遥感作业
遥感作业

1. 遥感图像目视解译原理遥感图像解译(Imagery Interpretation):是从遥感图像上获取目标地物信息的过程:即遥感图像理解(Remote Sensing Imagery Understanding)分为目视解译和计算机解译。
遥感图像目标地物的识别特征1.形状(shape):目标地物在遥感图像上呈现的外部轮廓.遥感图像上目标地物形状:顶视平面图. 解译时须考虑遥感图像的成像方式。
2.大小3色调(tone):全色遥感图像中从白到黑的密度比例叫色调(也叫灰度)。
如海滩的砂砾色调标志是识别目标地物的基本依据,依据色调标志,可以区分出目标地物。
4颜色(colour):是彩色遥感图像中目标地物识别的基本标志。
日常生活中目标地物的颜色:遥感图像中目标地物的颜色:地物在不同波段中反射或发射电磁辐射能量差异的综合反映。
彩色遥感图像上的颜色:真\假彩色.真彩色图像上地物颜色能真实反映实际地物颜色特征,符合人的认知习惯。
目视判读前, 需了解图像采用哪些波段合成,每个波段分别被赋予何种颜色5.阴影(shadow):遥感图像上光束被地物遮挡而产生的地物的影子,根据阴影形状、大小可判读物体的性质或高度。
不同遥感影像中阴影的解译是不同的.6水系水系标志在地质解译中应用最广泛,它可以帮助我们区分岩性、构造等地质现象。
这里所讲的水系是水流作用所形成的水流形迹,即地面流水的渠道。
它可以是大的江河,也可以是小的沟谷,包括冲沟、主流、支流、湖泊以至海洋等。
在图像上可以呈现有水,也可以呈现无水。
水系的级序,一般是从冲沟到主流,7. 纹理(texture):内部结构,指遥感图像中目标地物内部色调有规则变化造成的影像结构。
如航空像片上农田呈现的条带状纹理。
纹理可以作为区别地物属性的重要依据等八、位置(Location)是指地物的环境位置以及地物间的空间位置关系在像片中的反映。
也称为相关特征。
它是重要的间接判读特征。
九、土壤、植被标志通过对土壤、植被的相关分析,推断其下伏地物的性质。
遥感原理与应用 作业(含答案)

遥感原理与应用作业18地6118078607宋雨龙第一章绪论 (1)第二章电磁辐射与地物光谱特征 (3)第三章遥感成像原理与图像特征 (4)第四章卫星遥感平台 (5)第五章遥感数字图像处理基础 (6)第六章遥感数字图像处理 (7)第七章多源遥感信息融合 (9)第八章遥感图像分类 (9)第九章遥感技术应用 (10)第一章绪论1.阐述遥感的基本概念。
答:遥感(RS),即遥远的感知。
是指应用探测仪器,不与被测目标直接接触,在高空或远距离处,接收目标辐射或反射的电磁波信息,并对这些信息进行加工处理与分析,揭示出目标的特征性质及其运动状态的综合性探测技术。
2.遥感的主要特点表现在哪几方面?举例说明。
答:①感测范围大,具有综合、宏观的特点:遥感从飞机上或人造地球卫星上获取的航空或卫星影像,比在地面上观察视域范围大得多。
例如:一幅陆地卫星TM影像可反映出185km×185km的景观实况,我国全境仅需500余张这种影像就可拼接成全国卫星影像图。
②信息量大,具有手段多、技术先进的特点:根据不同的任务,遥感技术可选用不同波段和传感器来获取信息。
③获取信息快,更新周期短,具有动态监测的特点:卫星围绕地球运转,能及时获取所经地区的最新资料,例如:Landsat-5/7陆地卫星每16天即可对全球陆地表面成像一次。
④具有获取信息受条件限制少的特点:自然条件恶劣,人类难以到达的地方,如沙漠、沼泽、高山峻岭等都可以使用遥感进行观测。
⑤应用领域广,具有用途大、效益高的特点:遥感已广泛应用于环境监测、资源勘测、农林水利、地质勘探、环境保护、气象、地理、测绘、海洋研究和军事侦察等领域,且应用领域在不断扩展。
遥感在众多领域的广泛应用产生了十分可观的经济效应和卓有成效的社会效应。
3.遥感有哪几种主要分类?其分类依据是什么?4.当前遥感发展的现状和特点如何?答:当今,遥感技术已经发生了根本的变化,主要表现在遥感平台、传感器、遥感的基础研究和应用领域等方面。
遥感作业(1)

1.概念遥感:泛指一切无接触的远距离探测,它是一种远距离目标,在不与目标对象直接接触的情况下,通过某种平台上装载的传感器获取其特征信息,然后对所获取的信息进行提取、判定、加工处理及应用分析的综合性技术。
遥感平台:搭载传感器的载体。
电磁辐射:具有能量传递的,且其能量与与其传播的频率成正比的电磁波。
电磁波谱:按照电磁辐射在真空中传播的频率或波长进行递增或递减排列形成一个连续的谱带,这个谱带就是电磁波谱。
大气窗口:指电磁波通过大气层时较少被反射、吸收或散射的透射率较高的波段幅照度:实际物体在单位光谱区间内的辐射出射度与吸收系数的比值辐射通量:单位时间内通过某一面积的辐射能量。
(它是辐射能流的单位,记为φ=dW/dt。
用W(J/s)表示;辐射通量是波长的函数,总辐射通量是各波段辐射通量之和。
(压力))反射率:地面物体反射的能量占入射总能量的百分比黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,则称物体为黑体。
地物反射波谱:研究地面物体反射率随波长的变化规律瑞利散射:由大气中原子、分子,如氮、二氧化碳、臭氧和氧分子等引起的散射。
(条件:粒子直径比波长小很多)加色法:由三原色混合,可以产生其他颜色的方法。
减色法:减色法是从自然光(白光)中,减去一种或二种基色光而生成色彩的方法。
(一般适用于颜料配色、彩色印刷等色彩的产生。
)光谱色:圆环上把光谱色按顺序标出,从红到紫是可见光谱存在的颜色,每种颜色对应一个波长值空间分辨率:指遥感图像上能够详细区分的最小单元的尺寸或大小,是用来表征影像分辨地面目标细节能力的指标主光轴:通过物镜中心并与主平面(或焦平面)垂直的直线像主点:主光轴与感光片的交点航向重叠:为了使相邻航片之间没有航摄漏洞,也为了做立体观察,应使相邻航片之间有一部分重叠,这一重叠部分就叫航向重叠中心投影:空间任意点(物点)与一固定点(投影中心)连成的直线或其延长线(中心主线)被一平面(像平面)所截,则此直线与平面的交点像点位移:地物反映到航空相片上的像点与其平面位置相比产生位置的移动传感器:获取地面目标电磁辐射信息的装置距离分辨率:侧视方向上的雷达图像分辨率方位分辨率:沿航线方向上的雷达图像分辨率合成孔径雷达:也称侧视雷达,利用雷达与目标的相对运动把尺寸较小的真实天线孔径用数据处理的方法合成一较大的等效天线孔径的雷达透视收缩:指山上面向雷达的一面在图像上被压缩且表现为较高亮度的现象。
《遥感概论》作业参考答案

《遥感概论》作业参考答案一.填空题1.地面平台航空平台航天平台2.CCD3.直接标志间接标志。
4.1999中巴地球资源卫星5.传感器仪器本身产生的误差大气对辐射的影响6.暖阴影冷阴影7.监督分类非监督分类8.精确的定位能力准确定时及测速能力9.图像处理与特征提取子系统遥感图像解译知识获取系统狭义的遥感图像解译专家系统10.直方图最小值去除法回归分析法11.比值植被指数归一化植被指数差值植被指数正交植被指数12.瑞利散射米氏散射无选择性散射二.名词解释1.黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。
2.遥感平台:是搭载传感器的工具。
3.监督分类:包括利用训练样本建立判别函数的“学习”过程和把待分像元代入判别函数进行判别的过程。
4.遥感:遥远地感知。
5.解译标志:又称判读标志,指能够反映和表现目标地物信息的遥感影像各种特征,这些特征能帮助判读者识别遥感图像上目标地物或现象。
6.归一化植被指数(NVl):遥感影像中近红外波段的反射值减去红光波段的反射值的差与二者之和的比值7.电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减排列,则构成了电磁波谱。
8.大气窗口:把电磁波通过大气层时较少被反射、吸收或散射的,透射率较高的波段称为大气窗口。
9.空间分辨率:像元所代表的地面范围的大小。
10.主动遥感:由探测器主动发射一定电磁波能量并接收目标的后向散射信号。
11.反射波谱:指地物反射率随波长的变化规律。
通常用平面坐标曲线表示,横坐标表示波长,纵坐标表示反射率。
12.波谱分辨率:是传感器在接收目标辐射的波谱时能分辨的最小波长间隔。
13.高光谱遥感:是高光谱分辨率遥感的简称。
就是在电磁辐射的可见光、近红外、中红外、远红外获取许多非常窄的光谱连续的影像数据技术。
三.简答题1.根据传感器所接受到的电磁波光谱特征的差异来识别地物。
(1)不同地物在不同波段反射率存在差异(2)同类地物的光谱是相似的,但随着该地物的内在差异而有所变化。
遥感作业

作业:一、名词解释:1、电磁波2、电磁波谱3、绝对黑体4、光谱辐射通量密度5、大气窗口6、发射率7、光谱反射率8、光谱反射特性曲线填空题:1、电磁波谱按频率由高到低排列主要由____ 、 ____ 、 ____ 、 ____ 、 ____ 、____ 、 ____ 等组成。
2、绝对黑体辐射通量密度是 ____ 和 ____ 的函数。
3、一般物体的总辐射通量密度与 ____ 和 ____ 成正比关系。
4、维恩位移定律表明绝对黑体的 ____ 乘 ____ 是常数2897.8。
当绝对黑体的温度增高时,它的辐射峰值波长向 ____ 方向移动。
选择题:(单项或多项选择)1、绝对黑体的①反射率等于1 ②反射率等于0 ③发射率等于1 ④发射率等于0。
2、物体的总辐射功率与以下那几项成正比关系①反射率②发射率③物体温度一次方④物体温度二次方⑤物体温度三次方⑥物体温度四次方。
3、大气窗口是指①没有云的天空区域②电磁波能穿过大气层的局部天空区域③电磁波能穿过大气的电磁波谱段④没有障碍物阻挡的天空区域。
4、大气瑞利散射①与波长的一次方成正比关系②与波长的一次方成反比关系③与波长的二次方成正比关系④与波长的二次方成反比关系⑤与波长的四次方成正比关系⑥与波长的四次方成反比关系⑦与波长无关。
5、大气米氏散射①与波长的一次方成正比关系②与波长的一次方成反比关系③与波长无关。
问答题:1、电磁波谱由哪些不同特性的电磁波组成?它们有哪些不同点,又有哪些共性?2、物体辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多少?3、叙述沙土、植物和水的光谱反射率随波长变化的一般规律。
4、地物光谱反射率受哪些主要的因素影响?5、何为大气窗口?分析形成大气窗口的原因,并列出用于从空间对地面遥感的大气窗口的波长范围。
6、传感器从大气层外探测地面物体时,接收到哪些电磁波能量?二、名词解释:1、遥感平台2、遥感传感器3、卫星轨道参数4、升交点赤经5、轨道倾角6、近地点角距填空题:1、遥感卫星轨道的四大特点 ____________ ________ ____ ________ __________ 。
遥感原理与应用第5章-遥感作业(1)

遥感原理与应用第5章-遥感作业(1)1. 简介本文是《遥感原理与应用》第5章的遥感作业(1)。
本次作业主要涉及到遥感图像的处理和应用,通过本次作业的完成,能够更好地理解和掌握遥感技术的原理和应用。
2. 遥感数据的获取遥感数据的获取是遥感技术的基础和前提,也是对地球表面信息的探测手段。
遥感数据的获取主要有以下方式:1.感应遥感:通过地面感应器获取所需数据,如温度、湿度等。
2.摄影测量:通过摄影测量技术获取地球表面的影像数据。
3.雷达遥感:通过信号的反射和散射获得影像数据,主要用于地形测量和军事侦察等领域。
4.卫星遥感:利用卫星对地球表面进行观测和监测,获取影像数据。
3. 遥感数据处理遥感数据处理是将从遥感平台或遥感传感器获取的原始数据转化成可以用于分析和应用的数据的过程。
遥感数据处理通常包括以下流程:1.数据预处理:对原始数据进行几何校正和辐射校正,以保证数据的准确性和可比性。
2.数字图像处理:对遥感图像进行增强、过滤、分割和分类等操作,提取所需信息。
3.地理信息系统(GIS)集成:将处理后的遥感图像数据与地理信息进行集成,实现空间分析和决策支持。
4. 遥感数据的应用遥感数据的应用已经涉及到很多领域,如环境监测、自然灾害预警和农业生产等。
下面列举一些常见的遥感数据应用:1.矢量化:将遥感图像转化为矢量数据,用于地图制图、土地利用分类和资源评估等。
2.地表监测:利用遥感技术监测城市扩张、海岸侵蚀和农业追踪等。
3.环境监测:利用遥感技术监测空气质量、水质和植被覆盖等。
4.天气预报:利用卫星遥感数据进行引导和辅助,提高天气预报的准确度。
5.遥感技术的应用范围非常广泛,并且不断在发展和创新。
随着技术的进步和数据的不断积累,遥感技术在不同领域的应用将会更加普及和深入。
本次作业通过对遥感数据的获取、处理和应用的介绍,对我们更好地理解和掌握遥感技术的原理和应用有很大的帮助。
遥感实习作业大气校正、条带修复、镶嵌、裁剪、监督分类、三维显示等

贵州大学实习报告专用纸学院:公共管理学院专业:土地资源管理姓名:杨顺学号: 1208100304 班级:土管121 实习性质:课程实习实习地点:资环楼327机房指导教师:杨柳老师成绩:一、实验目的通过上机实验的学习让我们掌握基本一些关于遥感软件的基本操作,如envi大气校正、定标、镶嵌、裁剪、监督分类和地温反演等及 arcgis成图和三维显示。
二、实验要求实验要求是自己独立完成不得抄写,必须应用老师给的数据来完成,还有是监督分类和地温反演要求arcgis成图。
三、实验原理Envi和arcgis基本操作原理。
四、实验仪器安装envi和arcgis的电脑。
五、实验步骤实验步骤:envi的基本操作(Envi基本打开操作、子区裁剪、图像特征及图像信息的统计)→数据预处理(定标大气校正、条带修复、镶嵌、裁剪)→监督分类→三维显示→地温反演。
六、实验数据LE71270412007264PFS00.tar.gz和LE71270422007264PFS00.tar.gz这两个遥感影像数据文件。
七、实验内容(一).熟悉ENVI基本操作1.Envi基本打开操作1) 启动ENVI2) 熟悉ENVI的菜单3) 打开一个影像文件4) 熟悉三个影像窗口5) 显示彩色合成图像6) 熟悉ENVI主影像窗口菜单Tools下的功能。
2.子区裁剪选择File>Save File as>ENVI Standard,出现New File Builder对话框。
点击Import File…,当Create New File Input File 对话框出现时,从下列选项中选择一个文件或多个文件。
如果内藏的文件没有在列表中显示出来,点击“Open Image File”,选择要输入的文件。
点击Spatial subset按钮,出现select Spatial subset对话框,在对话框内按不同方式进行子区的裁剪。
点击Spectral subset 按钮,出现File Spectral subset对话框,选取需要处理的波段。
遥感作业(简单计算)

遥感物理作业二1、 试用5900K 与5800K 的黑体辐射来估算太阳常数并比较所对应峰值波长 其中已知:太阳与地球距离为1.496⨯1110m ,太阳平均半径6.96⨯810m 解:依题知根据黑体辐射定律,应用史提芬波尔兹曼公式:e 0(T )=∫e 0(λ,T )d λ=σT 4 ①地球与太阳距离为R 1=1.496⨯1110m ,太阳平均半径为R 2=6.96⨯810m R 1/R 2≈215>5,即符合Inverse Square Law ,E 1R 12=E 2R 22 ②t由①②可得E 1=σT 4R 22/ R 12当太阳表面温度为5900K 时,太阳常数值为:E 2=σT 14R 12/ R 22=848211225.6710(5900)(6.9610)(1.49610)1487W m -⨯⨯⨯⨯÷⨯= 运用维恩位移定律求得对应峰值波长,则: 2λ=2897/5900=0.4911m μ同理得,当太阳表面温度为5800K 时,太阳常数为:E 3=σT 24R 12/ R 22=848211225.6710(5800)(6.9610)(1.49610)1389W m -⨯⨯⨯⨯÷⨯=对应峰值波长: 3λ=2897.8/5800=0.4996m μ2、 把Planck 公式表示成频率的形式(21W m Hz -- )解:普朗克公式的表达式为:205/21(,)1hc kT hc e T e λπλλ=- 21W m m μ-- ① /c νλ= ②要把0e (,)T λ转化成0e (,)T ν,对②微分得到 2(/)d c d νλλ=- ③ 又根据史蒂芬玻尔兹曼原理: 00(,)(,)e T d e T d λλλλ=- ④根据①②③④得到2230052/21(/)21(,)(,)(/)11hvkT hv kT d hc c v hv e v T e T dv c v e c c e λππλ=-==-- 21W m Hz --。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、答:由于大气对电磁波的选择性吸收,使大气在不同波段对电磁波的衰减程度各不相同。
换句话说,大气对不同波段的电磁波有不同的透射率,即电磁波在一些波段能顺利透过去,而在另一些波段则透过困难,甚至完全不能透过。
大气对电磁波衰减较少、透射率较高的波段叫“大气窗口”。
①可摄影窗口.波长0.3um~1.3um。
这个窗口短波一端由于臭氧的强烈吸收而截止于0.3um,长波一端则终止于感光胶片最大感光波长1.3um处。
这个窗口包括了全部可见光(0.38um ~0.76um)和部分紫外线(0.3um ~0.38um)以及部分近红外波段(0.76um ~1.3um)。
这个窗口最大的特点是可以用摄影的方法来获取和记录电磁波信息。
此外,这个窗口对电磁波的透射率在90%以上,仅次于微波窗口。
因此,这个窗口是目前遥感上应用最广的窗口。
另外,在这个窗口除了用摄影方法外,还可以用扫描仪、光谱仪、射线仪等来探测记录地物的电磁波信息。
②近红外窗口波长1.5um ~2.4um。
这个窗口位于近红外波段的中段。
这个窗口的两端主要受大气中的水气和二氧化碳气体的吸收作用所控制,而且由于水气在1.8um处有一个吸收带,因而使本窗口又分为两个小窗口:1.5um ~1.75um和2.1um ~2.4um。
通过这个窗口的电磁波仍然属于地面目标的反射光谱,但已不能用胶片摄影,只可用扫描仪和光谱仪来测量和记录了。
该窗口目前应用不多。
③中红外窗口波长2.4um ~5um。
这个窗口位于中红外波段的前中段。
这个窗口的两端同样也主要受水气和二氧化碳气体的吸收带的控制,而且由于二氧化碳气体在4.3um处有一个强吸收带,又使本窗口分为两个小窗口:3.4um ~4.2um和4.6um ~5.0um。
通过这个窗口的电磁波信息可以是地面目标的反射光谱,也可以是地面目标的发射光谱。
这些信息也只能用扫描仪和光谱仪探测和记录。
该窗口目前应用很少。
④远红外窗口波长8um~14um。
这个窗口位于远红外波段的中段,其短波一端主要由于水气在6um处的吸收带所控制,长波一端则主要由二氧化碳在14.5 um处的强吸收带所控制。
这个窗口中在9.6um 处虽有臭氧的强烈吸收带,但因臭氧在大气中含量很低,故未能使本窗口一分为二。
通过这个窗口的电磁波信息属于地面目标的发射(热辐射)光谱。
这个窗口正位于地表常温下地面物体热辐射能量最集中的波段,所以是遥感地质很有用的一个窗口。
目前这个窗口已得到较广泛的使用,主要是用扫描仪和热辐射计来获得地面目标发射的电磁波信息,能有效地探测地面常温物体,并可用于探测大地辐射。
⑤微波窗口波长8mm ~1m。
这个窗口是完全透明的,透过率可达100%,完全不受大气的影响,是全天候的遥感波段。
目前微波传感器常用的工作波段是3mm、5mm、8mm的波段,今后根据需要还可以向更长的波段发展。
二、答:散射实质上是电磁波穿过大气层时,遇到各种微粒(气体分子、尘埃、火山灰、陨石尘、小的冰晶和盐晶、水滴、工业燃烧的废气等)时所发生的一种衍射现象。
分为瑞利散射和米氏散射(1)瑞利散射:d<<波长;大气中的氧气,氮气等对可见光的散射属于此类;强度与波长四次方成反比。
(2)米氏散射:大气粒子直径约等于入射波长;水滴,尘埃,烟,花粉,微生物,海上盐粒,火山灰等气溶胶的散射属于此类。
(3)无选择性散射——散射强度与波长无关波长;大气中云,雾,水滴等的散射。
三、答:地物的反射率随入射波长变化的规律叫做反射光谱。
按地物反射率与波长之间关系绘成曲线图称为地物反射光谱曲线。
四、答:1)对绿光(0.55)有一小的反射峰值,反射率大致为20%,这是绿色植物呈现绿色的原因。
注意这里也正是太阳光的光能峰值。
2)在红光处(0.68)有一吸收谷,这是光合作用吸收谷。
注意此处太阳光能仍很大,若吸收谷减小,则植被发黄、红。
3)在0.7~1.4与1.5 ~ 1.9有很高红外反射峰,反射率可高达70%以上,这两峰与前边红光波谷是植被光谱的特征。
这第一峰波长段还处在太阳光能波谱中主要能量分布区(0.2~1.4)占有全部太阳光能量90.8%,这是遥感识别植被并判断植被状态的主要依据。
4)在 1.45 至1.95有两处吸收谷,表明植被中水分含量。
5)不同种类植物反射光谱曲线的变化趋势相同,而植物与其它地物的反射光谱曲线显著不同,这是遥感可以估测生物量的基础。
6)植物叶片重叠时,反射光能量在可见光部分几乎不变,而在红外却可增加20~40%。
这是因为红外光可透过叶片,又经下层叶片重复反射。
叶片重叠反映作物长势旺盛,生物量高。
7) 植物叶片可见光区反射率有显著的方向性,这是因为植物叶片反射(散射)不是纯粹的朗伯散射,还有方向性。
而在红外区方向性就不显著,这是因为红外光透射性好,透射后重复反射打扰了方向性。
五、答:三原色是红、黄、蓝。
真色彩图像是,在RGB色彩空间,图像深度与色彩的映射关系主要有真rl]伪rl] 真彩色(true-color)是指图像中的每个像素值都分成R、G、B三个基色分量,每个基色分量直接决定其基色的强度,这样产生的色彩称为真彩色。
例如图像深度为24,用R:G:B=8:8:8来表示色彩,则R、G、B各占用8位来表示各自基色分量的强度,每个基色分量的强度等级为2^8=256种。
图像可容纳2^24=16M种色彩(24位色)。
24位色被称为真彩色,它可以达到人眼分辨的极限,发色数是1677万多色,也就是2的24次方。
但32位色就并非是2的32次方的发色数,它其实也是1677万多色,不过它增加了256阶颜色的灰度,为了方便称呼,就规定它为32位色。
少量显卡能达到36位色,它是24位发色数再加512阶颜色灰度。
但其实自然界的色彩是不能用任何数字归纳的,这些只是相对于人眼的识别能力,这样得到的色彩可以相对人眼基本反映原图的真实色彩,故称真彩色。
伪彩色(pseudo-color)图像的每个像素值实际上是一个索引值或代码,该代码值作为色彩查找表CLUT(Color Look-Up Table)中某一项的入口地址,根据该地址可查找出包含实际R、G、B的强度值。
这种用查找映射的方法产生的色彩称为伪彩色。
用这种方式产生的色彩本身是真的,不过它不一定反映原图的色彩。
在VGA显示系统中,调色板就相当于色彩查找表。
从16色标准VGA调色板的定义可以看出这种伪彩色的工作方式。
伪彩色一般用于65K色以下的显示方式中。
标准的调色板是在256K色谱中按色调均匀地选取16种或256种色彩。
一般应用中,有的图像往往偏向于某一种或几种色调,此时如果采用标准调色板,则色彩失真较多。
因此,同一幅图像,采用不同的调色板显示可能会出现不同的色彩效果。
调配色(direct-color)的获取是通过每个像素点的R、G、B分量分别作为单独的索引值进行变换,经相应的色彩变换表找出各自的基色强度,用变换后的R、G、B强度值产生的色彩。
调配色与伪彩色相比,相同之处是都采用查找表,不同之处是前者对R、G、B分量分别进行查找变换,后者是把整个像素当作查找的索引进行查找变换。
因此,调配色的效果一般比伪彩色好。
调配色与真彩色比,相同之处是都采用R、G、B分量来决定基色强度,不同之处是前者的基色强度是由R、G、B经变换后得到的,而后者是直接用R、G、B决定。
在VGA显示系统中,用调配色可以得到相当逼真的彩色图像,虽然其色彩数受调色板的限制而只有256色假标准彩色图像是掌握图像颜色的表示,掌握真彩色、假彩色、密度分割的概念。
</p><p>答:图像颜色的表示:加色原理:基色为红绿蓝,不同比例的三基色光相加得到彩色称为相加混色。
</p><p>减色原理:基色为黄、品红和青,通常为绘画颜料或染料,颜料能吸收入射光光谱中的某些成分,为吸收的部分被反射,从而形成了该颜料特有的彩色。
</p><p>表示颜色的颜色模型有三种:RGB模型、CMYK模型和HIS模型</p><p>RGB:主动产生颜色光源(显示器、遥感图像)</p><p>CMYK:与RGB互补的颜色模型,用于印刷和绘画等</p><p>HIS:用于调整颜色分量</p><p>一幅图像在计算机中用RGB空间表示。
用RGB或HIS空间编辑处理;如果要印刷,则要转换成CMYK四幅印刷分色图,用于套印彩色印刷品。
</p><p>真彩色合成:在进行彩色还原合成时,要保持分解和还原过程中所采用的滤光系统波段的一一对应关系,此时还原得到的彩色与原物体或景观的色彩一样。
如TM中TM!、TM2、TM3三个不同波段图像,按加色法分别通过蓝、绿、红滤光系统合成得到的彩色图像为近似(天然彩色合成)真彩色。
</p><p>假彩色:如果还原合成时破坏了滤光系统的这种对应关系,合成生成的彩色则与原物体或景观的色彩不一致。
如TM4、TM3和TM2三波段,分别通过红、绿、蓝滤光系统合成产生的彩色图像则是标准假彩色图像,在此图像中绿色植物为红色。
</p><p>密度分割:若将一幅图像的亮度值变化,按一定量级进行分割,分成若干等级(即相当于对图像中密度值进行分割,划分若干等级),每一等级用一种颜色表示,生成一幅彩色图像,此彩色图像就称为假彩色等密度分割图像。
</。