. 如图,已知△ABC 为等边三角形,BD 为中线,延长BC 至点E ,使CE=CD=1 ,连接DE ,则BE=________.【答案】3【解析】【分析】根据等边三角形和三角形中线的定义求出BC=AC=2CD=2,即可求得BE 的长.【详解】∵△ABC为等边三角形,∴AB=BC=AC,∵BD为中线,∴AD=CD,∵CD=CE=1,∴BC=AC=2CD=2,∴BE=BC+CE=2+1=3.故答案为:3.【点睛】本题考查了等边三角形性质,三角形中线的定义等知识点的应用,关键是求出BC=AC=2CD=2.19. 如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有________条对角线.【答案】6【解析】【分析】设此多边形的边数为x,根据多边形内角和公式求出x的值,再计算对角线的条数即可.【详解】设此多边形的边数为x,由题意得:(x-2)×180=1260,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9-3=6,故答案为6.【点睛】本题考查了多边形内角和公式,多边形的对角线,关键是掌握多边形的内角和公式180(n-2),n边形的一个顶点有(n-3)条对角线.20. 如图,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°.∠BOC的度数是_________.【答案】100°【解析】【分析】延长BO 交AC 于E ,根据三角形内角与外角的性质可得∠1=∠A+∠ABO ,∠BOC=∠ACO+∠1,再代入相应数值进行计算即可.【详解】解:延长BO 交AC 于E ,∵∠A=50°,∠ABO=20°,∴∠1=∠A+∠ABO =50°+20°=70°,∵∠ACO=30°,∴∠BOC=∠1+∠ACO=70°+30°=100°故答案为:100°【点睛】此题主要考查了三角形内角与外角的关系,关键是掌握三角形内角与外角的关系定理. 三、耐心做一做(本大题共9个小题,满分60分)21. 化简:(1)2()()()2a b a b a b ab ++-+-;(2)2232(2)()a b ab b b a b --÷--.【答案】(1)22a ;(2)22b -【解析】【分析】(1)利用完全平方公式和平方差公式展开,合并同类项即可;(2)利用多项式除以单项式进行运算,同时利用完全平方公式展开,合并同类项即可.详解】(1)2()()()2a b a b a b ab ++-+- 2222(2)()2a ab b a b ab =+++--22a =;(2)2232(2)()a b ab b b a b --÷--22222(2)a ab b a ab b =----+222222a ab b a ab b =---+-22b =-.【点睛】本题是整式的混合运算,考查了完全平方公式,平方差公式,多项式除以单项式,熟练掌握整式混合运算的法则是解题的关键.22. 因式分解:(1)22mx my -;(2)(1)(3)1x x --+.【答案】(1)()()m x y x y +-;(2)2(2)x - 【解析】【分析】(1)提公因式m 后,再利用平方差公式继续分解即可;(2)根据多项式乘多项式展开,合并后再利用完全平方公式分解即可.【详解】(1)22mx my - 22()m x y =-()()m x y x y =+-;(2)(1)(3)1x x --+2431x x =-++2(2)x =-.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23. 先化简:222122(1)1211x x x x x x x x ++-+÷+--+-,然后从22x -<≤的范围内选取一个合适的整数为x 的值代入求值. 【答案】241x x -+,当2x =时,原式=0. 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时根据除法法则变形,约分得到最简结果,将适合的x 的值代入计算即可求出值.【详解】原式=211(1)2(1)1(1)(1)(1)x x x x x x x x x ++---⋅+-++- =22(1)21(1)1x x x x x x -⋅--++ =2(1)211x x x --++ =241x x -+, ∵满足22x -≤≤的整数有±2,±1,0,而x=±1,0时,原式无意义,∴x=±2,当x=2时,原式=224021⨯-=+,当x=-2时,原式=2(2)4821⨯--=-+. 24. 如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村P ,使这个度假村P 到三条公路的距离相等请在图中用直尺和圆规作出P 点.【答案】见解析【解析】【分析】根据角平分线上的点到角两边的距离相等可得度假村的修建位置在∠ABC 和∠BCA 的角平分线的交点处.【详解】如图所示:点P 即为所求.【点睛】本题主要考查了作图的应用,关键是掌握角平分线交点到角两边的距离相等.25. (1)已知6x y +=,7xy =,求33x y xy +的值;(2)已知3m x =,2n x =,求32m n x +的值.【答案】(1)154;(2)108【解析】【分析】(1)原式先提取公因式xy ,再利用完全平方公式变形,然后整体代入计算即可;(2)根据同底数幂的乘法,幂的乘方的运算法则计算即可.【详解】(1)33x y xy +22()xy x y =+2[()2]xy x y xy =+-,当6x y +=,7xy =时,原式=()27627⨯-⨯=154;(2)32m n x +32()()m n x x =⋅当3m x =,2n x =时,原式32()()m n x x =⋅108=.【点睛】本题考查了代数式求值,因式分解的应用,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质和法则是解题的关键.26. 已知△ABC ,AB=AC ,将△ABC 沿BC 方向平移到△DCE .(1)如图(1),连接AE ,BD ,求证:AE=BD ;(2)如图(2),点M 为AB 边上一点,过点M 作BC 的平行线MN 分别交边AC ,DC ,DE 于点G ,H ,N ,连接BH ,GE .求证:BH =GE .【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据等腰三角形的性质和平移的性质,可得∠ABC=∠ACB=∠DCE=∠DEC,AB=AC=DC=DE,根据全等三角形的判定与性质,可得答案;(2)利用平行线的性质证得CG=CH,根据全等三角形的判定与性质,可得答案.【详解】(1)由平移,知△ABC≌△DCE,∵AB=AC=DC=DE,∴∠ABC=∠ACB=∠DCE=∠DEC,∴∠BCD=∠ECA,∴△ACE≌DCB(SAS),∴AE=BD;(2)∵GH∥BE,∴∠CHG=∠HCE=∠ACB=∠CGH,∴CG=CH,∵∠BCH=∠ECG,BC=CE,∴△BCH≌△ECG(SAS),∴BH=GE.【点睛】本题考查了全等三角形的判定与性质,平移的性质,平行线的性质,等腰三角形的性质,掌握全等三角形的判定与性质是解题的关键.27. 如图,△ABC为等腰三角形,AC=BC,△BDC和△CAE分别为等边三角形,AE与BD相交于点F,连接CF并延长,交AB于点G.求证:∠ACG=∠BCG.【答案】见解析【解析】【分析】根据等边三角形的性质和等腰三角形的性质得出∠FAG=∠FBG,得到FA=FB,推出FC为AB的垂直平分线,根据等腰三角形底边三线合一即可解题.【详解】∵△BDC和△ACE分别为等边三角形,∴∠CAE=∠CBD=60°,∵AC=BC,∴∠CAB=∠CBA,∴∠FAG=∠FBG,∴FA=FB,又∵CA=CB,∴FC为AB的垂直平分线,∴∠ACG=∠BCG.【点睛】本题考查了等边三角形的性质,等腰三角形的性质,线段垂直平分线的判定和性质.掌握等腰三角形底边三线合一的性质是解题的关键.28. 已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC 交于点M,BD与AC交于点N.(1)如图1,求证:A E=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【答案】(1)证明见解析;(2)△ACB≌△DCE,△EMC≌△BCN,△AON≌△DOM,△AOB≌△DOE.【解析】【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形.【详解】(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD(SAS),∴AE=BD;(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC,∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL).29. 某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【答案】(1)100;(2)二十.【解析】试题分析:(1)设原计划每天修建道路x米,则实际每天修建道路1.5x米,根据题意,列方程解答即可;(2)由(1)的结论列出方程解答即可.试题解析:解:(1)设原计划每天修建道路x米,可得:1200120041.5x x=+,解得:x=100,经检验x=100是原方程的解.答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加y%,可得:120012002 100100100%y=++,解得:y=20,经检验y=20是原方程的解.答:实际平均每天修建道路的工效比原计划增加百分之二十.。
人教版数学八年级上学期《期末检测试题》含答案解析

∵∠EBD=65°,
∴65∘−∠EBC=60°−∠BAE,
∴65°−(60°−∠ABE)=60°−∠BAE,
∴∠ABE+∠BAE=55°,
∴∠AEB=180°−(∠ABE+∠BAE)=125°.
故选C.
[点睛]本题考查了全等三角形 判定与性质, 等边三角形的性质,根据等边三角形性质得出AC=BC,CE=CD,∠BAC=60°,∠ACB=∠ECD=60°,求出∠ACE=∠BCD,证△ACE≌△BCD,根据全等三角形的性质得出∠CAE=∠CBD,求出∠ABE+∠BAE=55°,根据三角形内角和定理求出即可.
若提速前列车的平均速度为x km/h,行驶1200km的路程,提速后比提速前少用多长时间?
(2)若v=50,行驶1200km的路程,提速后所用时间是提速前的 ,求提速前列车的平均速度?
用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50km,则提速前的平均速度为______km/h.
24.已知:BE⊥CD于E,BE=DE,BC=DA,
(3)如图2,若点P(x,-2x+6)为直线AB在x轴下方 一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.
答案与解析
一、选一选(本大题共10小题,每小题3分,共30分)
1.下列计算正确的是()
A.(2ab3)•(﹣4ab)=2a2b4B. ,
(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()
(3)计算△ABC的面积.
22.如图,△ABC中,∠BAC=∠ADB,BE平分∠ABC交AD于点E,交AC于点F,过点E作EG//BC交AC于点G.
人教版数学八年级上学期《期末检测题》含答案

人教版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、单选题(共12小题)1.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定2.在直角坐标系中,点A(﹣2,3)的横坐标乘以﹣1,纵坐标不变,得到点B,则A与B的关系是()A.关于x轴对称B.将点A向x轴的负方向平移了1个单位长度C.关于y轴对称D.将点A向y轴的负方向平移了1个单位长度3.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x﹣y)4.已知a=8131,b=2741,c=961,则下列关系中正确的是()A.b>c>a B.a>c>b C.a>b>c D.a<b<c5.关于y的二次三项式y2﹣(k+1)y+1为完全平方式,则k的值为()A.﹣1B.1C.1或﹣1D.1或﹣36.已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.337.化简的结果为()A.1B.x+1C.D.8.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.99.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.当x≠3时,分式意义D.分式与的最简公分母是a3b210.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.311.观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1B.﹣22019﹣1C.D.12.如图,△ABP与△CDP是两个全等的等边三角形,且P A⊥PD.有下列四个结论:(1)∠PBC=15°;(2)AD∥BC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.其中正确结论个数是()A.1B.2C.3D.4二、填空题(共4小题)13.已知x2﹣mx+n=(x﹣3)(x+4),则(mn)m=.14.若关于x的分式方程+=2m无解,则m的值为.15.如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为.16.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF=;④EF=AP;当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号).三、解答题(共6小题)17.计算:(1)x•x3+x2•x2(2)(x+3y)2﹣(x+2y)(x﹣2y)18.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.19.已知,求的值.20.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.21.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1……(1)根据上面各式的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=﹣(其中n为大于1的正整数);(2)根据这一规律,计算1+2+22+23+24+…+299+2100.22.从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?答案与解析一、单选题(共12小题)1.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定[解答]解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A.[知识点]多边形内角与外角2.在直角坐标系中,点A(﹣2,3)的横坐标乘以﹣1,纵坐标不变,得到点B,则A与B的关系是()A.关于x轴对称B.将点A向x轴的负方向平移了1个单位长度C.关于y轴对称D.将点A向y轴的负方向平移了1个单位长度[解答]解:∵在直角坐标系中A(﹣2,3)点的横坐标乘以﹣1,纵坐标不变,∴B点的横坐标变为原数的相反数,纵坐标不变,∴A与B的关系是关于y轴对称.故选:C.[知识点]坐标与图形变化-平移、关于x轴、y轴对称的点的坐标3.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x﹣y)[解答]解:A、左边不是多项式,不是因式分解,故本选项不符合题意;B、是整式的乘法运算,故本选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故本选项不符合题意;D、把一个多项式转化成几个整式积的形式,故本选项符合题意;故选:D.[知识点]因式分解的意义、因式分解-提公因式法4.已知a=8131,b=2741,c=961,则下列关系中正确的是()A.b>c>a B.a>c>b C.a>b>c D.a<b<c[解答]解:∵a=8131=3124,b=2741=3123,c=961=3122,∴a>b>c.故选:C.[知识点]有理数大小比较、幂的乘方与积的乘方5.关于y的二次三项式y2﹣(k+1)y+1为完全平方式,则k的值为()A.﹣1B.1C.1或﹣1D.1或﹣3[解答]解:∵y2﹣(k+1)y+1为完全平方式,∴﹣(k+1)=±2,∴k=1或﹣3,故选:D.[知识点]完全平方式6.已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.33[解答]解:∵a+b=﹣5,ab=﹣4,∴a2﹣3ab+b2=(a+b)2﹣5ab=52﹣5×(﹣4)=25+20=45,故选:C.[知识点]完全平方公式7.化简的结果为()A.1B.x+1C.D.[解答]解:原式=÷=×=.故选:C.[知识点]分式的混合运算8.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.9[解答]解:∵=11,∴1++1++1+=14,即++=14,∴++=,而++=,∴=,∴x+y+z=12.故选:A.[知识点]分式的加减法9.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.当x≠3时,分式意义D.分式与的最简公分母是a3b2[解答]解:A、形如(A、B为整式、B中含字母)的式子叫分式,故原题说法错误;B、分式是最简分式,故原题说法错误;C、当x≠3时,分式意义,故原题说法正确;D、分式与的最简公分母是a2b,故原题说法错误;故选:C.[知识点]最简分式、分式有意义的条件、最简公分母10.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.3[解答]解:将分式方程去分母得:a(x﹣1)+(x+1)(x﹣1)=(x+a)(x+1)解得:x=﹣2a﹣1∵解为负数∴﹣2a﹣1<0∴a>﹣∵当x=1时, a=﹣1;x=﹣1时,a=0,此时分式的分母为0,∴a>﹣,且a≠0;将不等式组整理得:∵不等式组无解∴a≤2∴a的取值范围为:﹣<a≤2,且a≠0∴满足条件的整数a的值为:0,1,2∴所有满足条件的整数a的值之积是0.故选:A.[知识点]解一元一次不等式、分式方程的解、解一元一次不等式组11.观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1B.﹣22019﹣1C.D.[解答]解:∵(﹣2﹣1)[(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1],=(﹣2)2019﹣1,=﹣22019﹣1,∴(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1=.故选:D.[知识点]平方差公式、多项式乘多项式、规律型:数字的变化类12.如图,△ABP与△CDP是两个全等的等边三角形,且P A⊥PD.有下列四个结论:(1)∠PBC=15°;(2)AD∥BC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.其中正确结论个数是()A.1B.2C.3D.4[解答]解:∵△ABP≌△CDP,∴AB=CD,AP=DP,BP=CP.又∵△ABP与△CDP是两个等边三角形,∴∠P AB=∠PBA=∠APB=60°.①根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,故本选项正确;②∵∠ABC=60°+15°=75°,∵AP=DP,∴∠DAP=45°,∵∠BAP=60°,∴∠BAD=∠BAP+∠DAP=60°+45°=105°,∴∠BAD+∠ABC=105°+75°=180°,∴AD∥BC;故本选项正确;③延长CP交于AB于点O.∠APO=180°﹣(∠APD+∠CPD)=180°﹣(90°+60°)=180°﹣150°=30°,∵∠P AB=60°,∴∠AOP=30°+60°=90°,故本选项正确;④根据题意可得四边形ABCD是轴对称图形,故本选项正确.综上所述,以上四个命题都正确.故选:D.[知识点]等边三角形的性质、平行线的判定、轴对称图形、全等三角形的性质二、填空题(共4小题)13.已知x2﹣mx+n=(x﹣3)(x+4),则(mn)m=.[解答]解:∵x2﹣mx+n=(x﹣3)(x+4)=x2+x﹣12,∴m=﹣1,n=﹣12,∴(mn)m=12﹣1=.故答案为:[知识点]因式分解-十字相乘法等、幂的乘方与积的乘方14.若关于x的分式方程+=2m无解,则m的值为.[解答]解:方程两边同时乘以x﹣4,得x﹣4m=2m(x﹣4),解得:x=,∵方程无解,∴2m﹣1=0或x=4,m=或m=1,故答案为或1.[知识点]分式方程的解15.如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为.[解答]解:(a+4)2﹣a2=8a+16,故答案为8a+16.[知识点]平方差公式的几何背景16.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF=;④EF=AP;当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号).[解答]解:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∴∠P AE=∠PCF,在△APE与△CPF中,,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=S△ABC,①②③正确;而AP=BC,EF因不是中位线,则不等于BC的一半,故④不成立.故始终正确的是①②③.故答案为:①②③.[知识点]等腰直角三角形、旋转的性质、全等三角形的判定与性质三、解答题(共6小题)17.计算:(1)x•x3+x2•x2(2)(x+3y)2﹣(x+2y)(x﹣2y)[解答]解:(1)原式=x4+x4=2x4;(2)原式=x2+6xy+9y2﹣x2+4y2=6xy+13y2.[知识点]同底数幂的乘法、完全平方公式、平方差公式18.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.[解答]解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=×3×2=3.[知识点]作图-轴对称变换、三角形的面积19.已知,求的值.[解答]解:∵==,∴,解得:A=3,B=﹣1,∴=.[知识点]分式的加减法、分式的值20.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.[解答](1)证明:∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.∵∠B=90°,∴四边形ABCF是矩形.(2)证明:由(1)可得,∠AFC=90°,∴∠DAF=90°﹣∠D,∠CGF=90°﹣∠ECD.∵ED=EC,∴∠D=∠ECD.∴∠DAF=∠CGF.∵∠EGA=∠CGF,∴∠EAG=∠EGA.∴EA=EG.[知识点]矩形的判定、全等三角形的判定与性质21.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1……(1)根据上面各式的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=﹣(其中n为大于1的正整数);(2)根据这一规律,计算1+2+22+23+24+…+299+2100.[解答]解:(1)由规律得:(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1+1﹣1=x n﹣1,故答案为:x n﹣1,(2)原式=(2﹣1)(1+2+22+23+24+…+299+2100)=2101﹣1.[知识点]平方差公式、多项式乘多项式、规律型:数字的变化类22.从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?[解答]解:(1)设泰州至南京的铁路里程是xkm,则,解得:x=160.答:泰州至南京的铁路里程是160 km;(2)设经过th两车相距40 km.①当相遇前相距两车相距40 km时,80t+1.5×80t+40=160,解得t=0.6;②当相遇后两车相距40 km时,80t+1.5×80t﹣40=160.解得t=1.综上所述,经过0.6h或1h两车相距40km.答:经过0.6h或1h两车相距40km.[知识点]分式方程的应用。
人教版数学八年级上学期《期末测试题》及答案解析

15.因式分解:
(1) ;(2) .
16.(1)解分式方程: .
(2)如图, 与 中,AC与BD交于点E,且 , ,求证: .
四、解答题(共32分,每题8分)
17.(1)已知 ,求 的值.
(2)化简: ,并从±2,±1,±3中选择一个合适的数求代数式的值.
18.为厉行节能减排,倡导绿色出行,我市推行“共享单车”公益活动.某公司在小区分别投放A、B两种不同款型 共享单车,其中A型车的投放量是B型车的投放量的 倍,B型车的成本单价比A型车高20元,A型、B型单车投放总成本分别为30000元和26400元,求A型共享单车的成本单价是多少元?
例如:
利用这种分组的思想方法解决下列问题:
(1)分解因式 ;
(2) 三边a,b,c满足 判断 的形状,并说明理由.
五、解答题(本题共18分,其中每9分)
21.如图,在 中, ,点 在 内, , ,点 在 外, , .
(1)求 的度数;
(2)判断 形状并加以证明;
(3)连接 ,若 , ,求 的长.
22.阅读下面材料:
①AD是∠BAC 平分线
②∠ADC=60°
③点D在AB的垂直平分线上
④若AD=2dm,则点D到AB的距离是1dm
⑤S△DAC:S△DAB=1:2
A.2B.3C.4D.5
[答案]D
[解析]
[分析]
①根据作图的过程可以判定AD是∠BAC的角平分线;
②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;
(1) ;(2) .
[答案](1) ;(2)
[解析]
[分析]
(1)先提取公因式,然后利用完全平方公式因式分解即可;
人教版八年级数学上册期末测试题及答案解析(共三套)

人教版八年级数学上册期末测试题(一)(时间:120分分值:120分)一、选择题:(每题2分,共20分)1.(2分)下列说法中正确的是()A.两个直角三角形全等B.两个等腰三角形全等C.两个等边三角形全等D.两条直角边对应相等的直角三角形全等2.(2分)下列各式中,正确的是()A.y3•y2=y6B.(a3)3=a6C.(﹣x2)3=﹣x6D.﹣(﹣m2)4=m8 3.(2分)计算(x﹣3y)(x+3y)的结果是()A.x2﹣3y2B.x2﹣6y2C.x2﹣9y2D.2x2﹣6y24.(2分)如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.5 D.2.55.(2分)若2a3x b y+5与5a2﹣4y b2x是同类项,则()A.B.C.D.6.(2分)如图图案中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个7.(2分)若分式的值为零,则x的值是()A.2或﹣2 B.2 C.﹣2 D.48.(2分)如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为()A.0 B.1 C.2 D.39.(2分)满足下列哪种条件时,能判定△ABC与△DEF全等的是()A.∠A=∠E,AB=EF,∠B=∠D B.AB=DE,BC=EF,∠C=∠FC.AB=DE,BC=EF,∠A=∠E D.∠A=∠D,AB=DE,∠B=∠E10.(2分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm二、填空题(每题3分,共30分)11.(3分)当a时,分式有意义.12.(3分)计算:3x2•(﹣2xy3)=,(3x﹣1)(2x+1)=.13.(3分)多项式x2+2mx+64是完全平方式,则m=.14.(3分)若a+b=4,ab=3,则a2+b2=.15.(3分)用科学记数法表示0.00000012为.16.(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠ABD=.17.(3分)线段AB=4cm,P为AB中垂线上一点,且PA=4cm,则∠APB=。
人教版八年级上学期数学《期末考试题》附答案解析

故答案为4.
[点睛]本题考查了多项式乘以多项式法则,能根据多项式乘以多项式法则展开是解此题的关键.
14.已知4y2+my+1是完全平方式,则常数m的值是______.
[答案]4或-4
[解析]
[详解]∵4y2-my+1是完全平方式,
∴-m=±4,即m=±4.
故答案为4或-4.
15.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为________
5.如图,AB//DE,AC//DF,AC=DF,下列条件中,不能判定△ABC≌△DEF的是
A.AB=DEB.∠B=∠EC.EF=BCD.EF//BC
6.已知 ,则分式 的值为()
A.1B.5C. D.
7.一个多边形 每一个外角都等于36 ,则该多边形的内角和等于()
A 1080°B. 900°C. 1440°D. 720°
(1)求原计划每天铺设路面的长度;
(2)若市政部门原来每天支付工人工资为600元,提高工效后每天支付给工人的工资增长了30%,现市政部门为完成整个工程准备了25 000元的流动资金.请问,所准备的流动资金是否够支付工人工资?并说明理由.
23.阅读理解:
(x-1)(x+1)=x2-1,
(x-1)(x2+x+1)=x3-1,
③∵∠1=∠B=30°,∴AD=BD.∴点D在AB的中垂线上.故③正确.
④∵如图,在直角△ACD中,∠2=30°,∴CD= AD.
∴BC=CD+BD= AD+AD= AD,S△DAC= AC•CD= AC•AD.
∴S△ABC= AC•BC= AC•A D= AC•AD.
人教版数学八年级上学期《期末测试卷》带答案解析

C.a2-b2=(a+b)(a-b)
D.(a+2b)(a-b)=a2+ab-2b2
[答案]C
[解析]
[分析]
分别表示出甲乙图形中阴影部分的面积,根据面积相等可得结论.
[详解]解:甲图中阴影部分的面积为大正方形的面积减去小正方形的面积,即 ,乙图中阴影部分长方形的长为 ,宽为 ,阴影部分的面积为 ,根据两个图形中阴影部分的面积相等可得 .
18.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,交AD于F,FG∥BC,FH∥AC,下列结论:①AE=AF;②AF=FH;③AG=CE;④AB+FG=BC,其中正确的结论有________________.(填序号)
三、解答题(共8题,共66分 )
19.分解因式:
A. ∠1=∠2+∠AB. ∠1=2∠A+∠2
C. ∠1=2∠2+2∠AD. 2∠1=∠2+∠A
二、填空题(每小题3分,共24分)
11.当x=时,分式 无意义.
12.如图,在△ABC中,AM是中线,AN是高.如果BM=3.5cm,AN=4cm,那么△ABC的面积是___________cm2.
13.如图,已知AB∥CF,E为DF的中点,若AB=11 cm,CF=5 cm,则BD=________cm.
8.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()
A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°
[答案]B
[解析]
[详解]∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项正确,
人教版八年级上学期数学《期末检测试题》及答案

A. B.EN=aC. ∠E=60°D. ∠N=66°
8.在平面直角坐标系xOy中,A(1,3),B(5,1),点M在x轴上,当MA+MB取得最小值时,点M的坐标为( )
A.(5,0)B.(4,0)C.(1,0)D.(0,4)
3.下列运算正确的是( )
A. B. C. D.
[答案]C
[解析]
[分析]
由负整数指数幂的运算法则可以得到答案.
[详解]解: 所以A,B,D错误;C正确.
故选C.
[点睛]本题考查的是负整数指数幂的运算,熟悉负整数指数幂的运算法则是关键.
4.下列各式从左到右的变形正确的是( )
A. B.
C. 业杂志社报道,纳米绿色印刷技术突破了传统印刷技术精度和材料种类的局限,可以在硅片上印刷出10纳米(即为0.000 000 01米)量级的超高精度导电线路,将0.000 000 01用科学记数法表示应为___________.
15.计算: =____________.
16.直线 与x轴的交点为M,将直线 向左平移5个单位长度,点M平移后的对应点 的坐标为______________,平移后的直线表示的一次函数的解析式为_____________.
A. B.EN=aC. ∠E=60°D. ∠N=66°
[答案]A
[解析]
[分析]
利用 , ,∠C=∠M=54°证明 与 全等,利用全等三角形的性质可得到答案.
[详解]解:在 与 中,
所以:
所以B,C,D,都错误,A正确.
②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年人教版数学八年级上学期期末测试学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共 12 题,每题 3 分计 36 分)1.下列二次根式中是最简二次根式的是( ) A. 1.5 B. 3 C. 9 D. 132.如果x 2+2ax+b 是一个完全平方公式,那么a 与b 满足的关系是( )A. b =aB. a =2bC. b =2aD. b =a 23.若式子34x -在实数范围内有意义,则x 的取值范围是( )A. x ≥43B. x >43C. x ≥34D. x >344.直线y =kx+2过点(﹣1,0),则k 的值是( )A. 2B. ﹣2C. ﹣1D. 15.如图,在ABC ∆中,,D E 分别是边,AB AC 的中点,已知10BC =,则DE 的长( )A. 6B. 4C. 10D. 5 6.已知点()()()1232,,1,,1,y y y --都在直线3y x b =-+上,则123,,y y y 的大小关系( )A. 123y y y >>B. 123y y y <<C. 312y y y >>D. 312y y y << 7.以下列各组数为边长,能构成直角三角形的是( )A. 2,3,4B. 3,4,6C. 5,12,13D. 6,7,11 8.已知13m m +=,则221m m +=( ) A. 7 B. 11C. 9D. 19.如图,直线l 1:y =ax+b 和l 2:y =bx ﹣a 在同一坐标系中的图象大致是( )A. B.C. D.10.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠DAE=67.5°,EF⊥AB,垂足为F,则EF 的长为( )A. 1B. 2C. 4-22D. 32-411.甲、乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:输入汉字个数(个) 132 133 134 135 136 137甲班人数(人) 1 0 2 4 1 2乙班人数(人) 0 1 4 1 2 2通过计算可知两组数据的方差分别为s甲2=2.0,s乙2=2.7,则下列说法:①甲组学生比乙组学生的成绩稳定;②两组学生成绩的中位数相同;③两组学生成绩的众数相同,其中正确的有( )A. 0个B. 1个C. 2个D. 3个12.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A. B. C. D.二、填空题(本题共 6 小题,每题 3 分计 18 分)13.因式分解:(a+b )2﹣64=_____.14.如图,在矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连接DE ,AE =5,BE =4,则DF =_____.15.一次函数y =12x ﹣4和y =﹣3x+3的图象的交点坐标是_____. 16.若关于x 的分式方程2233x m x x -=--有增根,则m 的值为_____. 17.已知一个样本:98,99,100,101,102.那么这个样本的方差是_____.18.如图,边长为1的菱形ABCD 中,∠DAB=60°.连结对角线AC ,以AC 为边作第二个菱形ACEF ,使∠FAC=60°.连结AE ,再以AE 为边作第三个菱形AEGH 使∠HAE=60°…按此规律所作的第n 个菱形的边长是 .三、解答题(本题共 6 小题,合计 46 分)19.112(75348)3. 20.解方程:21133x x x x =-++. 21.已知x 、y 是实数,且x 5y -5y -,求9x ﹣2y 的值.22.“中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节目,希望通 过节目的播出,能吸引更多的人关注对汉字文化的学习.某校也开展了一次“汉字听写”比赛,每位参赛学生听写40个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数x绘制成了以下不完整的统计图.听写正确的汉字个数x组中值≤6x1<11≤16x<1121x≤<262131≤36x31<41根据以上信息回答下列问题:(1)补全频数分布直方图;(2)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;(3)该校共有1350名学生,如果听写正确的汉字个数不少于21个定位良好,请你估计该校本次“汉字听写”比赛达到良好的学生人数.23.如图,在矩形ABCD中,E、F分别是边AB、CD上点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若3AB的长.24.抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)路程(千米) 运费(元/吨•千米)甲库乙库甲库乙库A库20 15 12 12B库25 20 10 8(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?25.定义符号min{a,b,c}表示a、b、c三个数中的最小值,如min{1,﹣2,3}=﹣2,min{0,5,5}=0.(1)根据题意填空:min{}9,3.14,π=;(2)试求函数y=min{2,x+1,﹣3x+11}解析式;(3)关于x的方程﹣x+m=min{2,x+1,﹣3x+11}有解,试求常数m的取值范围.26.如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为每秒1个单位,设运动时间为t秒,过点P作PE⊥AO交AB于点E.(1)求直线AB的解析式;(2)在动点P、Q运动的过程中,以B、Q、E为顶点的三角形是直角三角形,直按写出t的值;(3)设△PEQ面积为S,求S与时间t的函数关系,并指出自变量t的取值范围.答案与解析一、选择题(本大题共12 题,每题3 分计36 分)1.下列二次根式中是最简二次根式的是( )C. D.A. B.3【答案】B【解析】【分析】根据最简二次根式的定义判断即可.【详解】解:A=BC3=不是最简二次根式,本选项错误;=不是最简二次根式,本选项错误;D3故选B.【点睛】此题考查了最简二次根式,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.如果x2+2ax+b是一个完全平方公式,那么a与b满足的关系是( )A. b=aB. a=2bC. b=2aD. b=a2【答案】D【解析】【分析】利用完全平方公式的结构特征判断即可.【详解】解:∵x2+2ax+b是一个完全平方公式,∴b=a2.故选D.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.3.x的取值范围是( )A. x ≥43B. x >43C. x ≥34D. x >34【答案】A【解析】【分析】二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.【详解】解:由题意得,43x ≥, 故选A .【点睛】本题考查二次根式有意义的条件,本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.4.直线y =kx+2过点(﹣1,0),则k 的值是( )A. 2B. ﹣2C. ﹣1D. 1 【答案】A【解析】【分析】把(﹣1,0)代入直线y =kx+2,得﹣k+2=0,解方程即可求解.【详解】解:把(﹣1,0)代入直线y =kx+2,得:﹣k+2=0解得k =2.故选A .【点睛】本题考查的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式.5.如图,在ABC ∆中,,D E 分别是边,AB AC 的中点,已知10BC =,则DE 的长( )A. 6B. 4C. 10D. 5【答案】D【解析】【分析】由D ,E 分别是边AB ,AC 的中点,首先判定DE 是三角形的中位线,然后根据三角形的中位线定理求得DE 的值即可.【详解】∵△ABC 中,D ,E 分别是边AB ,AC 的中点,∴DE 是△ABC 的中位线,故DE =12AD =12×10=5. 故选:D .【点睛】考查三角形中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.6.已知点()()()1232,,1,,1,y y y --都在直线3y x b =-+上,则123,,y y y 的大小关系( )A. 123y y y >>B. 123y y y <<C. 312y y y >>D. 312y y y <<【答案】A【解析】【分析】先根据直线y =−3x +b 判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【详解】∵直线y =−3x +b ,k =−3<0,∴y 随x 的增大而减小,又∵−2<−1<1,∴y 1>y 2>y 3.故选:A .【点睛】本题考查的是一次函数的增减性,即一次函数y =kx +b (k ≠0)中,当k >0,y 随x 的增大而增大;当k <0,y 随x 的增大而减小.7.以下列各组数为边长,能构成直角三角形的是( )A. 2,3,4B. 3,4,6C. 5,12,13D. 6,7,11 【答案】C【解析】【分析】根据勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、22+32≠42,不能构成直角三角形,故选项错误;B 、32+42≠62,不能构成直角三角形,故选项错误;C 、52+122=132,能构成直角三角形,故选项正确;D 、62+72≠112,不能构成直角三角形,故选项错误.故选C .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断是解答此题的关键. 8.已知13m m +=,则221m m +=( ) A. 7B. 11C. 9D. 1 【答案】A【解析】【分析】将原式两边都平方,再两边都减去2即可得.【详解】解:∵m+1m =3, ∴m 2+2+21m =9, 则m 2+21m=7, 故选A .【点睛】本题考查完全平方公式,解题的关键是掌握完全平方公式.9.如图,直线l 1:y =ax+b 和l 2:y =bx ﹣a 在同一坐标系中的图象大致是( )A. B.C. D.【答案】C【解析】【分析】根据各选项中的函数图象可知直线l 1:y =ax+b 经过第一、二、三象限,从而判断出a 、b 的符号,然后根据a 、b 的符号确定出l 2:y =bx ﹣a 的图象经过的象限,选出正确答案即可.【详解】解:∵直线l 1:经过第一、三象限,∴a>0,∴﹣a<0.又∵该直线与y轴交于正半轴,∴b>0.∴直线l2经过第一、三、四象限.在四个选项中只有选项C中直线l2符合,故选C.【点睛】本题考查了一次函数的图象,一次函数y=kx+b(k≠0),k>0时,一次函数图象经过第一三象限,k<0时,一次函数图象经过第二四象限,b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.10.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠DAE=67.5°,EF⊥AB,垂足为F,则EF 的长为( )A. 12 C. 2 D. 2-4【答案】C【解析】【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再根据∠DAE=67.5°,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后根据勾股定理求出正方形的对角线BD,再求出BE 2倍计算即可得解.【详解】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠DAE=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=2,∴BE =BD ﹣DE =﹣4,∵EF ⊥AB ,∠ABD =45°,∴△BEF 是等腰直角三角形,∴EF =2BE =2×(﹣4)=4﹣. 故选C .【点睛】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数相等求出相等的角,再求出DE =AD 是解题的关键,也是本题的难点.11.甲、乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:通过计算可知两组数据的方差分别为s 甲2=2.0,s 乙2=2.7,则下列说法:①甲组学生比乙组学生的成绩稳定;②两组学生成绩的中位数相同;③两组学生成绩的众数相同,其中正确的有( )A. 0个B. 1个C. 2个D. 3个 【答案】B【解析】【分析】根据中位数,众数的计算方法,分别求出,就可以分别判断各个命题的真假.【详解】解:①甲组学生比乙组学生的成绩方差小,∴甲组学生比乙组学生的成绩稳定.②甲班学生的成绩按从小到大排列:132、134、134、135、135、135、135、136、137、137,可见其中位数是135;乙班学生的成绩按从小到大排列:133、134、134、134、134、135、136、136、137、137,可见其中位数是134.5,所以两组学生成绩的中位数不相同;③甲班学生成绩的众数是135,乙班学生成绩的众数是134,所以两组学生成绩的众数不相同. 故选B .【点睛】此题考查方差问题,对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可.方差是反映数据波动大小的量.12.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h 与时间t 之间的关系的图象是()A. B. C. D.【答案】C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢. 故选C.【点睛】此题考查函数的图象,解题关键在于观察图形二、填空题(本题共 6 小题,每题 3 分计 18 分)13.因式分解:(a+b )2﹣64=_____.【答案】(a+b ﹣8)(a+b+8)【解析】【分析】直接利用平方差公式分解因式得出答案.【详解】解:(a+b )2﹣64=(a+b ﹣8)(a+b+8).故答案为(a+b ﹣8)(a+b+8).【点睛】此题主要考查了平方差公式分解因式,正确应用公式是解题关键.14.如图,在矩形ABCD 中,点E BC 上一点,AE =AD ,DF ⊥AE 于F ,连接DE ,AE =5,BE =4,则DF =_____.【答案】3【解析】【分析】利用矩形的性质结合条件可证得△ADF ≌△EAB ,则可得AF =BE =4,再利用勾股定理可得DF 的长.【详解】解:∵四边形ABCD 为矩形,∴AD ∥BC ,且∠B =90°,∴∠DAF =∠BEA ,∵DF ⊥AE ,∴∠DFA =∠B ,在△ADF 和△EAB 中DAF BEA DFA B AE AD ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ADF ≌△EAB (AAS ),∴AF =BE =4,Rt △ADF 中,AD =AE =5∴DF 22AD AF -2254-3.故答案为3. 【点睛】本题主要考查矩形的性质和勾股定理,三角形的全等与判定,利用矩形的性质证得△ADF ≌△EAB 是解题的关键. 15.一次函数y =12x ﹣4和y =﹣3x+3的图象的交点坐标是_____. 【答案】(2,﹣3)【解析】【分析】两条一次函数的解析式联立方程组求解即可.【详解】解:方程组14233 y xy x⎧=-⎪⎨⎪=-+⎩,解得23 xy=⎧⎨=-⎩,所以交点坐标为(2,﹣3).故答案为(2,﹣3).【点睛】本题考查了两条直线相交或平行问题,解题的关键是正确的解出方程组的解.16.若关于x的分式方程2233x mx x-=--有增根,则m的值为_____.【答案】【解析】【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.【详解】方程两边都乘x-3,得x-2(x-3)=m2,∵原方程增根为x=3,∴把x=3代入整式方程,得.【点睛】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17.已知一个样本:98,99,100,101,102.那么这个样本的方差是_____.【答案】2【解析】【分析】根据方差公式计算即可.方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2].【详解】解:这组样本的平均值为x=15(98+99+100+101+102)=100S2=15[(98﹣100)2+(99﹣100)2+(100﹣100)2+(101﹣100)2+(102﹣100)2]=2故答案为2.【点睛】本题考查方差的定义.一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,18.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.【答案】()n13-【解析】【详解】试题分析:连接DB,BD与AC相交于点M,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.∵∠DAB=60°,∴△ADB是等边三角形.∴DB=AD=1,∴BM=1 2∴AM=3 2∴3同理可得2,AE=3,…按此规律所作的第n个菱形的边长为)n-1三、解答题(本题共6 小题,合计46 分)19..【答案】12.【解析】试题分析:先把二次根式化简,再运用乘法分配殷墟进行计算即可求出结果.试题解析:原式=(==12.20.解方程:21 133x xx x=-++.【答案】x=3 4 -.【解析】【分析】方程两边同时乘以3(x+1),化为整式方程,然后解整式方程,求得解后进行检验即可得. 【详解】方程两边同时乘以3(x+1),得3x=2x-3(x+1),解得:x=34 -,检验:当x=34-时,3(x+1)≠0,所以原方程的解为x=3 4 -.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤以及注意事项是解题的关键.注意要进行检验.21.已知x、y是实数,且x,求9x﹣2y的值.【答案】-1.【解析】【分析】根据被开方数大于等于0列式求出x的值,再求出y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,y﹣5≥0,5﹣y≥0∴y=5 x=1∴9x﹣2y=9×1﹣2×5=﹣1∴9x﹣2y的值为﹣1【点睛】本题考查了二次根式的意义和性质.概念:式子a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.22.“中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节目,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习.某校也开展了一次“汉字听写”比赛,每位参赛学生听写40个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数x绘制成了以下不完整的统计图.听写正确的汉字个数x组中值≤61<11x≤16x1121<≤<26x2131≤36x31<41根据以上信息回答下列问题:(1)补全频数分布直方图;(2)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;(3)该校共有1350名学生,如果听写正确的汉字个数不少于21个定位良好,请你估计该校本次“汉字听写”比赛达到良好的学生人数.【答案】(1)见解析;(2)23个;(3)810【解析】【分析】(1)根据31≤x <41一组的人数是10,所占的百分比是20%即可求得调查的总人数,根据被百分比的意义即可求得11≤x <21一组的人数,进而求得21≤x <31一组的人数,从而补全直方图;(2)利用加权平均数公式即可求解;(3)利用总人数乘以对应的比例即可求解.【详解】(1)抽取的学生总数是10÷20%=50(人),11≤x <21一组的人数是:50×30%=15,21≤x <31一组的人数是:50−5−15−10=20.补全频数分布直方图如下:(2)235651615262003610x ⨯+⨯+⨯⨯=+=(个). 答:被调查学生听写正确的汉字个数的平均数是23个.(3)201050+×1350=810(人). 答:估计该校本次“汉字听写”比赛达到良好的学生人数约为810人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE=CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC .(1)求证:OE=OF ;(2)若3AB 长.【答案】(1)证明见解析;(2)6.【解析】试题分析:(1)根据△AEO和△CFO全等来进行说明;(2)连接OB,得出△BOF和△BOE全等,然后求出∠BAC 的度数,根据∠BAC的正切值求出AB的长度.试题解析:(1)∵四边形ABCD是矩形,∴AB∥CD ∴∠OAE=∠OCF ∠OEA=∠OFC ∵AE=CF∴△AEO≌△CFO ∴OE=OF(2)连接BO ∵OE=OF BE=BF∴BO⊥EF 且∠EBO=∠FBO ∴∠BOF=90°∵四边形ABCD是矩形∴∠BCF=90°∵∠BEF=2∠BAC ∠BEF=∠BAC+∠EOA∴∠BAC=∠EOA AE=OE∵AE=CF OE=OF∴OF=CF 又∵BF=BF∴Rt△BOF≌Rt△BCF∴∠OBF=∠CBF∴∠CBF=∠FBO=∠OBE∵∠ABC=90°∠OBE=30°∴∠BEO=60°∠BAC=30°∵tan∠BAC=BCAB∴tan30°23323∴AB=6.考点:三角形全等的证明、锐角三角函数的应用.24.抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?【答案】(1)y=-30x+39200(0≤x≤70);(2) 从甲库运往A库70吨粮食,往B库运送30吨粮食,从乙库运往A 库0吨粮食,从乙库运往B库80吨粮食时,总运费最省为37100元【解析】试题分析:弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.试题解析:(1)依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100-x)吨,乙库运往A库(70-x)吨,乙库运到B库(10+x)吨.则1000700100xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪+≥⎩,解得:0≤x≤70.y=12×20x+10×25(100-x)+12×15(70-x)+8×20×[110-(100-x)]=-30x+39200其中0≤x≤70(2)上述一次函数中k=-30<0∴y随x的增大而减小∴当x=70吨时,总运费最省最省的总运费为:-30×70+39200=37100(元)答:从甲库运往A库70吨粮食,往B库运送30吨粮食,从乙库运往A库0吨粮食,从乙库运往B库80吨粮食时,总运费最省为37100元.25.定义符号min{a ,b ,c}表示a 、b 、c 三个数中的最小值,如min{1,﹣2,3}=﹣2,min{0,5,5}=0.(1)根据题意填空:min {}9,3.14,π= ; (2)试求函数y =min{2,x+1,﹣3x+11}的解析式;(3)关于x 的方程﹣x+m =min{2,x+1,﹣3x+11}有解,试求常数m 的取值范围.【答案】(1)3(2)见解析(3)m ≤5【解析】【分析】(1)先求出9的值,再根据运算规则即可得出答案;(2)先计算交点坐标,画图象即可得出答案;(3)由(2)中的图象,与函数y =﹣x+m 的图象有交点则有解,据此即可求解.【详解】(1)∵9=3,∴min {}9,3.14,π=3; 故答案为3;(2)由图象得:y =112133113x x x x x +<⎧⎪≤≤⎨⎪-+>⎩()()();(3)当y =2时,﹣3x+11=2,x =3,∴A (3,2),当y =﹣x+m 过点A 时,则﹣3+m =2,如图所示:∴常数m的取值范围是m≤5.【点睛】此题考查了一次函数和一次方程的应用,解题的关键是读懂题意,根据题意结合方程和不等式去求解,考查综合应用能力.26.如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为每秒1个单位,设运动时间为t秒,过点P作PE⊥AO交AB于点E.(1)求直线AB的解析式;(2)在动点P、Q运动的过程中,以B、Q、E为顶点的三角形是直角三角形,直按写出t的值;(3)设△PEQ的面积为S,求S与时间t的函数关系,并指出自变量t的取值范围.【答案】(1)y=﹣2x+4(2)2或209(3)S=12t2﹣t(2<t≤4)【解析】(1)依据待定系数法即可求得;(2)根据直角三角形的性质解答即可;(3)有两种情况:当0<t<2时,PF=4﹣2t,当2<t≤4时,PF=2t﹣4,然后根据面积公式即可求得;【详解】(1)∵C(2,4),∴A(0,4),B(2,0),设直线AB的解析式为y=kx+b,∴420bk b=⎧⎨+=⎩,解得24kb=-⎧⎨=⎩,∴直线AB的解析式为y=﹣2x+4.(2)当以B、Q、E为顶点的三角形是直角三角形时,P、E、Q共线,此时t=2,当以B、Q、E为顶点的三角形是直角三角形时,EQ⊥BE时,此时t=209;(3)如图2,过点Q作QF⊥y轴于F,∵PE∥OB,∴PE OB1 AP AO2==,∵AP=BQ=t,∴PE=12t,AF=CQ=4﹣t,当0<t<2时,PF=4﹣2t,∴S=12PE•PF=12×12t(4﹣2t)=t﹣12t2,即S=﹣12t2+t(0<t<2),当2<t≤4时,PF=2t﹣4,∴S=12PE•PF=12×12t(2t﹣4)=12t2﹣t(2<t≤4).【点睛】本题考查了待定系数法求解析式,平行线的性质,以及三角形的面积公式的应用,灵活运用相关知识,学会用分类讨论的思想思考问题是解题的关键.。