汽车可靠性第三章
汽车维修工程课件第一章汽车可靠性理论基础ppt

No.10044
(十)有效度
是把系统可靠性和维修性特性转换为效能的一个 指标的参数。通过可用性分析,可以在系统的可靠 性和维修性参数间作出合理的权衡。
A(t) U D U
A(t)—有效度
式中 U —能工作时间;
D —不能工作时间
—所有样本发生的 i类故障数
第三类故障:一般故障 qkj 100
i —每次发生 类故障的扣分数 第四类故障:轻微故障 qkj 20
No.10044
三、系统可靠性
(一)系统可靠性的定义
系统可靠性是指工作系统在一定的使用条件下, 在要求的工作时间内,完成规定功能的能力。
系统可靠性是建立在系统中各个零件及部件间的作用 关系和这些零部件所具有的可靠性基础之上的。换言之, 系统可靠性为其组成总成(子系统)及零件可靠性的函 数。
No.10044
平均寿命: E( X )
方差寿命: d ( X ) 2
可靠寿命: 中位寿命:
TR U p
T (0.5)
No.10044
(三)对数正态分布
若随机变量T的对数值lnt服从正态分布,则该随机变 量T就服从对数正态分布。
,
图 0, 1的对数正态分布曲线
分布函数:
x1
(ln t )2
No.10044
(二)正态分布
正态分布是一种最常用的连续型分布,它可以用来描述许多自然现 象和各种物理性能,也是机械制造、科学实验及测量技术进行误差分析 的重要工具。
1.正态分布特征
正态分布的故障密度函数为
f (x) 1 exp[ 1 ( x )2 ]
2
汽车可靠性理论

基本特征:失效率近似等于常数,失效率低且性能 稳定,失效偶然发生。原因是各种失效因素或承受应 力的随机性,由于操作疏忽、润滑不良、维护欠佳等。
C:耗损失效期:
基本特征:随时间延长,失效率急剧加大。原因是 汽车产品老化而衰竭引起。
第一节:汽车可靠性概述
5、平均寿命与可靠寿命 (1)平均寿命:标志产品平均能工作多长时间,对整批
长而逐渐加剧。 (2)按《汽车产品质量检查评定办法》蓝皮书规定分: 致命故障:危及人身安全,引起主要总成件报废。 严重故障:引起主要部件、总成损坏或影响行车安全,不能短时
间排除。 一般故障:不影响行车安全的非主要零部件故障,短时间能排除。 轻微故障:对汽车正常运行基本没有影响,不需要更换零部件,
随车工具就能排除。
第一节:汽车可靠性概述
(3)故障率函数曲线:寿命曲线或浴盆曲线,描 述失效率随时间而变化的规律。
失效率 早期失效率A
耗损失效率C
偶然失效期B
经维修下降的故障
0
有效寿命t
T
第一节:汽车可靠性概述
A:早期失效期:
基本特征:开始失效率较高,随时间推移,逐渐降 低,原因是设计、制造、管理、检验及装配差错引起。
1、可靠度R(t):汽车在规定条件、规定时间 内
完成规定功能的概率。
R(t)=P(A) 0≦P(A)≦1
2、失效度F(t)(累积故障概率、不可靠度): 汽车在规定条件、规定时间内丧失规定功能的 概率。
R(t) +F(t)=1
三:可靠性衡量指标
F(t)
R(t)
1 1
0
t
0
ห้องสมุดไป่ตู้
t
第一节:汽车可靠性概述
汽车可靠性概述

故障概率密度
由概率论知:若故障分布函数连续可导,则故障密度函数可求导得出 :
F t
t
0
f
t dt
则
Rt
1
F t
1
t
0
f
t dt
0
f
t dt
上式表示产品出现故障的概率随时间变化的规律。即反映了单位时 间的失效概率。
汽车可靠性概述
故障率
定义:工作到某时刻尚未失效的产品,在该时刻后单位时间内发生 故障的概率,称为该产品在t时刻的故障率,记为 。
于先生:惊讶的目光
服务小姐主动解释说:“我刚刚查过电脑记录,您在去年的6月8 日在靠近第二个窗口的位子上用过早餐”
“老位子!老位子!” “老菜单?一个三明治,一杯咖啡,一个鸡蛋?”
“老菜单,就要老菜单!”
后面的三年的时间没有再到泰国去。 在于先生生日的时侯突然收到了一封东方饭店发来的生日贺卡,里面还附了 一封短信, 内容是:亲爱的于先生,您已经有三年没有来过我们这里了,我们全体人员 都非常想念您,希望能再次见到您。今天是您的生日,祝您生日愉快。
第5章 汽车零件的修复的内容
5.1汽车零件的修复方法 5.2零件修复方法的选择
第6章 汽车主要总成机械系统的修理的内容
6.1发动机的修理 6.2汽车底盘的修理 6.3汽车电气设备维修 6.4汽车车身的修理
第7章 汽车维修质量及评价的内容
7.1质量概述 7.2质量分析法 7.3质量保证体系 7.4汽车维修质量的评价
第三阶段:(六十年代)普及期
(可靠性工程从电子工业向其他工业部门迅速推广)
第四阶段:(七十年代以来)成熟期
(可靠性技术成为解决产品责任问题的重要手段 )
汽车的可靠性

汽车的可靠性1 可靠性的定义广义可靠性由三大要素构成:可靠性、耐久性和维修性。
通常所说的可靠与不可靠,只是对汽车本身的质量而言。
1.1可靠性汽车的可靠性是指汽车产品在规定的使用条件下和规定的时间内,完成规定功能的能力。
汽车可靠性包括四个因素:汽车产品、规定条件、规定时间和规定功能。
汽车产品是指汽车整车、总成或零部件,它们都是汽车可靠性研究的对象。
规定条件是指规定的汽车产品工作条件,它包括:气候情况、道路状况、地理位置等环境条件,载荷性质、载荷种类、行驶速度等运行条件,维修方式、维修水平、维修制度等维修条件,存放环境、管理水平、驾驶技术等管理条件。
规定时间是指规定的汽车产品使用时间,它可以是时间单位(小时、天数、月数、年数),也可以是行驶里程数、工作循环次数等。
在汽车工程中,保修期、第一次大修里程、报废周期都是重要的特征时间。
规定功能是指汽车设计任务书、使用说明书、订货合同及国家标准规定的各种功能和性能要求。
不能完成规定功能就是不可靠,称之为发生了故障或失效。
根据故障的危害程度不同.汽车故障通常分类:1)致命故障。
指危及人身安全、引起主要总成报废、造成重大经济损失、对周围环境造成严重危害的故障。
2)严重故障。
指引起主要零部件或总成损坏、影响行驶安全、不能用易损备件和随车工具在短时间(30min)内排除的故障。
3)一般故障。
指不影响行驶安全的非主要零部件故障,可用易损备件和随车工具在短时间(30min)内排除。
4)轻微故障。
指对汽车正常运行基本没有影响,不需要更换零部件,可用随车工具(5min内)较容易排除的故障。
1.2 汽车的耐久性:是指汽车进入极限技术状态之前,经预防维修(不更换主要总成和大修)维持工作能力的性能。
1.3维修性:是指在规定条件下使用的产品,在规定时间内按规定的程序和方法进行维修时,保持或恢复到能完成规定功能的能力。
1.4 汽车的使用期限:是指新车开始使用直至报废为止的使用延续时间(或行程)。
汽车可靠性

汽车的可靠性是汽车在规定时间内及规定条件下,完成规定功能的能力。
用概率表示这种能力叫可靠度,汽车的故障概率密度是单位时间△t 内,故障频率在△t → 0时的极限值,用f ( t )表示。
汽车的故障率,是到t 时间为止,尚未发生故障的条件下,在下一个单位时间内发生故障的条件概率。
平均故障率观察值是指汽车、总成在规定的考察行程(或时间)内,故障发生次数与累积行程(或时间)之比。
故障率、故障密度函数和可靠度之间的关系f ( t ) = λ(t )R ( t )= λ(t )e tdtt ⎰-0)(λ平均寿命对于可维修的产品是指平均无故障工作时间; 对于不可维修的产品是指平均寿终时间,可靠寿命 例如用t 0.99 表示可靠度R(t)=99%时产品的工作时间。
在可靠寿命中有以下重要概念:(1)特征寿命 可靠度R=e -1=36.8%的工作时间称为特征寿命, (2)中位寿命 可靠度R=50%的工作时间称为中位寿命,记为t 0.5(3)额定寿命 可靠度R=90%的工作时间称为额定寿命,记为t 0.9维修度是指 在规定的条件下使用,在规定的时间内按规定的程序和方法进行维修时,保持或恢复到能完全规定状态的概率。
修复率修复率是指到某时刻还在进行维修的汽车,其在单位时间内修复的条件概率 汽车的有效度:汽车在特定时间维持其功能的概率。
如汽车平均能工作时间为U,平均不能工作时间为D ,则有效度为 A = DU U +故障概率密度函数 f(t) =λt e λ-,t ≥0 累积故障概率 F(t)=1-t e λ-,t ≥0 其数字特征:数学期望 E(t)=λ1方差 D(t)=21λ平均寿命 μ=λ1指数分布的故障率为常数;当t=λ1时,R(t)= 1-e =36.8%,即指数分布的指数分布等于特征寿命。
指数分布为单参数分布,只要确定了故障率,即可确定可靠度函数;且可靠度与起始时间无关(无记忆性)。
正态分布若随机变量的概率密度函数f(t)为f(t)=()⎥⎦⎤⎢⎣⎡--222exp 21σμπσt -∞<t <+∞其累积故障概率密度为 F(t)=⎰∞-tdt t f )( =()dt t t⎰∞-⎥⎦⎤⎢⎣⎡--222exp 21σμπσ-∞<t <+∞式中 μ—均值,是样本集中趋势的尺度,也是数学期望,即E(t)= μ σ—标准差,反映分布的离散程度,其平方值即为方差,即D(t)=σ2 正态分布是两参数分布,其概率密度曲线是以μ值处为中心线的单峰对称曲线,其峰值为πσ21;σ值决定分布的离散程度,值越大,曲线越矮越平坦。
汽车可靠性 PPT课件

主要内容
▪ 汽车可靠性理论 ▪ 汽车零部件失效理论 ▪ 汽车维护工艺 ▪ 汽车修理工艺 ▪ 汽车零件修复方法 ▪ 汽车维修质量评价 ▪ 主要总成检修
6
汽车可靠性理论基础
一、汽车可靠性概述 ▪ 1. 汽车可靠性:是指汽车产品在规定的使
用条件下,在规定的时间或者规定的里程 内完成规定功能的概率。
▪ 汽车可靠性包含四个要素,即汽车产品、规定条 件、规定时间、规定功能。
▪ 汽车产品的可靠性水平,与制造、 材料、设计水平有关,构成汽车固有可
靠性,对生产成本和经济效益影响。 ②通过可靠性分配,确定各子系统(总成、零部件)的可靠 性指标。
▪ 汽车是复杂的机械电子产品。实现整体的可靠性指标,必须依靠各子系统、 零部件的可靠性加以保证。
③通过可靠性分配,有利于设计部门间的联络和配合。
11
▪ (2)奠基期。20世纪50年代起,可靠性问题愈加突 出。 美国军用雷达:因故障不能工作的时间占84%; 陆军电子设备:在规定时间内有65% ~75%因 故障不能使用。 1952年美国国防部“电子设备可靠性咨询小组”; 1957年发表“军用电子设备的可靠性报告”,提出 了在研制、生产过程中对产品可靠性指标进行试验、 验证和鉴定的方法,以及包装、储存、运输过程中 的可靠性问题及要求。 该报告是电子产品可靠性工作的奠基性文件,可靠 性理论研究开始起步。
设系统下属组件的可靠度分别为分别表示系统和单元的正常工作状态则依据串联系统的定义串联系统中正常事件是交的关系逻辑上为与的关系系统要正常工作必须各子系统都正常工作则有系统正常工作的概率为各单元概率之积因此由于所以33对于指数分布相应组件的失效故障概率分别为并设并联系统的失效故障概率为qs定义
汽车维修工程 (理论)
汽车零部件可靠性与寿命试验研究

汽车零部件可靠性与寿命试验研究第一章:引言汽车作为人们出行的主要工具,零部件的可靠性和寿命是直接关系到行车安全和舒适性的关键因素。
汽车零部件的可靠性和寿命试验一直是汽车工业研究的重点之一。
制定可靠性试验标准是鉴定零部件质量的关键。
本文将对汽车零部件试验的可靠性与寿命试验方法进行详细的探讨。
第二章:汽车零部件可靠性试验2.1 可靠性试验的定义可靠性试验是用各种可能的方法对汽车零部件进行测试检测,并将这些数据应用于试验或模拟。
通过这些试验数据分析来推断汽车零部件的可靠性。
2.2 可靠性试验的分类(1)性能可靠性试验:汽车零部件性能是衡量其可靠性的重要指标,性能可靠性试验主要是对汽车零部件的性能进行测试判定。
这种试验主要是通过台架试验进行判定和鉴定,包括功率、扭力、变速器、行驶里程和其他性能指标的测试。
(2)环境可靠性试验:汽车在使用中往往会经历各种环境的变化,包括气候、温度、湿度、盐度、沙尘等等。
环境可靠性试验主要是对汽车零部件在这些环境中运行的可靠性进行测试。
(3)寿命可靠性试验:汽车零部件的寿命试验主要是测试汽车零部件的使用寿命,根据试验数据分析来推断零部件的寿命,从而预测汽车零部件的寿命周期。
2.3 可靠性试验的方法(1)加速试验:加速试验主要是对汽车零部件进行加速老化测试,通过这种方法检测汽车零部件的可靠性和耐久性。
加速试验的时间比较短,因此成本也相应的较低。
但需要注意的是,在进行加速试验时需要选择合适的试验条件,并注意和实际使用情况的比较。
(2)正常使用试验:正常使用试验主要是模拟汽车零部件在实际使用中的情况,对零部件进行长期试验。
通过这种方法,能够模拟出零部件的使用寿命和可靠性,但试验时间较长,成本也相应增加。
(3)疲劳试验:汽车零部件在使用过程中,经常会受到一定的引力和振动的影响,这些对零部件有着较大的疲劳损伤。
疲劳试验主要是通过对这些状态进行模拟实验,检测汽车零部件在疲劳状态下的可靠性和耐久性。
新能源汽车动力系统的可靠性分析

新能源汽车动力系统的可靠性分析第一章:前言随着新能源汽车的快速发展,新能源汽车动力系统的可靠性愈加受到关注。
本文将会对新能源汽车动力系统的可靠性进行分析,并探讨新能源汽车动力系统的发展方向。
第二章:新能源汽车动力系统的介绍新能源汽车动力系统包含电池、电机、电控、综合控制器、功率器件等多个部分,通过电能的转换驱动车辆。
与传统燃油汽车相比,新能源汽车的核心在于电池和电机,功率器件和控制器的作用是将电池电量转换成驱动力,实现车辆行驶。
第三章:新能源汽车动力系统可靠性来源分析1. 电池系统:电池可靠性是影响新能源汽车动力系统性能的关键因素,电池管理系统的可靠性直接决定了电池安全和寿命。
常见影响因素包括气候、温度、充电速度、内阻等。
2. 电机系统:电机系统主要涉及到电机的可靠性、电机控制系统的可靠性,对于电机的磨损、过热、故障等问题都需要进行可靠性分析。
3. 电控系统:电控系统涉及到电子元器件、芯片、电子传感器等,对于电控系统的可靠性需要进行长时间的抗干扰测试。
4. 综合控制器:综合控制器是新能源汽车动力系统的智能核心,安全稳定性和可靠性是设计和应用中的重要目标。
综合控制器的工作状态在车辆行驶中直接影响着新能源汽车的安全性和效能。
第四章:可靠性测试方法为更好的保证新能源汽车动力系统的可靠性,需要开展可靠性测试。
可靠性测试通常分为以下几种:1. 实际路试测试:通过设定测试场景,对电池、电机等关键部件进行路试测试,考察新能源汽车在实际驾驶中的可靠性。
2. 模拟测试:通过建立模拟测试平台,对电池、电机等关键部件进行可靠性测试。
模拟测试可以节省测试成本,避免因实际测试条件不足导致的测试误差。
3. 器件可靠性测试:针对电电子器件、芯片等部件,进行可靠性测试,研究器件在不同工作条件下的可靠性。
4. 环境耐久测试:通过模拟不同环境、不同工况下的测试,考察零部件的耐久性和可靠性。
第五章:新能源汽车动力系统的发展方向1. 提升电池技术:目前新能源汽车电池寿命较短、价格较高,需要进一步提升电池技术,扩大电池容量。