完整统计与概率高考题文科.docx
高中数学文科概率与统计

概率与统计主要考点:(1)等可能事件、互斥事件(对立事件)、相互独立事件及独立重复实验的基本知识及四 种概率计算公式的应用,考查基础知识和基本计算能力.(2)求简单随机变量的分布列、数学期望及方差,特别是二项分布,常以现实生活、社 会热点为载体.(3)抽样方法的确定与计算、总体分布的估计.题型一 几类基本概型之间的综合【例1】 (08·安徽高考)在某次普通话测试中,为测试汉字发音水平,设置了10张 卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g”.(Ⅰ) 现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测 试后放回,余下2位的测试,也按同样的方法进行。
求这三位被测试者抽取的卡片上, 拼音都带有后鼻音“g”的概率。
(Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张, 求这三张卡片上,拼音带有后鼻音“g”的卡片不少于2张的概率.【分析】 第(Ⅰ)小题首先确定每位测试者抽到一张带“g”卡片的概率,再利用相互独 立事件的概率公式计算;第(Ⅱ)利用等可能事件与互斥事件的概论公式计算. 【解】 (Ⅰ)每次测试中,被测试者从10张卡片中随机抽取1张卡片上,拼音带有 后鼻音“g”的概率为310,因为三位被测试者分别随机抽取一张卡片的事件是相互独立的,因而所求的概率为310×310×310=271000.(Ⅱ)设A i (i =1,2,3)表示所抽取的三张卡片中,恰有i 张卡片带有后鼻音“g”的事件,且其相应的概率为P(A i ),则P(A 2)=C 17C 23C 310=740,P(A 3)=C 33C 310=1120,因而所求概率为P(A 2+A 3)=P(A 2)+P(A 3)=740+1120=1160.【点评】 本题主要考查等可能事件、互斥事件、相互独立事件的概率.解答题注意不要 混淆了互斥事件与相互独立事件,第(Ⅱ)的解答根据是“不少于”将事件分成了两个等 可能事件,同时也可以利用事件的对立事件进行计算. 【例2】(08·福建高考)三人独立破译同一份密码,已知三人各自破译出密码的概率分 别为15,14,13,且他们是否破译出密码互不影响。
高考数学文科概率与统计问题的热点题型练习含答案 精校打印版

专题探究课六高考中概率与统计问题的热点题型1.(2017·佛山质检)某网络广告A公司计划从甲、乙两个网站选择一个网站拓展广告业务,为此A公司随机抽取了甲、乙两个网站某月中10天的日访问量n(单位:万次),整理后得到如下茎叶图,已知A公司要从网站日访问量的平均值和稳定性两方面进行考察选择.(1)请说明A公司应选择哪个网站;(2)现将抽取的样本分布近似看作总体分布,A公司根据所选网站的日访问量n进行付费,其付费标准如下:选定网站的日访问量n(单位:万次)A公司的付费标准(单位:元/日)n<2550025≤n≤35700n>35 1 000解(1)由茎叶图可知x甲=(15+24+28+25+30+36+30+32+35+45)÷10=30,s2甲=110×[(15-30)2+(24-30)2+(28-30)2+(25-30)2+(30-30)2+(36-30)2+(30-30)2+(32-30)2+(35-30)2+(45-30)2]=58,x乙=(18+25+22+24+32+38+30+36+35+40)÷10=30,s2乙=110×[(18-30)2+(25-30)2+(22-30)2+(24-30)2+(32-30)2+(38-30)2+(30-30)2+(36-30)2+(35-30)2+(40-30)2]=49.8,∵x甲=x乙,s2甲>s2乙,∴A公司应选择乙网站.(2)由(1)得A公司应选择乙网站,由题意可得乙网站日访问量n <25的概率为0.3,日访问量25≤n ≤35的概率为0.4,日访问量n >35的概率为0.3, ∴A 公司每月应付给乙网站的费用S =30×(500×0.3+700×0.4+1 000×0.3)=21 900(元).2.柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x 与雾霾天数y 进行统计分析,得出下表数据.x 4 5 7 8 y2356(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y =bx +a ;(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为9的雾霾天数.(相关公式:b =∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a =y -b x )解 (1)散点图如图所示.(2)∑i =14x i y i =4×2+5×3+7×5+8×6=106,x =4+5+7+84=6,y =2+3+5+64=4, ∑i =14x 2i =42+52+72+82=154,则b=∑i=14x i y i-4x y∑i=14x2i-4x2=106-4×6×4154-4×62=1,a=y-b x=4-6=-2,故线性回归方程为y=x-2.(3)由回归直线方程可以预测,燃放烟花爆竹的天数为9的雾霾天数为7. 3.全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(1)现从融合指数在2家进行调研,求至少有1家的融合指数在[7,8]内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.解(1)融合指数在[7,8]内的“省级卫视新闻台”记为A1,A2,A3;融合指数在[4,5)内的“省级卫视新闻台”记为B1,B2,从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家的所有的基本事件是:{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},共10个.其中,没有1家融合指数在[7,8]内的基本事件是:{B1,B2},共1个.所以所求的概率P=1-110=910.(2)这20家“省级卫视新闻台”的融合指数平均数等于4.5×220+5.5×820+6.5×720+7.5×320=6.05.4.(2015·全国Ⅱ卷)某公司为了了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图图①B地区用户满意度评分的频数分布表满意度评分[50,60)[60,70)[70,80)[80,90)[90,100] 分组频数281410 6较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).B地区用户满意度评分的频率分布直方图图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意解(1)B地区用户满意度评分的频率分布直方图如图:通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由频率分布直方图,A地区用户不满意的频率f A=(0.010+0.020+0.030)×10=0.6,B地区用户不满意的频率f B=(0.005+0.02)×10=0.25,因此估计概率P(C A)=0.6,P(C B)=0.25.所以A地区用户的满意度等级为不满意的概率大.5.(2017·郑州模拟)某小学为迎接校运动会的到来,在三年级招募了16名男志愿者和14名女志愿者.调查发现,男、女志愿者中分别各有10人和6人喜欢运动,其余人员不喜欢运动.(1)根据以上数据完成2×2列联表;喜欢运动不喜欢运动总计男女总计(2)是否有95%(3)如果喜欢运动的女志愿者中恰有4人懂得医疗救护,现从喜欢运动的女志愿者中抽取2名负责处理应急事件,求抽出的2名志愿者都懂得医疗救护的概率.解(1)依题意,2×2的列联表如下:喜欢运动不喜欢运动总计(2)χ2=30×(10×8-6×6)216×14×14×16≈1.157 5<3.841,因此,没有95%的把握认为是否喜欢运动与性别有关. (3)喜欢运动的女志愿者有6人,设分别为A ,B ,C ,D ,E ,F ,其中A ,B ,C ,D 懂得医疗救护, 则从这6人中任取2人的情况有(A ,B ,),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种,其中两人都懂得医疗救护的情况有(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D ),共6种,设“抽出的2名志愿者都懂得医疗救护”为事件A , 则P (A )=615=25.6.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36(个);由a ·b =-1, 得-2x +y =-1,∴a ·b =-1包含的基本事件为(1,1),(2,3),(3,5),共3种情形.故P (a ·b =-1)=336=112. (2)若x,y在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x,y)|1≤x≤6,1≤y≤6};满足a·b<0的基本事件的结果为A={(x,y)|1≤x≤6,1≤y≤6且-2x+y<0};画出图形如图,正方形的面积为S正方形=25,阴影部分的面积为S阴影=25-12×2×4=21,故满足a·b<0的概率为21 25.。
概率与统计高考真题文科-含解析

概率与统计高考真题练习
1. [2016]下图是我国 2008 年至 2014 年生活垃圾无害化处理量(单位:亿吨)的折线图
(I)由折线图看出,可用线性回归模型拟合 y 与 t 的关系,请用相关系数加以说明; (II)建立 y 关于 t 的回归方程(系数精确到 0.01),预测 2016 年我国生活垃圾无害化处理量.
(1) 记 A 表示事件“旧养殖法的箱产量低于 50kg”,估计 A 的概率;
(2) 填写下面列联表,并根据列联表判断是否有 99%的把握认为箱产量与养殖方法有关:
箱产量<50kg
箱产量≥50kg
旧养殖法
新养殖法
(3) 根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。
'.
.
3.【2018】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新生产方式.为 比较两种生产方式效率,选取 40 名工人,将他们随机分成两组,每组 20 人,第一组工人用第一种生产 方式,第二组工人用第二种生产方式.根据工人完成生产任务工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2)求 40 名工人完成生产任务所需时间的中位数 ,并将完成生产任务所需时间超过 和不超过 的工人
数填入下面的列联表:
超过
不超过
第一种生产方式
第二种生产方式 (3)根据(2)中的列联表,能否有 99%的把握认为两种生产方式的效率有差异?
4. 【2019】某行业主管部门为了解本行业中小企业的生产情况,随机调查了 100 个企业,得到这些企业
7
7
7
附参考: yi 9.32 , ti yi 40.17 , ( Байду номын сангаасi y)2 0.55 , 7≈2.646.
统计概率文科高考题精选

2012年统计概率文科高考题精选(重庆15)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为____________(用数字作答)(重庆18)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分。
)甲、乙两人轮流投篮,每人每次投一球。
约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球三次时投篮结束。
设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响。
(Ⅰ)求乙获胜的概率;(Ⅱ)求投篮结束时乙只投了2个球的概率。
(陕西3).对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是( A )A.46,45,56 B.46,45,53C.47,45,56 D.45,47,53(陕西19)(本小题满分12分)假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解他们的使用寿命,现从两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:(Ⅰ)估计甲品牌产品寿命小于200小时的概率;(Ⅱ)这两种品牌产品中,,某个产品已使用了200小时,试估计该产品是甲品牌的概率。
(湖南5).设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为$y=0.85x-85.71,则下列结论中不正确...的是 A.y 与x 具有正的线性相关关系 B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重必为58.79kg(湖南13).图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_________.08910352图(注:方差2222121()()()n s x x x x x x n⎡⎤=-+-++-⎣⎦L ,其中x 为x 1,x 2,…,x n 的平均数)(湖南17).(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值; (Ⅱ)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率) (广东13). 由正整数组成的一组数据1234,,,x x x x ,其平均数和中位数都是2,且标准差等于1,则这组数据为_________。
(完整word版)统计与概率高考题(文科)

统计与概率【小题训练】1.(2018全国卷Ⅰ,T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.(2018全国卷Ⅱ,T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6 B .0.5C .0.4D .0.33.(2018全国卷Ⅲ,T5)某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A .0.3B .0.4C .0.6D .0.74.(2017新课标Ⅰ,T2)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为1x ,2x ,…,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .1x ,2x ,…,n x 的平均数B .1x ,2x ,…,n x 的标准差C .1x ,2x ,…,n x 的最大值D .1x ,2x ,…,n x 的中位数5.(2017新课标Ⅰ,T4)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.8πC.12D.4π6.(2017新课标Ⅱ,T11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.257.(2017新课标Ⅲ,T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳8.(2016全国I卷,T3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是A.13B.12C.23D.569.(2016全国II卷,T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为A.710B.58C.38D.31010.(2016年全国III 卷,T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是A .各月的平均最低气温都在0℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20℃的月份有5个11.(2016全国III 卷,T5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是 A .815 B .18 C .115 D .130 12.(2016年北京,T6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为A .15 B .25 C .825 D .92513.(2016年北京,T8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则A .2号学生进入30秒跳绳决赛B .5号学生进入30秒跳绳决赛C .8号学生进入30秒跳绳决赛D .9号学生进入30秒跳绳决赛 14.(2015新课标1,T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为 A .310 B .15 C .110 D .12015.(2015新课标2,T3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关16.(2015北京,T4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为A.90 B.100 C.180 D.300类别人数老年教师900中年教师1800青年教师1600合计430017.(2018全国卷Ⅲ,T14)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.18、为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区户家庭,得到如下统计数据表:收入(万元)支出(万元)根据上表可得回归直线方程,据此估计,该社区一户收入为万元家庭年支出为()A.万元B.万元C.万元D.万元大题题型题型一:回归分析1、社会在对全日制高中的教学水平进行评价时,常常将被清华北大录取的学生人数作为衡量的标准之一.重庆市教委调研了某中学近五年(年-年)高考被清华北大录取的学生人数,制作了如下所示的表格(设年为第一年).年份(第年)人数(人)(1)试求人数关于年份的回归直线方程;(2)在满足(1)的前提之下,估计年该中学被清华北大录取的人数(精确到个位);(3)教委准备在这五年的数据中任意选取两年作进一步研究,求被选取的两年恰好不相邻的概率.参考公式:.题型二统计图1、某服装店对过去天其实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如下:(1)若将上述频率视为概率,已知该服装店过去天的销售中,实体店和网店销售量都不低于件的概率为,求过去天的销售中,实体店和网店至少有一边销售量不低于件的天数;(2)若将上述频率视为概率,已知该服装店实体店每天的人工成本为元,门市成本为元,每售出一件利润为元,求该门市一天获利不低于元的概率;(3)根据销售量的频率分布直方图,求该服装店网店销售量中位数的估计值(精确到).2、某工厂有工人名,记岁以上(含岁)的为类工人,不足岁的为类工人,为调查该厂工人的个人文化素质状况,现用分层抽样的方法从两类工人中分别抽取了人、人进行测试.(1)求该工厂两类工人各有多少人?(2)经过测试,得到以下三个数据图表:图一:分以上两类工人成绩的茎叶图(茎、叶分别是十位和个位上的数字)①先填写频率分布表(表一)中的六个空格,然后将频率分布直方图(图二)补充完整;②该厂拟定从参加考试的分以上(含分)的类工人中随机抽取人参加高级技工培训班,求抽到的人分数都在分以上的概率.题型三独立性分析年全国两会,即中华人民共和国第十二届全国人民代表大会第四次会议和中国人民政治协商会议第十二届全国委员会第四次会议,分别于年月日和月日在北京开幕。
高考真题解答题概率与统计文科学生版

2017—2018年高考真题解答题:概率与统计(文科)学生版1.(2017.北京卷)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)[)80,90,并整理得到如下频率分布直方图:L[]20,30,30,40,,(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.2.(2017.山东卷)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.3.(2017.天津1卷)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,学&科网y表示每周计划播出的甲、乙两套连续剧的次数.(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域,(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?4.(2017.新课标2卷)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg,, 其频率分布直方图如下:,1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;,2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:,3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。
概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

专题16 概率与统计(解答题)(文科专用)1.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k 2.7063.8416.6352.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =i n i=1i √∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.3.【2021年甲卷文科】甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++4.【2021年乙卷文科】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥认为有显著提高).5.【2020年新课标1卷文科】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务6.【2019年新课标1卷文科】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.【2019年新课标2卷文科】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.8.【2018年新课标1卷文科】某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)。
高中数学:概率统计专题

高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计与概率高考题1(文科)
一、
1.(2018 全国卷Ⅰ, T3)某地区一年的新村建,村的收入增加了一倍.翻
番.更好地了解地区村的收入化情况,了地区新村建前后村
的收入构成比例.得到如下:
下面中不正确的是
A.新村建后,种植收入减少
B.新村建后,其他收入增加了一倍以上
C.新村建后,养殖收入增加了一倍
D.新村建后,养殖收入与第三收入的和超了收入的一半
2.(2018 全国卷Ⅱ, T5)从 2 名男同学和 3 名女同学中任 2 人参加社区服,中的 2 人
都是女同学的概率
A. 0.6B. 0.5C. 0.4D. 0.3
3. (2018全国卷Ⅲ,T5)某群体中的成只用金支付的概率0.45,既用金支付也用非金支付的概率0.15,不用金支付的概率
A .0.3B.0.4C. 0.6 D .0.7
4.( 2017新Ⅰ,T2)估一种作物的种植效果,了n 地作田.n 地的量 (位: kg)分x1,x2,⋯,x n,下面出的指中可以用来估种作物量定程度的是
A .x1,x2,⋯, x n的平均数B.x1,x2,⋯, x n的准差
C.x1,x2,⋯, x n的最大 D .x1,x2,⋯, x n的中位数
5.( 2017 新Ⅰ,T4)如,正方形ABCD 内的形来自中国古代的太极,正方形内切中的黑色部分和白色部分关于正方形的中心成中心称.在正方形内随机取一点,
此点取自黑色部分的概率是
A .
1
B .
C .
1
D .
4 8 2 4
6.( 2017 新课标Ⅱ, T11)从分别写有
1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后
再随机抽取 1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为
A .
1
B .
1
C .
3
D .
2
10 5 10 5
7.( 2017 新课标Ⅲ, T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并
整理了 2014 年 1 月至 2016 年 12 月期间月接待游客量
(单位:万人 )的数据,绘制了下面的
折线图.
根据该折线图,下列结论错误的是
A .月接待游客逐月增加
B .年接待游客量逐年增加
C .各年的月接待游客量高峰期大致在
7,8 月
D .各年 1 月至 6 月的月接待游客量相对于 7 月至 12 月,波动性更小,变化比较平稳
8.( 2016 全国 I 卷, T3)为美化环境,从红、黄、白、紫
4 种颜色的花中任选 2 种花种在一
个花坛中,余下的 2 种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率
是
1 1
C .
2 5 A .
B .
3
D .
3
2
6
9.( 2016 全国 II 卷, T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间
为 40 秒.若一名行人来到该路口遇到红灯,则至少需要等待 15 秒才出现绿灯的概率
为
7
5
3 3
A .
B .
C .
D .
10
8
8
10
10.( 2016 年全国
III 卷, T4)某旅游城市为向游客介绍本地的气温情况,
绘制了一年中各月
平均最高气温和平均最低气温的雷达图.
图中 A 点表示十月的平均最高气温约为
B 点表示四月的平均最低气温约为
5℃.下面叙述不正确的是
15℃,
A .各月的平均最低气温都在
0℃以上
B .七月的平均温差比一月的平均温差大
C .三月和十一月的平均最高气温基本相同
D .平均最高气温高于 20℃的月份有 5 个
11.(2016 全国 III 卷, T5 )小敏打开计算机时,忘记了开机密码的前两位,只记得第一位
是 M , I , N 中的一个字母,第二位是 1,2, 3, 4, 5 中的一个数字,则小敏输入一
次密码能够成功开机的概率是
A .
8
B .
1
C .
1
D .
1
15 8 15 30
12.( 2016 年北京, T6 )从甲、乙等 5 名学生中随机选出
2 人,则甲被选中的概率为 A .
1
B .
2
C .
8
D .
9
5 5
25
25
13.( 2016 年北京, T8 )某学校运动会的立定跳远和 30 秒跳绳两个单项比赛分成预赛和决
赛两个阶段 .下表为 10 名学生的预赛成绩,其中有三个数据模糊.
学生序号
1
2
3
4
5
6
7
8
9
10
立定跳远(单位:
米)
1.96
1.92
1.82
1.80 1.78 1.76 1.74
1.72
1.68 1.60
30 秒跳绳(单位:
次)
63a75
60637270
a-1
b
65
在这 10 名学生中,进入立定跳远决赛的有 8 人,同时进入立定跳远决赛和
30 秒跳绳
决赛的有 6 人,则
A . 2 号学生进入 30 秒跳绳决赛
B . 5 号学生进入 30 秒跳绳决赛
C .8 号学生进入
30 秒跳绳决赛
D . 9 号学生进入 30 秒跳绳决赛
14.( 2015 新课标 1,T4 )如果 3 个正整数可作为一个直角三角形三条边的边长,则称这
3
个数为一组勾股数, 从 1,2,3,4,5 中任取 3 个不同的数, 则这 3 个数构成一组勾股数的概
率为
A .
3
B .
1
C.
1
D .
1 1051020
15.( 2015 新课标 2,T3)根据下面给出的2004 年至 2013 年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是
A .逐年比较,2008 年减少二氧化硫排放量的效果最显著
B. 2007 年我国治理二氧化硫排放显现成效
C. 2006 年以来我国二氧化硫年排放量呈减少趋势
D. 2006 年以来我国二氧化硫年排放量与年份正相关
16.( 2015 北京, T4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320 人,则该样本的老年教师人数为
A .90
B .100C.180D. 300
类别人数
老年教师900
中年教师1800
青年教师1600
合计4300
二、填空题
17.(2018全国卷Ⅲ,T14)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.
18.( 2016 年全国 II 卷, T16)有三张卡片,分别写有 1 和 2, 1 和 3, 2 和 3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.
19.( 2016 年北京,T14)某网店统计了连续三天售出商品的种类情况:第一天售出19 种商品,第二天售出13 种商品,第三天售出18 种商品;前两天都售出的商品有 3 种,后两天都售出的商品有 4 种,则该网店
②第一天售出但第二天未售出的商品有______种;
②这三天售出的商品最少有_______种.
20.( 2015 北京, T14 )高三年级267 位学生参加期末考试,某班37 位学生的语文成绩,数
学成绩与总成绩在全年级中的排名情况如下,甲、乙、丙为该班三位学生.
从这次考试成绩看,
①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;
②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.。