2018-2019学年广东省广州市越秀区六年级(下)期末数学试卷
2019-2020学年广东省广州市越秀区八年级下学期期末数学试卷 (解析版)

2019-2020学年广东省广州市越秀区八年级第二学期期末数学试卷一、选择题1.的计算结果是()A.2B.9C.6D.32.在下列计算中,正确的是()A.B.C.D.3.在体育中考跳绳项目中,某小组的8位成员跳绳次数如下:175、176、175、180、179、176、180、176,这组数据的众数为()A.175B.176C.179D.1804.若菱形的两条对角线长分别为8和6,则这个菱形的面积是()A.96B.48C.24D.125.在竞选班干部时,某同学表达能力、组织能力、责任心的得分分别是90分,80分,85分.若依次按20%,40%,40%的比例确定最终得分,则这个人的最终得分是()A.82分B.84分C.85分D.86分6.在下列各组数中,不能作为直角三角形的三边长的是()A.,,B.30,40,50C.1,,2D.5,12,137.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5B.2C.D.8.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长是36,OE=3,则四边形ABFE的周长为()A.21B.24C.27D.189.下列有关一次函数y=﹣2x+1的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>1C.函数图象与y轴的交点坐标为(0,1)D.函数图象经过第一、二、四象限10.如图1,四边形ABCD为一块矩形草坪,小明从点B出发,沿BC→CD→DA运动至点A停止.设小明运动路程为x,△ABP的面积为y,y关于x的函数图象如图2所示.矩形草坪ABCD的边CD的长度是()A.6B.8C.10D.14二.填空题11.二次根式有意义,则x的取值范围是.12.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若a=4,b=3,则大正方形的面积是.13.将直线y=2x向上平移1个单位长度后得到的直线是.14.数据﹣2、﹣1、0、1、2的方差是.15.如图,一次函数y=mx+n与一次函数y=kx+b的图象交于点A(1,2),则关于x的不等式mx+n>kx+b的解集是.16.如图,四边形ABCD是正方形,BC=,点G为边CD上一点,CG=1,以CG为边作正方形CEFG,对于下列结论:①正方形ABCD的面积是3;②BG=2;③∠FED=45°;④BG⊥DE.其中正确的结论是(请写出所有正确结论的序号).三、解答题17.计算:.18.如图,在△ABC中,AB=15,AC=20,BC=25.(1)求证:∠BAC=90°;(2)作AH⊥BC,H为垂足,求AH的长.19.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.20.为了解某小区使用共享单车的情况,某研究小组随机采访该小区10位居民,得到这10位居民一周内使用共享单车的次数分别是:16,12,15,22,16,0,7,27,16,9.(1)计算这10位居民一周内使用共享单车的平均次数;(2)这组数据的中位数是;(3)某位居民一周内使用共享单车15次,能不能说该居民一周内使用共享单车的次数处于所有被采访居民的中上水平?试说明理由.21.如图,在平面直角坐标系中,直线y=﹣2x+10与y轴交于点A,与x轴交于点B,另一条直线经过点A和点C(﹣2,8),且与x轴交于点D.(1)求直线AD的解析式;(2)求△ABD的面积.22.如图,△ABC中,AH⊥BC于点H,点D,E分别是AB,AC的中点,连接DH,EH,DE.(1)求证:AD=DH;(2)若四边形ADHE的周长是30,△ADE的周长是21,求BC的长.23.某公司计划组织员工到某地旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人2000元.经过协商:甲旅行社表示可给予每位游客七五折(按报价75%)优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折(按报价80%)优惠.设该公司参加旅游的人数是x人,选择甲旅行社所需费用为y1元,选择乙旅行社所需费用为y2元.请解答下列问题:(1)请分别写出y1,y2与x之间的关系式.(2)在甲、乙两家旅行社中,你认为选择哪家旅行社更划算?24.如图,已知直线y=﹣2x+8与坐标轴跟别交于A,B两点,与直线y=2x交于点C.(1)求点C的坐标;(2)若点P在y轴上,且,求点P的坐标;(3)若点M在直线y=2x上,点M横坐标为m,且m>2,过点M作直线平行于y轴,该直线与直线y=﹣2x+8交于点N,且MN=1,求点M的坐标.25.如图1,四边形ABCD是矩形,点O位于对角线BD上,将△ADE,△CBF分别沿DE、BF翻折,点A,点C都恰好落在点O处.(1)求证:∠EDO=∠FBO;(2)求证:四边形DEBF是菱形:(3)如图2,若AD=2,点P是线段ED上的动点,求2AP+DP的最小值.参考答案一、选择题1.的计算结果是()A.2B.9C.6D.3【分析】求出的结果,即可选出答案.解:=3,故选:D.2.在下列计算中,正确的是()A.B.C.D.【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.解:=3﹣=2,故选项A正确;=1,故选项B错误;,故选项C错误;==,故选项D错误;故选:A.3.在体育中考跳绳项目中,某小组的8位成员跳绳次数如下:175、176、175、180、179、176、180、176,这组数据的众数为()A.175B.176C.179D.180【分析】根据众数的概念求解可得.解:这组数据中176出现3次,次数最多,所以众数为176,故选:B.4.若菱形的两条对角线长分别为8和6,则这个菱形的面积是()A.96B.48C.24D.12【分析】根据菱形的面积等于对角线乘积的一半计算即可.解:∵四边形ABCD是菱形,∴S=×6×8=24.故选:C.5.在竞选班干部时,某同学表达能力、组织能力、责任心的得分分别是90分,80分,85分.若依次按20%,40%,40%的比例确定最终得分,则这个人的最终得分是()A.82分B.84分C.85分D.86分【分析】根据题意和加权平均数的计算方法,可以计算出这个人的最终得分.解:90×20%+80×40%+85×40%=84(分),即这个人的最终得分是84分,故选:B.6.在下列各组数中,不能作为直角三角形的三边长的是()A.,,B.30,40,50C.1,,2D.5,12,13【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.解:A、()2+()2≠()2,不符合勾股定理的逆定理,故本选项符合题意;B、302+402=502,符合勾股定理的逆定理,故本选项不符合题意;C、12+()2=22,符合勾股定理的逆定理,故本选项不符合题意;D、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;故选:A.7.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5B.2C.D.【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.解:由勾股定理可知,∵OB=,∴这个点表示的实数是.故选:D.8.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长是36,OE=3,则四边形ABFE的周长为()A.21B.24C.27D.18【分析】先由ASA证明△AOE≌△COF,得OE=OF,AE=CF,再求得AB+BC=18,由平行四边形ABFE的周长=AB+AE+BF+EF=AB+BF+CF+2OE,即可求得答案.解:∵四边形ABCD为平行四边形,对角线的交点为O,∴AB=CD,AD=BC,OA=OC,AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,AE=CF,∵平行四边形ABCD的周长为36,∴AB+BC=×36=18,∴四边形ABFE的周长=AB+AE+BF+EF=AB+BF+CF+2OE=AB+BC+2×3=18+6=24故选:B.9.下列有关一次函数y=﹣2x+1的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>1C.函数图象与y轴的交点坐标为(0,1)D.函数图象经过第一、二、四象限【分析】根据一次函数的性质分别判断后即可确定正确的选项.解:A、∵k=﹣2<0,∴y的值随着x增大而减小,正确,不符合题意;B、∵k=﹣2<0,∴y的值随着x增大而减小,∴当x>0时,y<1,错误,符合题意;C、∵当x=0时,y=1,∴函数图象与y轴的交点坐标为(0,1),正确,不符合题意;D、∵k=﹣2<0,b=1>0,∴函数图象经过第一、二、四象限,正确,不符合题意,故选:B.10.如图1,四边形ABCD为一块矩形草坪,小明从点B出发,沿BC→CD→DA运动至点A停止.设小明运动路程为x,△ABP的面积为y,y关于x的函数图象如图2所示.矩形草坪ABCD的边CD的长度是()A.6B.8C.10D.14【分析】点P从点B运动到点C的过程中,y与x的关系是一个一次函数,运动路程为6时,面积发生了变化,说明BC的长为6,当点P在CD上运动时,三角形ABP的面积保持不变,就是矩形ABCD面积的一半,并且动路程由6到14,说明CD的长为8.解:结合图形可以知道,P点在BC上,△ABP的面积为y增大,当x在6﹣﹣14之间得出,△ABP的面积不变,得出BC=6,CD=14﹣6=8,故选:B.二.填空题11.二次根式有意义,则x的取值范围是x≥5.【分析】根据二次根式的意义,被开方数是非负数列出方程,解方程即可.解:根据题意得:x﹣5≥0,解得x≥5.故答案为:x≥5.12.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若a=4,b=3,则大正方形的面积是25.【分析】求出大正方形的边长即可.解:由勾股定理可知大正方形的边长===5,∴大正方形的面积为25,故答案为25.13.将直线y=2x向上平移1个单位长度后得到的直线是y=2x+1.【分析】先判断出直线经过坐标原点,然后根据向上平移,横坐标不变,纵坐标加求出平移后与坐标原点对应的点,然后利用待定系数法求一次函数解析式解答.解:直线y=2x经过点(0,0),向上平移1个单位后对应点的坐标为(0,1),∵平移前后直线解析式的k值不变,∴设平移后的直线为y=2x+b,则2×0+b=1,解得b=1,∴所得到的直线是y=2x+1.故答案为:y=2x+1.14.数据﹣2、﹣1、0、1、2的方差是2.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.解:由题意可得,这组数据的平均数是:,∴这组数据的方差是:=2,故答案为:2.15.如图,一次函数y=mx+n与一次函数y=kx+b的图象交于点A(1,2),则关于x的不等式mx+n>kx+b的解集是x>1.【分析】观察函数图象得到当x>1时,直线y=mx+n在直线y=kx+b的上方,于是得到不等式mx+n>kx+b的解集.解:根据图象可知,不等式mx+n>kx+b的解集为x>1.故答案为:x>1.16.如图,四边形ABCD是正方形,BC=,点G为边CD上一点,CG=1,以CG为边作正方形CEFG,对于下列结论:①正方形ABCD的面积是3;②BG=2;③∠FED=45°;④BG⊥DE.其中正确的结论是①②④(请写出所有正确结论的序号).【分析】由正方形的性质可得BC=CD,∠BCD=90°,正方形ABCD的面积=BC2=3,可判断①;由勾股定理可求BG的长,可判断②;由正方形的性质可得∠GEF=45°,可判断③;由“SAS”可证△BCG≌△DCE,可得BH⊥DE,可判断④,即可求解.解:∵四边形ABCD是正方形,BC=,∴BC=CD,∠BCD=90°,正方形ABCD的面积=BC2=3,故①正确;∵BC=,CG=1,∴BG===2,故②正确,如图,连接GE,延长BG交DE于H,∵四边形CEFG是正方形,∴CG=CE,∠GCE=∠BCG=90°,∠GEF=45°,∵∠FED<∠GEF,∴∠FED<45°,故③错误,∵CG=CE,∠GCE=∠BCG=90°,BC=CD,∴△BCG≌△DCE(SAS),∴∠GBC=∠CDE,∵∠CDE+∠DEC=90°,∴∠GBC+∠DEC=90°,∴∠BHE=90°,∴BH⊥DE,故④正确,故答案为:①②④.三、解答题17.计算:.【分析】根据二次根式的乘除法和减法可以解答本题解:=﹣+2=2+.18.如图,在△ABC中,AB=15,AC=20,BC=25.(1)求证:∠BAC=90°;(2)作AH⊥BC,H为垂足,求AH的长.【分析】(1)根据勾股定理的逆定理求出即可;(2)设BH=x,则HC=25﹣x,由勾股定理得出方程152﹣x2=202﹣(25﹣x)2,求出x,再根据勾股定理求出AH即可.【解答】(1)证明:∵AB2+AC2=152+202=625,BC2=252=625,∴AB2+AC2=BC2,∴∠BAC=90°;(2)解:设BH=x,则HC=25﹣x,∵AH⊥BC,∴∠AHB=∠AHC=90°,在Rt△AHB和Rt△AHC中,由勾股定理得:AH2=AB2﹣BH2=AC2﹣CH2,即152﹣x2=202﹣(25﹣x)2,解得:x=10,即BH=10,由勾股定理得:AH===5.19.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.【分析】根据正方形的判定和性质定理即可得到结论.解:∵四边形ABCD是正方形,∴∠FDC=∠DCF=45°,∵∠E=90°,ED=EC,∴∠EDC=∠ECD=45°,∴∠FCE=∠FDE=∠E=90°,∴四边形DFCE是矩形,∵DE=CE,∴四边形DFCE是正方形.20.为了解某小区使用共享单车的情况,某研究小组随机采访该小区10位居民,得到这10位居民一周内使用共享单车的次数分别是:16,12,15,22,16,0,7,27,16,9.(1)计算这10位居民一周内使用共享单车的平均次数;(2)这组数据的中位数是15.5;(3)某位居民一周内使用共享单车15次,能不能说该居民一周内使用共享单车的次数处于所有被采访居民的中上水平?试说明理由.【分析】(1)根据平均数的概念,将所有数的和除以10即可;(2)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数;(3)用样本平均数估算总体的平均数.解:(1)根据题意得:×(0+7+9+12+15+16×3+22+27)=14(次),答:这10位居民一周内使用共享单车的平均次数是14次;(2)按照从小到大的顺序新排列后,第5、第6个数分别是15和16,所以中位数是(15+16)÷2=15.5,故答案为:15.5;(3)不能;∵15次小于中位数15.5次,∴某位居民一周内使用共享单车15次,不能说该居民一周内使用共享单车的次数处于所有被采访居民的中上水平.21.如图,在平面直角坐标系中,直线y=﹣2x+10与y轴交于点A,与x轴交于点B,另一条直线经过点A和点C(﹣2,8),且与x轴交于点D.(1)求直线AD的解析式;(2)求△ABD的面积.【分析】(1)先直线AB的解析式求出A点坐标,再根据点A与点C的坐标即可求得直线AD的解析式;(2)根据直线AB的解析式求得点B的坐标,根据直线AD的解析式求得点D的坐标,再根据点A的坐标即可求得△ABD的面积.解:(1)∵直线y=﹣2x+10与y轴交于点A,∴A(0,10).设直线AD的解析式为y=kx+b,∵直线AD过A(0,10),C(﹣2,8),∴,解得,∴直线AD的解析式为y=x+10;(2)∵直线y=﹣2x+10与x轴交于点B,∴B(5,0),∵直线AD与x轴交于点D,∴D(﹣10,0),∴BD=15,∵A(0,10),∴△ABD的面积=BD•OA=×15×10=75.22.如图,△ABC中,AH⊥BC于点H,点D,E分别是AB,AC的中点,连接DH,EH,DE.(1)求证:AD=DH;(2)若四边形ADHE的周长是30,△ADE的周长是21,求BC的长.【分析】(1)根据直角三角形的性质即可得到即可;(2)根据直角三角形的性质得到AD=DH=AB,AE=HE=AC,求得AD+AE=×30=15,得到DE=21﹣15=6,根据三角形中位线定理即可得到结论.解:(1)∵AH⊥BC,∴∠AHB=90°,∵点D是AB的中点,∴AD=DH=AB;(2)∵AH⊥BC,∴∠AHB=∠AHC=90°,∵点D,E分别是AB,AC的中点,∴AD=DH=AB,AE=HE=AC,∵四边形ADHE的周长是30,∴AD+AE=×30=15,∵△ADE的周长是21,∴DE=21﹣15=6,∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=12.23.某公司计划组织员工到某地旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人2000元.经过协商:甲旅行社表示可给予每位游客七五折(按报价75%)优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折(按报价80%)优惠.设该公司参加旅游的人数是x人,选择甲旅行社所需费用为y1元,选择乙旅行社所需费用为y2元.请解答下列问题:(1)请分别写出y1,y2与x之间的关系式.(2)在甲、乙两家旅行社中,你认为选择哪家旅行社更划算?【分析】(1)根据甲、乙旅行社的不同的优惠方案,可求出函数关系式,(2)根据(1)的结论列方程或不等式解答即可.解:(1)由题意,得y1=2000×75%×x=1500x,y2=2000×80%(x﹣1)=1600x﹣1600;(2)①当y1=y2时,即:1500x=1600x﹣1600,解得,x=160,②当y1>y2时,即:1500x>1600x﹣1600,解得,x<160,③当y1<y2时,即:1500x<1600x﹣1600,解得,x>160,答:当x<160时,乙旅行社费用较少,当x=160,时,两个旅行社费用相同,当x>160时,甲旅行社费用较少.24.如图,已知直线y=﹣2x+8与坐标轴跟别交于A,B两点,与直线y=2x交于点C.(1)求点C的坐标;(2)若点P在y轴上,且,求点P的坐标;(3)若点M在直线y=2x上,点M横坐标为m,且m>2,过点M作直线平行于y轴,该直线与直线y=﹣2x+8交于点N,且MN=1,求点M的坐标.【分析】(1)解析式联立,解方程组即可求得;(2)根据题意求得OP的长,从而求得P的坐标;(3)根据题意得到2m﹣(﹣2m+8)=1,求得m的值,即可求得M的坐标.解:(1)由,解得,∴点C的坐标为(2,4);(2)∵直线y=﹣2x+8与坐标轴跟别交于A,B两点,∴A(0,8),B(4,0),∴OA=8,∵点P在y轴上,且,∴OP=OA=4,∴P的坐标为(0,4)或(0,﹣4);(3)∵点M在直线y=2x上,点M横坐标为m,且m>2,∴M(m,2m),N(m,﹣2m+8),∵MN=1,∴2m﹣(﹣2m+8)=1,∴m=,∴点M的坐标为(,).25.如图1,四边形ABCD是矩形,点O位于对角线BD上,将△ADE,△CBF分别沿DE、BF翻折,点A,点C都恰好落在点O处.(1)求证:∠EDO=∠FBO;(2)求证:四边形DEBF是菱形:(3)如图2,若AD=2,点P是线段ED上的动点,求2AP+DP的最小值.【分析】(1)由折叠的性质得出△ADE≌△ODE,△CFB≌△OFB,则∠ADE=∠ODE =ADB,∠CBF=∠OBF=∠CBD,则可得出结论;(2)证得四边形DEBF是平行四边形,由全等三角形的性质得出∠A=∠DOE=90°,则可得出结论;(3)过点P作PH⊥AD于点H,得出∠ADE=∠ODE=∠ODF=30°,得出2AP+PD =2PA+2PH=2(AP+PH),过点O作OM⊥AD,与DE的交点即是2AP+PD的值最小的点P的位置.而此时(2AP+PD)的最小值=2OM,求出OM的长,则可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠CBD,∵将△ADE,△CBF分别沿DE、BF翻折,点A,点C都恰好落在点O处.∴△ADE≌△ODE,∴△CFB≌△OFB,∴∠ADE=∠ODE=∠ADB,∠CBF=∠OBF=∠CBD,∴∠EDO=∠FBO;(2)证明:∵∠EDO=∠FBO,∴DE∥BF,∵四边形ABCD是矩形,∴AB∥CD,AD=BC,∠A=90°,∵DE∥BF,AB∥CD,∴四边形DEBF是平行四边形,又∵△ADE△≌△ODE,∴∠A=∠DOE=90°,∴EF⊥BD,∴四边形DEBF是菱形;(3)解:过点P作PH⊥AD于点H,∵四边形DEBF是菱形,△ADE≌△ODE,∴∠ADE=∠ODE=∠ODF=30°,∴在Rt△DPH中,2PH=PD,∴2AP+PD=2PA+2PH=2(AP+PH),过点O作OM⊥AD,与DE的交点即是2AP+PD的值最小的点P的位置.而此时(2AP+PD)的最小值=2OM,∵△ADE≌△ODE,AD=2,∴AD=DO=2,在Rt△OMD中,∵∠ODA=2∠ADE=60°,∴∠DOM=30°,∴DM=DO=1,∵DM2+OM2=DO2,∴12+OM2=22,∴OM=,∴(2PA+PD)的最小值为2OM=2.。
北师大版2018-2019学年六年级上学期期末测试数学试卷综合测试数学试卷含解析

北师大版2018-2019学年六年级上学期期末测试数学试卷综合测试数学试卷一、填空题1.【答案】2.要确定一个圆形纸片的圆心,可以把纸片按不同的方向至少对折(______)次,折痕的(交点)就是这个圆形纸片的圆心。
【答案】2【解析】略3.如下图,幸福村种了88公顷黄瓜,种了(______)公顷西红柿;黄瓜、西红柿、辣椒三种蔬菜种植面积的比是(______)。
【答案】8 11∶1∶8【分析】由图意可知,黄瓜种了88公顷,占三种蔬菜面积的55%,根据已知一个数的百分之几是多少,求这个数用除法求出三种蔬菜的种植面积,西红柿的种植面积占三种蔬菜种植面积的百分比用1-55%-40%=5%,总面积×5%求出西红柿的种植面积;三种蔬菜面积之比可用55%∶40%∶5%,化简即可。
【详解】三种蔬菜的种植面积:88÷55%=160(公顷)西红柿的种植面积:160×(1-55%-40%)=160×5%=8(公顷)黄瓜、西红柿、辣椒三种蔬菜种植面积的比:1-55%-40%=5%55%∶40%∶5%=55∶40∶5=11∶8∶1【点睛】已知一个数的百分之几是多少,求这个数用除法;求一个数的百分之几是多少用乘法计算;解答此题的关键是求出西红柿的种植面积占三种蔬菜种植面积的百分之几。
4.某商场2018年的营业额是300万元,按照营业额的3%缴纳增值税,应缴纳增值税_____万元,剩余_____万元.【答案】9 1【详解】300×3%=9(万元)300﹣9=1(万元)答:应缴纳增值税9万元,剩余1万元.故答案为:9,1.5.的倒数是_____.【答案】【解析】求一个分数的倒数,把这个分数的分子和分母交换位置即可.6.45=________∶15=()16________=________÷10=________成【答案】12;20;8;八【分析】根据比、分数、除法之间的关系结合基本性质的运用确定前项、分母和被除数;把分数化成百分数,根据百分数确定成数。
2019-2020学年第二学期六年级数学期末试题(含答案)

2019-2020学年第二学期期末考试六年级数学试题(考试时间:120分钟 分值:120分)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共7页.2. 数学试题答题卡共4页.答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束后上交答题卡.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上.第I 卷(选择题 共30分)一、选择题(本题共10小题,共30分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。
每小题选对得3分,不选或选出的答案超过一个均记零分。
) 1.下列调查中,须用普查的是( ) A .了解我区六年级同学的视力情况 B .了解我区六年级同学课外阅读的情况C .了解我区六年级同学今年5月20日回校报到时的校园健康“入学码”情况D .了解我区六年级同学疫情期间参加晨练的情况 2.下列计算正确的有( )①3﹣1=﹣3;②(x²)3=x 5;③33x x =2x 3;④(π﹣3.14)0=1A .1个B .2个C .3个D .4个3.从五边形的一个顶点出发可以连接的对角线条数为( ) A .1B .2C .3D .44.新冠病毒(2019﹣nCoV )平均直径约为100nm (纳米),即0.0000001米. 0.0000001m 用科学记数法可以表示为( ) A .0.1×10﹣6m B .10×10﹣8mC .1×10﹣7mD .1×1011m5.小明在计算322(63)(3)x y x y xy -÷时,错把括号内的减号写成了加号,那么正确结果与错误结果的乘积是( ) A .22x xy -B .22x xy +C .4224x x y -D .无法计算6.如图,已知AB ∥ED ,∠ECF =65°,则∠BAF 的度数为( ) A .115° B .65°C .60°D .25°第6题图 第9题图7.若单项式﹣8x a y 和b2y x 41的积为﹣2x 5y 6,则ab 的值为( ) A .2B .30C .-15D .158.下列各式,运算结果为6a 的是( )A .42()a B .122a a ÷C .44a a +D .24a a ⋅9.如图是一辆汽车行驶的速度(千米/时)与时间(分)之间变化图,下列说法正确的是( )A .时间是因变量,速度是自变量B .从3分到8分,汽车行驶的路程是150千米C .时间每增加1分钟,汽车的速度增加10千米/时D .第3分钟时汽车的速度是30千米/时第10题图10.如图,已知直线AB ∥CD ,直线EF 分别与AB 、CD 交于点M 、N ,点H 在直线CD 上,HG ⊥EF 于点G ,过点作GP ∥AB .则下列结论:①∠AMF 与∠DNF 是同旁内角;②∠PGM =∠DNF ;③∠BMN +∠GHN =90°; ④∠AMG +∠CHG =270°.其中正确结论的个数是( ) A .1个B .2 个C .3个D .4个第II 卷(非选择题 共90分)二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.)11.在地球某地,温度T (℃)与高度d (m )的关系可以近似用T =10﹣50d来表示,根据这个关系式,当高度d 的值是400时,T 的值为__________.12.如图,点C 、D 在线段AB 上,点C 为AB 中点,若AC =5cm ,BD =2cm ,则CD = cm .第12题图 第14题图13.若a m•a2=a7,则m的值为.14.一副三角板如图摆放,过点D作DE∥AB,则∠CDE的度数为.15.若x2+y2=10,xy=3,则(x﹣y)2=.16.如图,射线OA的方向是北偏东20度,射线OB的方向是北偏西40度,OD是OB 的反向延长线.若OC是∠AOD的平分线,则射线OC的方向是北偏东________度.第16题图17.当m=1,n=2时,(m+n)(m²-mn+n²)的值为__________.18.阅读材料后解决问题:小明遇到下面一个问题:计算(2+1)(22+1)(24+1)(28+1)经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2﹣1)(2+1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=(28﹣1)(28+1)=216﹣1请你根据小明解决问题的方法,试着解决以下的问题: (5+1)(52+1)(54+1)(58+1)= .三、解答题(本大题共7小题,满分62分,解答应写出必要的文字说明、证明过程或推演步骤)19.(本题满分12分)计算:(1)(2x ﹣1)2﹣(2x +5)(2x ﹣5) (2)(2x 2)3﹣3x 2•4x 4+2x 8÷x 2 (3)321()n x x--⋅+22()nxx ⋅-20.(本题满分7分)如图,直线AB 、CD 相交于O ,OE ⊥CD ,且∠BOD 的度数是∠AOD 的5倍. 求:(1)∠AOD 、∠BOD 的度数; (2)∠BOE 的度数.21.(本题满分7分) 已知x =10,y =125-,求22[(2)(2)24]()xy xy x y xy +--+÷的值. 22.(本题满分7分)我市某学校在暑假期间开展“心怀感恩、孝敬父母”的社会实践活动,倡导学生在假期中帮助父母干家务.开学以后,校学生会随机抽取了部分学生,就暑假“平均每天帮助父母干家务所用时长”进行了调査,以下是根据相关数据绘制的统计图的部分.根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数_________人;(2)补全频数分布直方图;(3)如果该校共有学生1000人,请你估计“平均每天帮助父母家务的时长不少于30分钟”的学生大约有多少人?23.(本题满分9分)如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点.(1)若线段AB=a,CE=b且(a﹣16)2+|2b﹣8|=0,求a,b的值;(2)在(1)的条件下,求线段CD的长.24.(本题满分10分)【探究】如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示),通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式_________.(用含a,b的等式表示)【应用】请应用这个公式完成下列各题:(1)已知4m2-n2=12,2m+n=4,则2m﹣n的值为.(2)计算:20192﹣2020×2018.【拓展】计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.25.(本题满分10分)(1)已知,如图1,BE平分∠ABC,∠1=∠2,试说明∠AED=∠C成立的理由.下面是小鹏同学进行的说理,请你将小鹏同学的说理过程或说理根据补充完整.解:因为BE平分∠ABC(已知),所以∠1=①(角平分线的定义),又因为∠1=∠2(已知),所以∠2=∠3(②).所以DE//BC(③),所以∠AED=∠C(④).(2)如图2,如果a//b,找出图中各角之间的等量关系(找出3组即可).要使c//d,那么需要哪两个角相等?为什么?(图1)(图2)六年级数学试题参考答案及评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分标准相应评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题:本大题共10小题,共30分. 每小题选对得3分,选错、不选或选出的答案超过一个均记零分.题号 1 2 3 4 5 6 7 8 9 10答案 C B B C C A D D D C二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.2 12. 3 13.5 14. 15°15.4 16. 80 17. 918.×(516﹣1)三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分12分)解:(1)原式=4x2﹣4x+1﹣(4x2﹣25)=4x2﹣4x+1﹣4x2+25=﹣4x+26 ┈┈┈┈┈┈4分(2)原式=8x6﹣12x6+2x6=﹣2x6.┈┈┈┈┈┈8分(3)原式===0┈┈┈┈┈┈12分20.(本题满分7分)解:(1)∵AB是直线(已知),∴∠BOD+∠AOD=180°,∵∠BOD的度数是∠AOD的5倍,∴∠AOD=×180°=30°,∠BOD=×180°=150°.┈┈┈┈┈┈4分(2)∵∠BOC=∠AOD=30°,OE⊥DC,∴∠EOC=90°,∴∠BOE=∠EOC﹣∠BOC=90°﹣30°=60°.┈┈┈┈┈┈7分21.(本题满分7分)解:原式=┈┈┈┈┈┈2分==-xy ┈┈┈┈┈┈4分将x=10,y=代入上式,得= ┈┈┈┈┈┈7分22.(本题满分7分)解:(1)在本次随机抽取的样本中,调查的学生人数为60÷30%=200(人),┈┈┈┈┈┈2分(2)20﹣30分钟的人数为200﹣(60+40+50+10)=40(人),补全图形如下:┈┈┈┈┈┈4分(3)估计“平均每天帮助父母家务的时长不少于30分钟”的学生大约有1000×=300(人).┈┈┈┈┈┈7分23.(本题满分9分)解:(1)∵(a﹣16)2+|2b﹣8|=0,∴a﹣16=0,2b﹣8=0,∵a、b均为非负数,∴a=16,b=4,┈┈┈┈┈┈4分(2)∵点C为线段AB的中点,AB=16,CE=4,∴AC=AB=8,┈┈┈┈┈┈6分∴AE=AC+CE=12,┈┈┈┈┈┈7分∵点D为线段AE的中点,∴DE=AE=6,┈┈┈┈┈┈8分∴CD=DE﹣CE=6﹣4=2.┈┈┈┈┈┈9分24.(本题满分10分)解:【探究】答案为(a+b)(a﹣b)=a2﹣b2.┈┈┈┈┈┈2分【应用】(1)答案为3.┈┈┈┈┈┈4分(2)20192﹣2020×2018=20192﹣(2019+1)×(2019﹣1)┈┈┈┈┈┈5分=20192﹣(20192﹣1)┈┈┈┈┈┈6分=20192﹣20192+1=1┈┈┈┈┈┈7分【拓展】1002﹣992+982﹣972+…+42﹣32+22﹣12=(100+99)×(100﹣99)+(98+97)×(98﹣97)+…+(4+3)×(4﹣3)+(2+1)×(2﹣1)┈┈┈┈┈┈8分=199+195+…+7+3┈┈┈┈┈┈9分=5050┈┈┈┈┈┈10分25.(本题满分10分)解:(1)①∠3 ┈┈┈┈┈┈1分②等量代换┈┈┈┈┈┈2分③内错角相等,两直线平行┈┈┈┈┈┈3分④两直线平行,同位角相等┈┈┈┈┈┈4分(2)∠1=∠2,∠2=∠3,∠1=∠3 ┈┈┈┈┈┈7分当∠4=∠6时,c//d ,┈┈┈┈┈┈8分理由:内错角相等,两直线平行。
2018-2019学年第二学期小学六年级数学期末质量检测试题

2018-2019学年第二学期小学六年级数学期末质量检测试题(时间:90分钟)同学们,通过一学期的学习,你一定有很多收获,现在就请你用所学的知识,解决下面的问题吧。
别忘了仔细审题,认真答卷哦!老师相信你一定能行!一、选择题。
1.2008年的1月份、2月份、3月份一共有()天。
A.89 B.90 C.91 D.922.下列各数中的“5”表示的数最大的是()。
A.70.5B.5.02C.58D.5%3.a是一个非0的自然数,下面算式中,()的得数最大A. a ÷23B.a ×23C.a -23D.a ÷344.从甲地到乙地。
李明要2.5小时,王军要2.25小时,李明和王军速度的最简比是()。
A.2.25:2.5B.10:9C.9:10D.2.5:2.255.若一件大衣先提价15%,然后又降价15%,则现在的价钱与原价相比()。
A.相等B.降低了C.提高了D.无法确定6.从甲堆煤取17给乙堆煤,这时两堆煤的质量相等,原来甲、乙两堆煤的质量比是()。
A.5:7B.7:5C.9:7D.7:97.甲、乙、丙三个数,乙数是甲数的45,丙数是乙数的56。
甲、乙、丙三个数关系是()。
A.甲>乙>丙B.丙>乙>甲C.甲>丙>乙D.丙>甲>乙8.下列各题中的两种量,成反比例的是()。
A.小东的身高和体重B.修一条水渠,每天修的米数和天数C.圆的半径和面积D.订《中国少年报》的份数和钱数9.把一个边长3厘米的正方形按3︰1扩大后,面积是()平方厘米。
A. 9B.27C.81D. 1810.三(2)班的同学在玩摸球游戏。
现在箱里有2个红球和3个黄球。
下面说法正确的是()。
A.一定能摸到黄球。
B.摸到红球的可能性是52。
C.摸到红球的可能性是21。
D.一定能摸到红球。
11.小刚今年a岁,小刚的爸爸今年b岁,爸爸比小明大n岁。
m年后,爸爸比小明大()岁。
A.n+mB.nC.mD.n-m12.把200克盐溶于1千克水中,盐占盐水重量的( )。
2018-2019学年广东省广州市越秀区五年级上期末考试数学试卷及答案解析

2018-2019学年广东省广州市越秀区五年级上期末考试数学试卷一.计算题1.直接写出得数.9×0.001=7×0.4=0.16×0.3=0.5×0.02=3÷5=4.8÷6=0.45÷0.3=0.056÷0.8= 1.5×2÷1.5×2=60÷8÷12.5=2.列竖式计算下面各题.32.4×0.4531.5÷3.667.58÷623.计算下面各题,怎么简便怎么计算,并写出必要的简算过程.9.3×4×0.255.1×3.14+4.86×5.185.68÷5.6﹣12.292.4﹣(24.5×0.6+23.3)4.解下列方程.(1)7x+26.8=72.3(2)4(x﹣3.2)=22.4二.填空题.5.12.3×4.5=123×45÷0.2÷0.21=÷216.(1)6.14×3=,把积保留一位小数是.(2)4÷1.5=,把商精确到千分位是.7.在〇里填上“>”、“<”或“=”0.9×0.9〇0.9 1.1×1.1〇1.18.7×1〇8.72.8÷1.2〇2.819.6÷0.8〇19.6a÷1〇a8.6千克花生能出油2.4千克,照这样计算,1千克花生能出油千克.出油1千克需要花生千克.9.工地原有沙子200吨,每天运走a吨,运了4天,剩下的沙子要5天运完,平均每天要运吨.当a=10时,剩下的沙子平均每天要吨.10.把两个形状、大小完全相同的梯形拼成一个平行四边形,拼合后可以发现梯形的面积是平行四边形面积的,平行四边形的底=梯形的,平行四边形的高=梯形的∵平行四边形的面积=(填写计算公式),∴梯形的面积=(填写计算公式).11.张成要将8.5升牛奶分装在一些瓶子里,每个瓶子最多能装0.6升,至少需要个瓶子才能装完.12.如图,一个平行四边形和一个三角形拼成一个梯形,若梯形的面积是30cm2,则三角形的面积是cm2.13.从如图盒子里任意摸一个球,结果如下,请根据要求给盒子里的球做标记.(1)一定能摸到⊕球.(2)不可能摸到⊙球,可能摸到⊕球、⊗球,〇球,摸到〇球的可能性最小.三、根据题意列出方程.(只列方程,不计算〕14.根据题意列出方程.(只列方程,不计算]列方程:15.张华体重100千克,比小明体重的4倍少20千克.小明体重x千克.列方程:四、选择题(选择正确答案的字母编号填在括号里).16.下面的式子中,属于方程的是()A.9x﹣a B.9x﹣a<10C.9×2﹣8=10D.9x﹣a=10。
【精品真题】2018-2019学年广东省广州市越秀区数学六年级下册第二学期期末质量检测真题(人教版,解析版)

2018-2019学年广东省广州市越秀区六年级(下)期末数学试卷一.填空题。
1.据统计,至2017年末,广州市常住人口约是一千四百四十九万八千四百人,这个数写作人,省略万位后面的尾数约是万人.2.水位高于正常水位0.8m记为+0.8m那么水位低于正常水位0.5m记为;向东走15m记为+15m,那么向走10m记为﹣10m.3.把40.05、40.5%、、4.各数按从大到小的顺序排列是:>>>4.0.07:=1:==10÷=(最后一空填小数)5.一批树苗,种50棵,有10棵不成活.这批树苗的成活率是;照这样计算,若要有1200棵成活,则要种棵树苗.6.一套衣服,上衣x元,比裤子贵120元,用含有字母的式子表示,这套衣服共元;当x=300时,这套衣服共元.7.把3个棱长是2cm的正方体拼成一个长方体.拼成的长方体的体积是cm3,它的表面积比3个正方体的表面积之和少了cm2.8.在一块平地上挖一个底面半径是4m的圆柱形水池,池深1m,需要挖出m3的土;要在池底和内壁贴上瓷片,贴瓷片的面积是m2.9.如图,一个内直径是6cm的瓶里装满矿泉水,小兰喝了一些后,这时瓶里水的高度是12cm,把瓶盖拧紧后倒置放平,无水部分高8cm.小兰喝了ml水;这个瓶子的容积是ml.10.仓库里有若干棱长都是5dm的正方体纸箱,拼成了一个几何体,从上面看到的图形是,从左面看到的图形是,这堆纸箱的占地面积是二、作图、填空与解答题.11.如图,是广场附近的平面图.(1)图书馆在广场的方向,实际距离是m.(2)歌剧院在广场的西偏南30°方向150m处.在图中标出歌剧院的位置.(3)少年宫在广场正北方向100米处,小明从广场走到少年宫要2分钟,照这样计算,他从广场走到歌剧院要多少分钟?(用比例知识列方程解答)三、选择正确答案的字母编号填在括号里.12.如果m>0,那么下列各式计算结果最大的是()A.m×(1+)B.m÷(1+)C.m×(1﹣)D.m÷(1﹣)13.把4米长的绳子平均剪成5段,每段长是这条绳子的()A.B.C.D.14.甲、乙两车走同一条路从A地开往B地,甲车要6小时,乙车要4小时,那么甲车和乙车的速度比是()A.6:4B.3:2C.2:3D.无法确定15.下列说法正确的是()A.两个分数大小相等,它们的分数单位一定相同.B.如果,那么x和y成正比例关系.C.8:5的比值是.D.一个三角形,三条边的长度可以分别是3cm.5cm和7cm.16.若圆柱和圆锥等底等高,且两者体积相差9.6dm3,则圆柱体积是()dm3.A.28.8B.14.4C.48D.3.217.从完全相同的甲、乙两块正方形铁皮上分别剪出如图的圆形,比较它们剩下的废料面积是()A.甲多B.乙多C.同样多D.不能确定四、解决问题.18.六年(1 )班全体同学投票选班长,毎位同学投且只能投一票,得票数最高者当选.下面是全部候选人得票情况統汁图.(1)当选班长的同学姓名是.(2)王倩得票数占总票数的%.(3)如果张力得4票,那么吴佳得多少票?19.商店第一季度的营业额为15万元,第二季度的营业额比第一季度增长了10%.第二季度的营业额是多少万元?20.小丽借了一本故事书,若每天看21页,则8天可以看完;若要在一个星期看完,则平均每天要看多少页?(用比例知识列方程解答)21.某校六年級有三个班,在“献爱心﹣﹣为贫困地区儿童捐书“活劫中共捐书550本.其中一班捐书本数占六年級捐书总数的20%,二班和三班捐书本数之比是6:5.(1)一班捐书多少本?(2)二班捐书多少本?22.一块底面半径6cm,高12cm的圆锥形钢材,把它熔铸成一根横截面半径是1cm的圆柱形钢条,这根钢条长多少厘米?23.甲乙两个工程队合修一段公路,甲队修了全长的后,乙队接着修了4.5km,这时恰好修完全长的一半.这段公路长多少千米?参考答案与试题解析一.填空题。
2018-2019学年人教版六年级下册数学期末试卷 (含答案)

2018-2019学年六年级下数学期末测试卷(时间90分钟,满分100分)一、反复比较我会选 (每小题1分,共10分)。
1、下面说法正确的是( )。
A.一个数不是正数就是负数B.0既不是正数也不是负数C.所有在正数都比0小D.0是正数2、树苗的成活率是90%,成活树苗的棵数与死亡树苗的棵数的比是( ) A.9:10; B.10:9 C.1:9 D.9:13、一个圆锥和一个圆柱的体积和高都相等,那么圆柱与圆锥( )。
A.底面半径的比是1:3 B.底面直径的比是3:1 C.底面周长的比是3:1 D.底面积的比是1:34、一辆汽车31小时行驶60千米,行1千米需要多长时间,列式为 ( )。
A.31÷60 B. 31 × 60 C. 60 ×31 D. 60÷31 5.小明将1000元钱存入银行,定期三年,年利率为3.75%,三年后可获得利息( )元。
A.37.5B.112.5C.1112.5D.1037.56、李老师打一份稿件,已经打完的字数与还未打的字数的比是3:2,他已经打了这份稿件的( )A .60% B.20% C.40% D.30%7、如果甲数的25等于乙数的47(甲、乙两数都不等于0),那么甲数与乙数的比是( )A .10:7B .3:4C .5:7 D. 8:358. 一幅图的比例尺是1:2000000,下面( )的理解是不正确的。
A.图上距离是实际距离的2000000倍B.图上1厘米,表示实际距离20千米C.图上距离3厘米,代表实际距离60千米D.实际距离80千米,在图上要画4厘米 9.圆的面积与它的半径( )。
A.成正比例B.成反比例C.不成比例10.下面的叙述,()是不正确的。
A.圆柱和圆锥的高相等,底面半径的比是1:3,那么体积之比也是1:1B.底面积和高分别相等的长方体和圆锥,长方体的体积是圆锥的3倍C.当圆柱与长方体的底面积和高相等时,它们的体积也一定相等D.如果圆锥与一个正方体底面积相等,圆锥的高是正方体高的3倍,则它们的体积相等二、火眼金睛我会判(对的涂T,错的涂F 每题1分,共8分)1.两个底面直径相等的圆柱体,表面积也一定相等。
2021-2022学年广东省广州市越秀区人教版四年级上册期末考试数学试卷(解析版)

【3题答案】
【答案】C
【解析】
【分析】根据角的含义:由一点引出的两条射线所围成的图形叫做角,据此即可解答。
【详解】角的两边都是射线。
故答案为:C
【点睛】此题主要考查了角的含义。
4.把一个长方形铁丝架拉成一个平行四边形后,周长( )。
A. 不变B. 变大C. 变小D. 无法判断
【详解】20毫米=2厘米
如图所示:
【点睛】此题主要考查了画指定长、宽的长方形的方法,画图的关键是根据图形的特点(性质)画。
22.画一条线段,把这个平行四边形分成一个三角形和一个梯形。
【22题答案】
【答案】见详解
【解析】
【分析】画一条线段将平行四边形分成一个三角形和一个梯形:过平行四边形的一个顶点,连接对边的一点(顶点除外)即可。
【点睛】此题主要考查了对用量角器度量角的掌握。
20.过点A,画出下面梯形(指定底)的高。
【20题答案】
【答案】见详解
【解析】
【分析】用三角板的一条直角边与线段CD重合,沿重合的边平移三角板,使三角板的另一条直角边和点A重合,过点A沿直角边向线段CD画垂线即可。
【详解】如图所示:
【点睛】此题主要考查梯形高的意义和高的画法,培养学生的作图能力。
B. ,被除数和除数同时加10,不满足商的变化规律,
(120+10)÷(30+10)
所以(120+10)÷(30+10)与算式120÷30的结果不相等;
C. ,被除数除以2,除数乘2,商应该除以4, ,所以算式(120÷2)÷(30×2)与算式120÷30的结果不相等;
D. ,被除数和除数同时除以3,商不变,所以算式(120÷3)÷(30÷3)与算式120÷30的结果相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年广东省广州市越秀区六年级(下)期末数学试卷一.填空题。
1.据统计,至2017年末,广州市常住人口约是一千四百四十九万八千四百人,这个数写作人,省略万位后面的尾数约是万人.2.水位高于正常水位0.8m记为+0.8m那么水位低于正常水位0.5m记为;向东走15m记为+15m,那么向走10m记为﹣10m.3.把40.05、40.5%、、4.各数按从大到小的顺序排列是:>>>4.0.07:=1:==10÷=(最后一空填小数)5.一批树苗,种50棵,有10棵不成活.这批树苗的成活率是;照这样计算,若要有1200棵成活,则要种棵树苗.6.一套衣服,上衣x元,比裤子贵120元,用含有字母的式子表示,这套衣服共元;当x=300时,这套衣服共元.7.把3个棱长是2cm的正方体拼成一个长方体.拼成的长方体的体积是cm3,它的表面积比3个正方体的表面积之和少了cm2.8.在一块平地上挖一个底面半径是4m的圆柱形水池,池深1m,需要挖出m3的土;要在池底和内壁贴上瓷片,贴瓷片的面积是m2.9.如图,一个内直径是6cm的瓶里装满矿泉水,小兰喝了一些后,这时瓶里水的高度是12cm,把瓶盖拧紧后倒置放平,无水部分高8cm.小兰喝了ml水;这个瓶子的容积是ml.10.仓库里有若干棱长都是5dm的正方体纸箱,拼成了一个几何体,从上面看到的图形是,从左面看到的图形是,这堆纸箱的占地面积是二、作图、填空与解答题.11.如图,是广场附近的平面图.(1)图书馆在广场的方向,实际距离是m.(2)歌剧院在广场的西偏南30°方向150m处.在图中标出歌剧院的位置.(3)少年宫在广场正北方向100米处,小明从广场走到少年宫要2分钟,照这样计算,他从广场走到歌剧院要多少分钟?(用比例知识列方程解答)三、选择正确答案的字母编号填在括号里.12.如果m>0,那么下列各式计算结果最大的是()A.m×(1+)B.m÷(1+)C.m×(1﹣)D.m÷(1﹣)13.把4米长的绳子平均剪成5段,每段长是这条绳子的()A.B.C.D.14.甲、乙两车走同一条路从A地开往B地,甲车要6小时,乙车要4小时,那么甲车和乙车的速度比是()A.6:4B.3:2C.2:3D.无法确定15.下列说法正确的是()A.两个分数大小相等,它们的分数单位一定相同.B.如果,那么x和y成正比例关系.C.8:5的比值是.D.一个三角形,三条边的长度可以分别是3cm.5cm和7cm.16.若圆柱和圆锥等底等高,且两者体积相差9.6dm3,则圆柱体积是()dm3.A.28.8B.14.4C.48D.3.217.从完全相同的甲、乙两块正方形铁皮上分别剪出如图的圆形,比较它们剩下的废料面积是()A.甲多B.乙多C.同样多D.不能确定四、解决问题.18.六年(1 )班全体同学投票迭拳一个班妖,毎位同学投且只能投一票,得票数最高者当选.下面是全部候选人得票情况統汁图.(1)当选班长的同学姓名是.(2)王倩得票数占总票数的%.(3)如果张力得4票,那么吴佳得多少票?19.商店第一季度的营业额为15万元,第二季度的营业额比第一季度增长了10%.第二季度的营业额是多少万元?20.小丽借了一本故事书,若每天看21页,则8天可以看完;若要在一个星期看完,则平均每天要看多少页?(用比例知识列方程解答)21.某校六年級有三个班,在“献爱心﹣﹣为贫困地区儿童捐书“活劫中共捐书550本.其中一班捐书本数占六年級捐书总数的20%,二班和三班捐书本数之比是6:5.(1)一班捐书多少本?(2)二班捐书多少本?22.一块底面半径6cm,高12cm的圆锥形钢材,把它熔铸成一根横截面半径是1cm的圆柱形钢条,这根钢条长多少厘米?23.甲乙两个工程队合修一段公路,甲队修了全长的后,乙队接着修了4.5km,这时恰好修完全长的一半.这段公路长多少千米?2018-2019学年广东省广州市越秀区六年级(下)期末数学试卷参考答案与试题解析一.填空题。
1.【解答】解:一千四百四十九万八千四百写作14498400省略万位后面的尾数约是1450万故答案为:14498400,1450.2.【解答】解:水位高于正常水位0.8m记为+0.8m那么水位低于正常水位0.5m记为﹣0.5;向东走15m记为+15m,那么向西走10m记为﹣10m;故答案为:﹣0.5;西.3.【解答】解:40.5%=0.405,=0.45因为40.05>4.>0.45>0.405所以40.05>4.>>40.5%.故答案为:40.05、4.、、40.5%.4.【解答】解:0.07:=1:4==10÷40=0.25.故答案为:4,5,40,0.25.5.【解答】解:×100%=80%1200÷80%=1500(棵)答:这批树苗的成活率是80%.若要有1200棵成活,则要种1500棵树苗.故答案为:80%,1500.6.【解答】解:x﹣120+x=2x﹣120(元)当x=300时2x﹣120=2×300﹣120=600﹣120=480(元)答:这套衣服共(2x﹣120)元;当x=300时,这套衣服共480元.故答案为:(2x﹣120),480.7.【解答】解:2×2×2×3=8×3=24(立方厘米);2×2×4=4×4=16(平方厘米);答:拼成的长方体的体积是24立方厘米,它的表面积比3个正方体的表面积和减少了16平方厘米.故答案为:24、16.8.【解答】解:3.14×42×1=3.14×16×1=50.24(立方米);3.14×(4×2)×1+3.14×42=3.14×8×1+3.14×16=25.12+50.24=75.36(平方米);答:需要挖土50.24立方米,贴瓷砖的面积是75.36平方米.故答案为:50.24、75.36.9.【解答】解:3.14×(6÷2)2×8=3.14×9×8=28.26×8=226.08(立方厘米)3.14×(6÷2)2×(12+8)=3.14×9×20=28.26×20=565.2(立方厘米)226.08立方厘米=226.08毫升565.2立方厘米=565.2毫升答:小红喝了226.08毫升,这个瓶子的容积是565.2毫升.故答案为:226.08、565.2.10.【解答】解:52×4=25×4=100(dm2)答:这堆纸箱的占地面积是100dm2.故答案为:100dm2.二、作图、填空与解答题.11.【解答】解:(1)量得图书馆到广场的图上距离为4cm4÷=20000(cm)20000cm=200m答:图书馆在广场的正东方向,实际距离是200m.(2)150m=15000cm15000×=3(cm)即歌剧院在广场的西偏南30°方向图上距离3cm处.在图中标出歌剧院的位置(下图).(3)设他从广场走到歌剧院要x分钟=100x=150×2100x÷100=150×2÷100x=3答:他从广场走到歌剧院要3分钟.三、选择正确答案的字母编号填在括号里.12.【解答】解:设m=12,代入得:A、12×(1+)=12×1+12×=12+4=16B、12÷(1+)=12÷=9C、12×(1﹣)=12×1﹣12×=12﹣4=8D、12÷(1﹣)=12÷=1818>16>9>8;所以,D选项算式的结果最大.故选:D.13.【解答】解:每段占全长的:1÷5=故选:A.14.【解答】解::=4:6=2:3答:甲乙两车速度的最简整数比是2:3.故选:C.15.【解答】解:A:两个分数大小相等,它们的分母不一定相等,所以它们的分数单位不一定相同,A不正确.B:如果,那么x和y成反比例关系,B不正确.C:8:5的比值是,C不正确.D:任意两边之和大于第三边,任意两边之差小于第三边,三条边的长度可以分别是3cm.5cm和7cm,D正确.故选:D.16.【解答】解:9.6÷(1)===14.4(立方分米),答:圆柱的体积是14.4立方分米.故选:B.17.【解答】解:设正方形的边长是4厘米则正方形的面积是:4×4=16(平方厘米)甲图:圆的半径是4÷2=2(厘米)剩下的废料的面积是:16﹣3.14×22=16﹣12.56=3.44(平方厘米)乙图:圆的半径是4÷2÷2=1(厘米)剩下的废料的面积是:16﹣3.14×12×4=16﹣12.56=3.44(平方厘米)3.44=3.44剩下的废料同样多;故选:C.四、解决问题.18.【解答】解:(1)当选班长的同学是吴佳.(1)1﹣55%﹣10%﹣12.5%=22.5%;答:王倩得票数占总票数的22.5%.(3)4÷10%×55%=4÷0.1×0.55=40×0.55=22(票)答:吴佳得了22票.故答案为:吴佳、22.5.19.【解答】解:15×(1+10%)=15×1.1=16.5(万元)答:第二季度的营业额16.5万元.20.【解答】解:设平均每天要看x页,21×8=7xx=x=24答:平均每天要看24页.21.【解答】解:(1)550×20%=550×0.2=110(本);答:一半捐书110本.(2)(550﹣110)×=440×=240(本);答:二班捐书240本.22.【解答】解; 3.14×62×12÷(3.14×12)= 3.14×36×12÷3.14=452.16÷3.14=144(厘米)答:这根钢条长144厘米.23.【解答】解:4.5÷(﹣)=4.5÷=15(千米)答:这段公路长15千米.第11页(共11页)。