小学数学圆的知识点归纳、复习.
人教版小学六年级数学(上册)-圆的知识点及习题精选

圆知识点总结一、圆的意义1、圆是由一条曲线围成的平面图形。
〔以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形〕2、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。
在同一个圆里,有无数条半径和直径。
在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。
3、用圆规画圆的过程:先两脚义开,再固定针尖,最后旋转成圆。
画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变; 要旋转一周。
4、在同一个圆里,半径是直径的一半,直径是半径的2倍。
〔d=2r, r=d + 2〕5、圆是轴对称图形,有无数条对称轴,对称轴就是直径所在的直线。
6、圆心决定圆的位置,半径决定圆的大小。
要比拟两圆的大小,就是比拟两个圆的直径或半径。
7、正方形里最大的圆。
两者联系:边长=直径;圆的面积=78。
5%正方形的面积画法:〔1〕画出正方形的两条对角线;〔2〕以对角线交点为圆心,以边长为直径画圆。
8、长方形里最大的圆。
两者联系:宽=直径画法:〔1〕画出长方形的两条对角线;〔2〕以对角线交点为圆心,以宽为直径画圆。
9、同一个圆的所有线段中,圆的直径是最长的。
10、车轮滚动一周前进的路程就是车轮的周长。
每分前进米数〔速度〕=车轮的周长X转数11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。
用字母工表示。
n是一个无限不循环小数。
n =3。
141592653……我们在计算时,一般保存两位小数,取它的近似值3。
14。
n>3。
14二、圆的根本公式12、如果用C表示圆的那么或♦■2股,13、求圆的半径或直径的方法:■♦:■♦〔•:♦14、半圆的周长等于圆周长的一半加一条直径。
C *圆=n r+2r=5。
14r C,■=:n d,2+d=2。
57d15、常用的3。
14的倍数:3。
14X2=6。
(完整版)六年级上册数学知识点复习:圆(人教版),推荐文档

六年级上册数学知识点复习:圆(人教版)圆一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母表示。
它到圆上任意一点的距离都相等3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r=8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数。
3圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π表示。
、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π≈314。
、在判断时,圆周长与它直径的比值是π倍,而不是314倍。
、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式:=πdd=÷π或=2πrr=÷2π、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
小学六年级数学小升初珍藏版复习资料第15讲 圆的认识、周长与面积(原卷)

2022-2023学年小升初数学精讲精练专题汇编讲义第15讲圆的认识、周长与面积知识精讲知识点一:圆的认识1.在同圆或等圆中,所有的直径都相等,所有的半径都相等。
2.圆是轴对称图形,圆有无数条对称轴,圆的对称轴就是直径所在的直线。
知识点二:圆的周长和面积1.圆的周长(1)圆周率:圆的周长与直径的比值叫作圆周率。
圆周率用希腊字母“π”表示,它是一个无限不循环小数。
经过精密计算:π=3.1415926…在小学数学中,我们常常取圆周率的近似值3.14(2)圆的周长=圆周率×直径或圆周率×半径×2 用字母表示为:C=πd或2πr 2.圆的面积:把一个圆平均分成若干份,剪开后拼成一个近似的平行四边形,如果分的份数越多,拼成的图形越接近长方形,这个近似长方形的长等于圆周长的一半,宽等于圆的半径 ,由此圆的面积S=πr23.圆环的面积(1)同一个圆心的两个半径不相等的圆,它们之间的部分叫作圆环(2)面积公式: S=πR2-πr2知识点三:组合图形的面积1.求组合图形面积的方法。
(1)分割法:把阴影部分分割成几个基本图形,利用求几个基本图形面积的和求出阴影部分的面积。
(2)添补法:在阴影部分上添补一个基本图形,使其变成另一个基本图形,计算出这个基本图形的面积后减去补上的基本图形的面积,从而求出阴影部分的面积。
提高达标百分练一、精挑细选(共5题;每题2分,共10分)1.(2分)(2023六上·中宁期末)周长相等的长方形、正方形和圆,()的面积最大。
A.正方形B.长方形C.圆D.无法判断2.(2分)(2023六上·大兴期末)下面各图中,由实线围成的图形是扇形的是()A. B. C.D.3.(2分)(2023六上·大兴期末)如果如图中圆的面积等于长方形的面积,那么它们的周长相比较,()A.圆的周长等于长方形周长B.圆的周长大于长方形周长C.圆的周长小于长方形周长D.无法比较4.(2分)(2023六上·渝中期末)如下图所示,将半径为r的圆形纸片剪拼成近似长方形,长方形的周长是()。
小学数学圆的知识点归纳复习最新版本

小学数学圆的知识点归纳复习最新版本小学数学的圆的知识点主要包括:圆的概念、圆的性质、圆的构造、圆的运算以及与正方形、三角形等几何图形的关系。
一、圆的概念:1.定义:圆是由平面上与一点的距离相等的所有点组成的集合。
2.圆的要素:中心、半径。
中心是圆的核心,半径是中心到圆上任意一点的长度。
二、圆的性质:1.等半径圆的周长相等。
2.弧度:扇形所对圆心角的弧长与圆的半径的比值。
圆的弧度为2π。
3.弧长:圆心角所对的弧的长度。
弧长与圆的半径和圆心角的大小有关。
4.弦:a.弦是连接圆上任意两点的线段。
b.相等弦所对的圆心角相等。
5.切线和切点:a.切点是切线与圆相切的点。
b.切线与半径垂直。
三、圆的构造:1.以半径和中心构造圆:a.以一条已知长度的线段为半径,在平面上以一点为中心画圆。
b.以两点为圆心画圆。
四、圆的运算:1.周长:a.周长公式:C=2πr,其中r是圆的半径,C是圆的周长。
b.计算:已知半径或直径,直接代入公式计算。
2.面积:a.面积公式:A=πr²,其中r是圆的半径,A是圆的面积。
b.计算:已知半径或直径,直接代入公式计算。
五、与其他图形的关系:1.与正方形的关系:a.正方形的外接圆、内切圆及其半径之间的关系:外接圆半径=正方形边长的一半,内切圆半径=正方形边长的四分之一2.与三角形的关系:a.三角形的外接圆、内切圆及其半径之间的关系:外接圆的半径=三角形边长的一半,内切圆的半径=三角形的面积除以半周长。
b.三角形的重心与外接圆、内切圆关系:重心是外接圆圆心和内切圆圆心的连线上的一点。
新人教版小学数学6年级上册圆的知识点+练习题

圆知识点总结一、圆的意义1、圆是由一条曲线围成的平面图形。
(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)2、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。
在同一个圆里,有无数条半径和直径。
在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。
3、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。
画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。
4、在同一个圆里,半径是直径的一半,直径是半径的2倍。
(d=2r, r =d÷2)5、圆是轴对称图形,有无数条对称轴,对称轴就是直径所在的直线。
6、圆心决定圆的位置,半径决定圆的大小。
要比较两圆的大小,就是比较两个圆的直径或半径。
7、正方形里最大的圆。
两者联系:边长=直径;圆的面积=78.5%正方形的面积画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。
8、长方形里最大的圆。
两者联系:宽=直径画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以宽为直径画圆。
9、同一个圆内的所有线段中,圆的直径是最长的。
10、车轮滚动一周前进的路程就是车轮的周长。
每分前进米数(速度)=车轮的周长×转数11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。
用字母π表示。
π是一个无限不循环小数。
π=3.141592653……我们在计算时,一般保留两位小数,取它的近似值3.14。
π>3.14二、圆的基本公式12、如果用C表示圆的周长,那么C=πd或C = 2πr13、求圆的半径或直径的方法:d = C÷π r = C÷π÷2= C÷2π14、半圆的周长等于圆周长的一半加一条直径。
C半圆= πr+2r=5.14r C半圆= πd÷2+d=2.57d15、常用的3.14的倍数:3.14×2=6.28 3.14×3=9.42 3.14×4=12.563.14×5=15.7 3.14×6=18.84 3.14×7=21.983.14×8=25.12 3.14×9=28.26 3.14×12=37.68 3.14×14=43.963.14×16=50.24 3.14×18=56.52 3.14×24=75.36 3.14×25=78.53.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=254.3416、圆的面积公式:S=πr2。
小学数学中的圆知识点总结

小学数学中的圆知识点总结一、圆的定义和性质1. 圆的定义圆是平面上与给定点距离相等的点的集合。
给定点叫做圆心,距离叫做半径。
用圆形符号表示为⭕。
例如,在坐标系中,圆的方程可以表示为(x-a)² + (y-b)² = r²,其中(a,b)是圆心的坐标,r是半径的长度。
2. 圆的性质(1)圆的直径是经过圆心两点的线段,长度等于圆的半径的两倍。
(2)圆心到圆上任意一点的距离都是相等的,等于半径的长度。
(3)圆被分成的两部分叫做扇形,扇形的两边是圆的两条半径。
(4)圆的周长叫做圆的周长,通常用C表示,可以用公式C=2πr计算出来,其中r是半径的长度,π是圆周率,约等于3.14。
二、圆的相关图形1. 圆的切线给定一个圆和一点P在圆外,通过点P有且仅有一条与圆相交于P的直线,这条直线叫做圆的切线。
切线与半径的夹角是直角。
2. 圆的切点切线与圆相切的点叫做圆的切点。
圆的切点与圆心连线垂直于切线。
3. 圆内接四边形如果一个四边形的四个顶点都在同一个圆上,那么这个四边形叫做圆内接四边形。
圆内接四边形的两组对边和相等。
4. 圆外接四边形如果一个四边形的四个顶点都在同一个圆的圆周上,那么这个四边形叫做圆外接四边形。
圆外接四边形的对角线相交于一点,这个点叫做四边形的对角点。
三、圆的相关定理和公式1. 圆的面积圆的面积叫做圆的面积,一般用S表示,可以用公式S=πr²计算出来。
2. 圆心角的性质(1)圆心角的度数等于所对弧的中心角的角度。
(2)一个圆的圆心角的度数等于圆的周长除以半径的长度。
3. 圆的圆心角的度数和弧长的关系(1)圆心角的度数等于弧长的度数。
(2)圆心角的弧度数等于弧长除以半径的长度。
4. 弧长和扇形面积的计算(1)弧长的计算可用公式L=2πr计算,其中r是半径的长度。
(2)扇形面积的计算可用公式S=πr² × (θ/360)计算,其中r是半径的长度,θ是圆心角的度数。
小学数学圆的知识点归纳复习

小学数学圆的知识点归纳复习小学数学中,圆是一个非常重要的几何形状。
学生从一年级开始就会接触到关于圆的知识,而且这些知识在后续学习中会不断深化和应用。
下面是小学数学中关于圆的知识点的归纳复习。
1.圆的定义和性质:圆是由平面上到一点的距离恒定的所有点组成的集合。
圆上的任意一点到圆心的距离称为半径,圆内两点间的最短距离称为弦,通过圆心和几个点的连线称为半径。
2.圆的元素和记号:圆心:圆的中心点,通常用大写字母O表示。
圆的半径:连接圆心与圆上一点的线段,通常用字母r表示。
圆的直径:通过圆心的两个点间的距离,是半径的两倍,通常用字母d表示。
圆的周长:圆的周长是圆周上的长度,可以用公式C=πd或C=2πr 计算,其中π取3.14或3.1416圆的面积:圆所包围的面积,可以用公式A=πr²计算。
3.直径、半径和弦之间的关系:直径是圆的两个相对点上的弦。
半径是圆心到圆上任意一点的弦的一半。
如果两条弦互相垂直,那么它们的交点在圆的直径上。
4.弧和弧度的概念:弧是圆上两点间的一段弯曲线。
弧度是衡量圆心角大小的单位,在圆心处的一段弧等于圆的半径所对应的圆心角的弧度。
5.圆的划分和构造:通过两个点可以构造一条弦,通过三个点可以构造一个圆,其中一点是圆的中心,其余两点是圆上的点。
6.圆的位置关系:内切圆:一个圆正好与另一个圆相切于内部,两个圆的半径相差,但是圆心位于另一个圆的圆心。
外切圆:一个圆正好与另一个圆相切于外部,两个圆的半径相加,但是圆心位于另一个圆的圆心。
7、圆与其他几何图形的关系和应用:圆与直线的关系:圆内只有一个点,圆上有无数个点,圆外没有点。
圆与三角形的关系:三角形的外接圆和内切圆。
圆与正方形的关系:正方形的外接圆和内切圆。
圆与矩形、长方形、梯形等的关系:矩形的外接圆和内切圆。
圆的分割与拼接:将圆按照一定的方式切割后,可以组合成其他形状的图形。
通过对以上知识点的复习和理解,学生可以更好地掌握圆的定义和性质,学会用适当的方式计算圆的周长和面积,并且能够应用圆的知识解决实际问题。
小学六年级数学必须掌握的知识点圆的周长与面积计算

小学六年级数学必须掌握的知识点圆的周长与面积计算在小学六年级数学学习中,圆的周长与面积是必须掌握的重要知识点。
了解圆的周长与面积的计算方法,可以帮助学生更好地理解圆形的属性和特征,进一步提高他们的数学能力。
本文将介绍小学六年级数学中关于圆的周长与面积的计算方法。
一、圆的周长的计算方法圆的周长是指围绕圆的一条线段的长度。
在计算圆的周长时,需要用到圆的半径或直径。
下面介绍两种常用的计算圆的周长的方法。
1. 通过半径计算圆的周长圆的半径是指圆心到任意一点的距离,用字母r表示。
当已知圆的半径时,可以通过计算来得到圆的周长C。
公式:C = 2πr其中π是一个常数,约等于3.14。
通过将半径带入公式,即可计算出圆的周长。
2. 通过直径计算圆的周长圆的直径是指通过圆心的两个点之间的距离,用字母d表示。
当已知圆的直径时,也可以通过计算来得到圆的周长C。
公式:C = πd直径是半径的两倍,因此直径和圆的周长之间的关系为C = 2πr,可以根据直径计算圆的周长。
二、圆的面积的计算方法圆的面积是指圆内部的所有点所围成的图形的大小。
在计算圆的面积时,同样需要用到圆的半径或直径。
下面介绍两种常用的计算圆的面积的方法。
1. 通过半径计算圆的面积圆的面积公式是由圆的半径决定的,用字母A表示。
公式:A = πr²将圆的半径带入公式,进行计算,即可得到圆的面积。
2. 通过直径计算圆的面积利用直径计算圆的面积同样是可行的,因为圆的直径是半径的两倍。
所以,可以将直径带入圆的面积公式进行计算。
公式:A = π( d / 2)²将直径的一半代入公式,然后进行计算,即可得到圆的面积。
需要注意的是,在计算圆的面积时,要保持精确度,通常使用π的近似值3.14进行计算。
通过学习以上方法,小学六年级的学生可以准确计算圆的周长与面积。
掌握这些知识点,不仅可以在数学课堂上灵活运用,还可以在生活中应用到相关问题的解决中。
希望学生们通过不断练习和巩固,提高他们的数学水平,为将来的学习打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学圆的知识点归纳复习
1、基本知识点
(1)圆的初步认识
圆中心的一点叫圆心,用o 表示。
一端在圆心,另一端在圆上的线段叫半径,用r 表示。
两端都在圆上,并过圆心的线段叫直径,用d 表示。
圆有无数条半径,无数条直径,所有的半径都相等,所有的直径也都相等 ,在同圆或
等圆中,直径是半径的2倍,字母关系式为2d r =。
或半径是直径的一半,字母关系式为12r d =。
圆规两脚尖所叉开的距离为圆的半径。
在圆内最长的线段是直径。
将一张圆形纸片至少
对折2次,就能确定圆心的位置 。
圆是轴对称图形,直径所在的直线是圆的对称轴。
圆有无数条对称轴。
圆心决定圆的位置,半径决定圆的大小。
(2)圆的周长(用C 来表示)
圆一周的长度就是圆的周长。
任何圆的周长除以它的直径的商是一个固定的数,我们把它叫做圆周率, 所以任何一个
圆的圆周率,都不随圆的大小而变化。
用字母π表示,计算时通常取3.14,注意π是一个固定值,而3.14是一个近似值。
公式:
==
÷圆的周长圆周率圆的周长圆的直径圆的直径。
圆的周长公式:C=πd 或 C=2πr 一个圆的周长是直径的π倍,是半径的2π倍。
(3)圆的面积(用S 来表示)
圆所占地方的大小就是圆的面积。
把一个圆,经若干等分后,再拼成一个近似的长方形:
长方形的长 = 圆周长的一半 = πr ,长方形的宽=半径= r 。
长方形的面积= πr 2
即圆的面积
圆的面积公式: S=πr 2
(4)半圆的周长和面积
将一个圆沿着任何一条直径剪开分成两个相同的半圆,其中的一个就叫做半圆。
半圆是
由一条半圆弧和一条直径围成。
那么 半圆
C 半圆的周长公式:C =22d d r r ππ+=+半圆 半圆C 半圆的面积公式:2=2
C r π÷半圆 (5)圆环的周长和面积
两个同心圆形成一个圆环。
设小圆和大圆(或内圆和外圆)的半径和直径分别为r 和R 。
(R ﹥r )
圆环的周长:
=22C r R ππ+圆环 圆环的面积:()2222=R -R S r r πππ=-圆环
(6)圆的相关结论
一个圆的半径扩大若干倍,则它的直径也扩大相同的倍数,周长也扩大相同
的倍数,而面积扩大倍数的平方倍。
在周长相等的长方形,正方形和圆中,( 圆 )的面积大一些。
1 3.14π=
2 6.28π= 39.42π= 412.56π= 515.7π=
618.84?π= 721.98π=
825.12π= 9π=28.26 10 3.14π= 211121= 212144= 213169= 214196= 215225=
216256= 217189= 218324= 219361=
2、典型例题
例1、画圆时,圆规两脚之间的距离为4cm ,那么这个圆的直径是( )cm ,周长是( )cm ,面积是( )平方厘米。
点评:考察圆的基本要素半径、直径、周长、面积之间的相互转化。
跟踪例1、一个圆形花坛的周长是25.12米,这个花坛的直径是()米,半径是()米,面积是()米²。
例2、试求出这个图形的周长和面积
6dm
4dm
点评:组合图形的周长和面积可以通过计算基本图形的周长和面积来得到。
跟踪例2、计算出下列图中阴影部分的面积和周长
例3、一个圆环,外圆半径是8厘米,内圆半径是3厘米,圆环面积是()平方厘米,周长是()厘米。
点评:圆环的面积:
()
2222 =R-R
S r r
πππ
=-
圆环
跟踪例3、一个圆环,面积是34.54平方米,内圆半径是5米,求外圆直径。
例4、一个半圆形舞台的周长是41.12米,你能求出它的直径和面积各是多少吗?
点评:千万注意半圆的周长是由一段半圆弧和一条直径组成,计算时不能遗漏。
跟踪例4、一个半圆形舞台的面积是14.13平方米,求它的半径和面积。
例5、一个圆形的桌面,直径为70厘米,现在要在桌面上安放一个同样大小的玻璃,求这个桌面玻璃的面积。
如果玻璃每平方米价格为110元,这个玻璃要花多少钱?
点评:圆的知识在实际生活中的应用。
跟踪例5、在一个直径为18米的圆形草地周围铺一条宽4米的环形道路,求这
条环形路的面积是多少? 如果道路每平方米需要的铺地价格是110元,完成这件
事需要多少钱?
3、典型例题
一、填空。
1、从圆心到圆上任意一点的线段叫()。
通过()并且()都在()的线段叫()。
圆的位置由()确定,圆的大小决定于圆的()长短。
2、在同一个圆里,所有的()都相等,所有的()都相等。
直径等于半径的()倍。
3、圆是()图形,它有()条对称轴。
正方形有()条对称轴,长方形有()条对称轴,等边三角形有()条对称轴。
4、圆周率表示同一圆内()和()的倍数关系,它用字母()表示,保留两位小数后的近似值是()。
5、在同一个圆内可以画()直径;如果用圆规画一个直径是10CM的圆,圆规两脚间的距离是()厘米。
6、画圆时,圆规两脚间的距离是4CM,那么这个圆的周长是()CM,面积是()平方厘米。
7、在长6厘米,宽4厘米的长方形内画一个最大的圆,那么这个圆的周长是()CM,面积是()平方厘米。
还剩()平方厘米。
8、一辆汽车的车轮半径是0.5米,它滚动一周前进()米。
9、一根长12.56米的绳子把一个圆刚好可以绕10圈,这个圆的直径大约是()米。
10、大圆的半径等于小圆直径,则大圆面积是小圆面积的()倍,小圆周长是大圆周长的()。
11、一个圆形花坛的周长是25.12米,这个花坛的直径是()米。
12、一个圆环外圆半径是6分米,内圆半径是4分米,圆环的面积是()。
二、判断题。
1、圆的周长是它直径的∏倍。
()
2、半径为一厘米的圆的周长是
3.14 。
()
3、一个圆的周长是12.56厘米,面积是12.56平方厘米。
()
4、车轮滚动一圈,求路程就是求车轮直径的长度。
()
5、当长方形、正方形、圆的周长相等时,圆的面积最大。
()
6、圆的半径都相等,直径都相等。
()
7、半圆的周长就是圆周长的一半。
()
8、圆周率就是圆的周长与直径的比值。
()
9、圆周率=3.14。
()
10、大圆的圆周率比小圆的圆周率大。
()
三、画一画。
1、以O为圆心画一个直径为4厘米的圆。
2、在正方形内画一个最大的圆。
3、画出下列图形的所有的对称轴。
四、计算下列各圆的面积。
5分
1、半径是8CM。
2、周长是9.42米
五、计算下列各圆的周长。
4分
1、直径是6厘米。
2、半径是5分米。
六、观察并计算。
(单位:cm)6分
1、求下面图中阴影部分的面积。
正方形边长为12。
2、求下面阴影部分的周长。
大圆直径是8,小圆直径是6。
七、应用题:每题4分,共32分。
1、一种压路机的前轮直径是1.5米,每分钟转8圈,压路机每分钟前进多少米?
2、一个圆形养鱼池,直径是4米,这个养鱼池的周长是多少米?占地面积是多少平方米?
3、一辆自行车的前轮半径是40厘米,车轮每分钟转100圈,要通过2512米的桥,大约需要几分钟?
4、一根铁丝可以围成一个半径是3厘米的半圆,这根铁丝有多长?它所围成的半圆的面积有多大?
5、用席子围成一个地面周长是18.84米的圆柱形粮囤。
这个粮囤占地面积有多大?
6、一个圆的半径是2米,如果把这个圆的半径增加1米,那么它的面积增加多少平方米?
7、一块正方形草地,边长8米。
用一根长3.5米的绳拴住一只羊到草地上吃草,羊最多能吃到多少面积的草?
8、一个铁环直径60厘米,从操场东端沿直线滚到西端转了90圈,另一个铁环的直径是40厘米,它从操场东端沿直线滚到西端要转多少圈?。