电力系统分析作业电网节点导纳矩阵的计算机形成
《现代电力系统分析》资料讲解

工程硕士研究生2014年《现代电力系统分析》复习提纲2014.6一、 简述节点导纳矩阵自导纳及互导纳的物理意义;试形成如图电路的节点导纳矩阵和节点阻抗矩阵。
答:节点导纳的阶数等于网络的节点数,矩阵的对角元素即自导纳等于与该节点连接的所有支路的导纳之和,非对角元素即互导纳则为连接两点支路导纳的负值。
(李)在电力网络中,若仅对节点i 施加单位电压,网络的其它节点接地时,节点i 对网络的注入电流值称为节点i 的自导纳;此时其它节点j 向网络的注入电流值,称为节点j 对节点i 的互导纳。
节点导纳矩阵为:在电力网络中,若仅对节点i 施加单位电压,网络的其它节点接地即U =0时,节点i 对网络的注入电流值称为节点i 的自导纳;此时其它节点j 向网络的注入电流值,称为节点j 对节点i 的互导纳。
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----++--=j j jk jk j jk jkj j j jj Y 1021001102111211100112;李⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=105.0001.111.1105.01.115.2100112j j j j j j j j j j Y 节点阻抗矩阵为:在电力网络中,若仅对节点i 施加单位电电流。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=22222544244424452k k k k k k k j Z ;李⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=22.2222.205.64.44.424.44424.445j j j j j j j j j j j j j j j j Z 二、 写出下图所示变压器电路的П型等效电路及物理意义。
1:k答:1、物理意义: ①无功补偿实现开降压;②串联谐振电路;③理想电路(r<0)。
2、П型等效电路:⎥⎦⎤⎢⎣⎡+--+=⎥⎦⎤⎢⎣⎡20121212121022211211Y Y Y Y Y Y Y Y Y Y ,令U1=1时,点2接地U2=0 图一Y 10 Y 20Y 12可得1210Y Y y T += ,12Y k y T -=-,12102Y Y k y T += 得:)1(Y 10k k y T -= ,)1(Y 220kk y T -= ,k yT =12Y三、 按Ward 等值写出图二等值表示成内部节点的功率(网络)方程式。
3.3复杂电力网潮流计算的计算机解法

3.3复杂电力网潮流计算的计算机解法3.3.1 导纳矩阵的形成1.自导纳节点i的自导纳,亦称输入导纳,在数值上等于在节点i施加单位电压,其他节点全部接地时,经节点i注入网络的电流。
主对角线元素,更具体地说,就等于与节点连接的所有支路导纳的和。
2.互导纳节点i、j间的互导纳,在数值上等于在节点i施加单位电压,其他节点全部接地时,经节点j注入网络的电流。
非对角线元素。
更具体地说,是连接节点j和节点i支路的导纳之和再加上负号而得。
3.导钠矩阵的特点:(1)因为,导纳矩阵Y是对称矩阵;(2)导纳矩阵是稀疏矩阵,每一非对角元素是节点i和j间支路导纳的负值,当i和j间没有直接相连的支路时,即为零,根据一般电力系统的特点,每一节点平均与3-5个相邻节点有直接联系,所以导纳矩阵是一高度稀疏的矩阵;(3)导纳矩阵能从系统网络接线图直观地求出。
4.节点导纳矩阵的修改(1)从原有网络引出一支路,同时增加一节点,设i为原有网络结点,j为新增节点,新增支路ij的导纳为y ij。
如图3-17(a)所示。
因新增一节点,新的节点导纳阵需增加一阶。
且新增对角元Y jj=y ij,新增非对角元Y ij=Y ji=-y ij,同时对原阵中的对角元Y ii进行修改,增加ΔY ii=y ij。
(2)在原有网络节点i、j间增加一支路。
如图3-17(b)所示。
设在节点i增加一条支路,由于没有增加节点数,节点导纳矩阵Y阶次不变,节点的自导纳Y ii、Y jj和互导纳Y ij分别变化量为(3-57)图 3-17 网络接线的变化图(a)网络引出一支路,(b)节点间增加一支路,(c)节点间切除一支路,(d)节点间导纳改变(3)在原有网络节点i、j间切除一支路。
如图3-17(c)所示。
设在节点i切除一条支路,由于没有增加节点数,节点导纳矩阵Y阶次不变,节点的自导纳Y ii、Y jj和互导纳Y ij分别发生变化,其变化量为(3-58)(4)原有网络节点i、j间的导纳改变为。
节点导纳矩阵的形成

极坐标形式 Page-132 令:
P i P Gi P Di U i U j Gij cos ij Bij sin ij (4-43a) Qi QGi QDi U i U j Gij sin ij Bij cos ij (4-43b)
——雅克比矩阵对角元素的计算公式
为什么
没有i=j项
为什么 有2倍项
42
雅克比矩阵元素的特点
雅克比矩阵不对称 节点分块雅克比矩阵与节点导纳矩阵具有相同的结构 维数相同,稀疏结构相同(非零元的位置相同)
N11 L11 N n1 H1n 1 J U / U 1n 1 1 H nn n nn
0
f1 x2 f 2 x2 f n x2
0
0
0
0
0
0 0 x 1 f 2 0 ... x2 xn 0 x 0 n f n ... xn 0 f1 ... xn
j 1 j 1 n
Ui ei jfi
25
直角坐标形式:(P-129:式(4-36a),(4-36b)
4.2.1.2 功率方程中变量的分类
n节点系统 2n个 2n个 2n个
给定2n个扰动变量和2n个控制变量,则功率方程组可解吗?
26
4.2.1.2 功率方程中变量的分类 ——变量的约束条件
4.2.1.1 功率方程
——两节点系统功率方程的形成
等式两边取共轭乘电压,则得节点的注入功率方程:
网络的功率损耗等于所有节点注入功率的代数和,则:
电力系统网络矩阵

i
Yii
+
N
YNi
-
节点导纳矩阵表示短路参数。
在网络中节点i 接单位电压源,其余 节点都短路接地,此时流入节点i 的
电流数值上是Yii,流入节点j的电流
数值上是Yij。
注意:只有和节点i有支路相连的节点才有 电流,因此导纳矩阵是稀疏矩阵。节点导 纳矩阵的元素只包含网络的局部信息。
2011-1-1
高等电力网络分析
C2Z(0)C1
yaa1
zaa
za 0 z01z0a
2011-1-1
高等电力网络分析
14
3、追加树支支路
增加新节点q
部i 分 网
络j
a p
q 前 A0
A
A0 0T
ep 1q
后 y0
Y
A0 0T
ep y0
1
ya
0
y0a A0T
yaa
eTp
0 1
整理后可得
Z
Z(0) C2Z(0)
(Yn YpYpp1YpT )Vn In YpYpp1Ip
Y Yn YpYpp1YpT
i p
2011-1-1
j
i
k
j
消去节点p,只需对Y阵
中和p有支路相连的节
点之间的元素进行修正,
k
其他节点之间的元素不
需要修正。
高等电力网络分析
8
4、节点电压给定的情况
Yn YsT
Ys Yss
Vn Vs
部i
分
追加前:
网
a
络j
Y(0) A0z01A0T
追加后: Y A0
辅助矩阵求逆定理
M a
y0
节点导纳矩阵的计算机方法

节点导纳矩阵的计算机方法节点导纳矩阵的计算机方法什么是节点导纳矩阵节点导纳矩阵是在电力系统分析中常用的一种计算方法,用于描述系统中各个节点之间的电流传输关系。
它是一种由复数元素组成的方阵,可以通过矩阵运算来进行电力系统的计算和分析。
节点导纳矩阵的计算方法节点导纳矩阵的计算方法有多种,下面将介绍其中几种常用的方法。
拓扑法拓扑法是一种基于系统拓扑结构的计算方法,先通过系统的线路连接关系构建拓扑图,然后根据拓扑图来计算节点导纳矩阵。
具体步骤如下: 1. 根据系统的线路连接关系构建拓扑图; 2. 根据拓扑图确定系统的节点数和支路数; 3. 根据支路的参数(电阻、电抗)计算节点导纳矩阵的元素; 4. 构建完整的节点导纳矩阵。
潮流法潮流法是一种基于系统潮流计算的方法,通过计算系统中各个节点的电压和电流值来求解节点导纳矩阵。
具体步骤如下: 1. 根据系统的拓扑结构和支路的参数构建节点导纳方程组; 2. 根据节点导纳方程组进行潮流计算,求解各个节点的电压和电流值; 3. 根据节点的电压和电流值计算节点导纳矩阵的元素; 4. 构建完整的节点导纳矩阵。
传递函数法传递函数法是一种基于系统传递函数的计算方法,通过系统的传递函数来计算节点导纳矩阵。
具体步骤如下: 1. 根据系统的拓扑结构和支路的参数构建传递函数; 2. 根据传递函数计算节点导纳矩阵的元素; 3. 构建完整的节点导纳矩阵。
总结节点导纳矩阵的计算方法有拓扑法、潮流法和传递函数法等多种方法,每种方法都有其适用的场景和计算步骤。
在实际应用中,需要根据具体的电力系统分析问题选择合适的计算方法来计算节点导纳矩阵,以实现准确的分析和计算。
频域方法频域方法是一种基于系统频率响应的计算方法,通过系统在不同频率下的响应来计算节点导纳矩阵。
具体步骤如下: 1. 根据系统的拓扑结构和支路的参数构建频域模型; 2. 在不同频率下输入信号,并记录系统的输出响应; 3. 根据输入和输出信号的频域表达式计算节点导纳矩阵的元素; 4. 构建完整的节点导纳矩阵。
电力系统分析第一章

y430
4
y320 z34
y430
y340
i
yij = 1 ( k ji zij )
y40
yij 0 =
+ 1 1 = 2 k ji zij k ji zij
k ji − 1 k ji zij
∆Yij = − 1 k ji zij
y ji 0 =
1 − k ji k 2 zij ji
∆Yii =
Y13 = Y31 = Y14 = Y41 = Y15 = Y51 = Y25 = Y52 = Y45 = Y54 = 0
& I i = ( yi 0 + & = YiiU i +
j∈i , j ≠ i
∑
yij 0 + & YijU j
j∈i , j ≠ i
∑
& yij )U i +
j∈i , j ≠ i
1
& I1
y12
2
y23
3
y35
5
y120
y210
& I2
y230 y24 y420
3
y320 y34
& I3
y350
& I5
y530
y240
4 y y & I 4 y40 430 340
5
1
z12 1:k21
2
z23
k35 :1 z35
i
zij 1:k ji 1:k
j j
y230 z24 y240
y240
y420
4 y y & I 4 y40 430 340
Y11 = y120 + y12
节点导纳矩阵及潮流计算

目录摘要 (2)1任务及题目要求 (2)2原理介绍 (3)2.1节点导纳矩阵 (3)2.2牛顿-拉夫逊法 (4)2.2.1牛顿-拉夫逊法基本原理 (4)2.2.2牛顿--拉夫逊法潮流求解过程介绍 (6)3分析计算 (11)4结果分析 (15)5总结 (16)参考资料 (17)节点导纳矩阵及潮流计算摘要电力网的运行状态可用节点方程或回路方程来描述。
节点导纳矩阵是以系统元件的等值导纳为基础所建立的、描述电力网络各节点电压和注入电流之间关系的线性方程。
潮流计算是电力系统分析中的一种最基本的计算,它的任务是对给定的运行条件确定系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布及功率损耗等。
本文就节点导纳矩阵和潮流进行分析和计算。
1任务及题目要求题目初始条件:如图所示电网。
1∠002阵Y;2+j13)给出潮流方程或功率方程的表达式;4)当用牛顿-拉夫逊法计算潮流时,给出修正方程和迭代收敛条件。
2原理介绍2.1节点导纳矩阵节点导纳矩阵既可根据自导纳和互导纳的定义直接求取,也可根据电路知识中找出改网络的关联矩阵,在节点电压方程的矩阵形式进行求解。
本章节我们主要讨论的是直接求解导纳矩阵。
根据节点电压方程章节我们知道,在利用电子数字计算机计算电力系统运行情况时,多采用IYV 形式的节点方程式。
其中阶数等于电力网络的节点数。
从而可以得到n 个节点时的节点导纳矩阵方程组:nn Y n +V (2-1) 由此可以得到n 个节点导纳矩阵:nn Y ⎫⎪⎪⎪⎪⎭它反映了网络的参数及接线情况,因此导纳矩阵可以看成是对电力网络电气特性的一种数学抽象。
由导纳短阵所了解的节点方程式是电力网络广泛应用的一种数学模型。
通过上面的讨论,可以看出节点导纳矩阵的有以下特点:(1)导纳矩阵的元素很容易根据网络接线图和支路参数直观地求得,形成节点导纳矩阵的程序比较简单。
(3)导纳矩阵是稀疏矩阵。
它的对角线元素一般不为零,但在非对角线元素中则存在不少零元素。
电力系统分析大作业matlab三机九节点潮流计算报告

电力系统分析大作业一、设计题目本次设计题目选自课本第五章例5-8,美国西部联合电网WSCC系统的简化三机九节点系统,例题中已经给出了潮流结果,计算结果可以与之对照。
取ε=0。
00001 。
二、计算步骤第一步,为了方便编程,修改节点的序号,将平衡节点放在最后。
如下图:9第二步,这样得出的系统参数如下表所示:第三步,形成节点导纳矩阵。
第四步,设定初值:;,。
第五步,计算失配功率=0,=—1。
25,=-0。
9,=0,=-1,=0,=1.63,=0。
85;=0.8614,=-0.2590,=-0。
0420,=0。
6275,=-0。
1710,=0.7101。
显然,。
第六步,形成雅克比矩阵(阶数为14×14)第七步,解修正方程,得到:-0.0371,-0。
0668,—0。
0628,0。
0732,0.0191,0.0422,0.1726,0.0908;0.0334,0.0084,0。
0223,0.0372,0。
0266,0。
0400。
从而-0。
0371,—0。
0668,—0。
0628,0.0732,0.0191,0。
0422,0。
1726,0.0908;1。
0334,1。
0084,1.0223,1.0372,1.0266,1。
0400。
然后转入下一次迭代。
经三次迭代后.迭代过程中节点电压变化情况如下表:迭代收敛后各节点的电压和功率:最后得出迭代收敛后各支路的功率和功率损耗:三、源程序及注释由于计算流程比较简单,所以编写程序过程中没有采用模块化的形式,直接按顺序一步步进行。
disp('【节点数:】');[n1]=xlsread(’input。
xls’,'A3:A3')%节点数disp('【支路数:】’);[n]=xlsread('input。
xls’,’B3:B3’)%支路数disp('【精度:】');Accuracy=xlsread('input。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统分析作业——电网节点导纳矩阵的计算机形成
编程软件:matlab R2010b
程序说明:
1.如果已经输入i-j支路的信息,则不可再输入j-i支路的信息。
2.变压器支路的第一个节点编号默认为变压器一次侧,即变压器的等值电路中的阻抗归算侧,亦即变压器非标准变比的1:k中的‘1’。
3.标幺值等值电路中,如果变比为1:1,则默认为线路,因此,变压器的非标准变比不可以是1:1。
5.如果变压器支路也有导纳B不为零,则说明此导纳就是励磁导纳,与线路的导纳B/2不同含义,只算作变压器原边的自导纳。
4.由于程序执行的是复数运算,所以即使实部为零时,也会输出实部‘0’。
程序代码:
a=load('');%从’’中读入数据
[m,n]=size(a);
w=1i;
u=1;
while (u<=m)
hnode=a(u,1);
enode=a(u,2);
z=a(u,3)+a(u,4)*w;
b=a(u,5)*w;
k=a(u,6);
y(hnode,enode)=-1/(k*z);
y(enode,hnode)=-1/(k*z);
y(hnode,hnode)=y(hnode,hnode)+1/(k*z)+(k-1)/(k*z);
y(enode,enode)=y(enode,enode)+1/(k*z)+(1-k)/(k*k*z);
if (abs(k-1)<%如果为线路
y(hnode,hnode)=y(hnode,hnode)+b;
y(enode,enode)=y(enode,enode)+b;
end
if (abs(k-1)>%如果为变压器
y(hnode,hnode)= y(hnode,hnode)-b;
end
u=u+1;
end
[m,n]=size(y);
disp(‘Y=’);
disp(y(1:m,1:n));
clear;
算例
输入数据:
首端编号末端编号电阻电抗电纳/2 变比
2 3 1
4 2 0 0
5 3 0 0
1 2 1
1 3 0 1
输出数据:
Y=
- + + 0 0
+ + 0 + 0
+ + 0 0 +
0 0 + 0 0 0 0 0 0 + 0 0
经手算校验,程序结果准确。