混凝土简支梁桥的设计计算
钢筋混凝土T型简支梁桥设计计算书

钢筋混凝⼟T型简⽀梁桥设计计算书XXXXXXXXX⼤学城市⾼架钢筋混凝⼟简⽀T形梁桥设计学院:城建学院专业:⼟⽊⼯程姓名:X X X学号:xxxxxxxxxxxx指导教师:X X X完成时间:XXXX⼆零⼀⼆年五⽉城市⾼架钢筋混凝⼟简⽀T形梁桥设计摘要:本设计的步骤为:根据设计任务要求,依据现⾏公路桥梁设计规范,综合考虑桥位的地质、地形条件,经初选后提出了钢筋混凝⼟简⽀T梁桥、斜拉式桥、钢管拱桥三个⽐选桥型。
按“实⽤、经济、安全、美观”的桥梁设计原则,⽐较三个⽅案的优缺点。
⽐选后把钢筋混凝⼟简⽀T梁桥作为主推荐设计⽅案,进⾏了结构细部尺⼨拟定、作⽤效应计算、承载能⼒极限状态的验算、主梁变形验算、持久状况应⼒验算、最⼩配筋率的复核。
经分析⽐较及验算表明该设计计算⽅法正确,内⼒分布合理,符合设计任务的要求。
关键词:⽅案;钢筋混凝⼟简⽀T梁桥;斜拉桥;钢管拱桥;主推荐设计⽅案;结构分析Urban elevated simply supported reinforced concreteT-beam bridge designAbstract:The main steps of this design are: firstly, it is proposed to be three kinds of bridges standby application in accordance with the requirement of the designing project ,the recent designing regulation of highway bridge and at the most consideration of geologic and topographic conditions——Simply supported reinforced concrete T-beam bridge,Cable-stayed bridge,and Steel Pipe Arch Bridge. Secondly, comparing with these three proposals in terms of utility, economy, safety, and beauty of bridge designing princlple. After the comparasion, I would like to take the Simply supported reinforced concrete T-beam bridge as the main design.I make an initial draft on detail size of the structure, the calculation of the action effect, And I also checking with the following factors:the limited situation of load bearing capacity, main girder deformation, lasting status stress and the least reinforcement ratio.It is showed that this calculation method is corrected and it is reasonable on the redistribution of internal force. I think it totally satisfy the requirement of the taskKeyWords:proposal;Simply supported reinforced concrete T-beam bridge;Cable-stayedbridge;Steel Pipe Arch Bridge; the main design; structure analysis⽬录第⼀章概述 (1)1.1 设计依据 (1)1.2 技术标准 (2)1.3 地质资料 (3)1.4 采⽤材料 (3)1.5 采⽤规范 (4)第⼆章桥型⽅案⽐选 (5)2.1构思宗旨 (5)2.2 ⽐选标准 (5)2.3 ⽐选⽅案 (5)2.3.1 ⽅案⼀:斜拉桥 (5)2.3.2 ⽅案⼆:钢管拱桥 (6)2.3.2 ⽅案三:钢筋混凝⼟简⽀T梁桥 (7)2.4 ⽅案点评 (7)2.5 ⽅案确定 (9)第三章钢筋混凝⼟简⽀T形梁桥的计算 (10)3.1设计资料 (10)3.2主梁计算 (10)3.2.1主梁的荷载横向分布系数 (10)3.2.2梁端剪⼒横向分布系数计算(按杠杆法) (17)3.2.1作⽤效应计算 (18)3.2.2可变作⽤效应 (21)3.2.3 持久状况承载能⼒极限状态下截⾯设计、配筋与验算 (28)3.2.4 持久状况正常使⽤极限状态下裂缝宽度验算 (38)3.2.5 持久状况正常使⽤极限状态下挠度验算 (39)3.3横梁的计算 (41)3.3.1 横梁弯矩计算(G-M法) (42)3.3.2横梁截⾯配筋与验算 (44)3.3.3横梁剪⼒效应计算及配筋设计 (46)3.3.4横梁接头钢筋的焊缝长度C值计算 (48)3.4⾏车道板的计算 (51)3.4.1 计算图式 (51)3.4.2 永久荷载及其效应 (52)3.4.3截⾯设计、配筋与强度验算 (55)3.4.4 连续板桥⾯计算 (57)3.5⽀座计算 (64)3.5.1 选定⽀座的平⾯尺⼨ (64)3.5.2确定⽀座的厚度 (65)3.5.3 验算⽀座的偏转 (66)3.5.4 验算⽀座的抗滑稳定性 (66)第四章模型建⽴信息 (68)4.1 永久作⽤效应验算 (68)4.2 可变作⽤效应验算 (68)4.3作⽤效应组合验算 (69)4.3.1 短期效应组合验算 (69)4.3.2长期效应组合验算 (69)4.3.3 标准效应组合验算 (70)4.3.4 承载能⼒极限状态组合验算 (70)4.4 主梁变形验算 (71)4.5 持久状况应⼒验算 (71)4.6 短暂状况应⼒验算 (72)致谢 (73)参考⽂献 (74)第⼀章概述简⽀梁桥,由⼀根两端分别⽀撑在⼀个活动⽀座和⼀个铰⽀座上的梁作为主要承重结构的梁桥。
简支梁桥的计算

第二章简支梁桥计算第一节行车道板的计算一、行车道板的类型图2-2-1 梁格构造和行车道板支承方式单向板:把La /Lb≥2的周边支承板看作是短边受荷的单向受力板双向板:把La /Lb≤2的周边支承板看作是双向受力板悬臂板:铰接悬臂板:二、车轮荷载在板上的分布车轮荷载在桥面板上的分布面积:沿纵向沿横向式中:为铺装层的厚度。
作用于桥面板上的局部分布荷载为:式中:—加重车后轴的轴重。
三、板的有效工作宽度行车道板的受力状态弯距图形的换算宽度为:悬臂板受力状态(一)单向板⒈荷载在跨径中间对于单独一个荷载(图2-2-5a):, 但不小于(这里为板的计算跨径。
)荷载有效分布宽度对于几个靠近的相同荷载,如按上式计算所得各相邻荷载的有效分布宽度发生重叠时,应按相邻靠近的荷载一起计算其有效分布宽度:式中:为最外两个荷载的中心距离。
⒉荷载在板的支承处, 但不小于式中:为板的厚度。
⒊荷载靠近板的支承处式中:χ—荷载离支承边缘的距离。
(二)悬臂板《桥规》对悬臂板规定的荷载有效分布宽度为(图2-2-6):式中b’为承重板上荷载压力面外侧边缘至悬臂板根部的距离。
对于分布荷载靠近板边的最不利情况,就等于悬臂板的跨径, 于是:悬臂板的有效分布宽度四、行车道板的内力计算(一)多跨连续单向板的内力当<1/4时(即主梁抗扭能力较大):跨中弯矩支点弯矩当≥1/4时(即主梁抗扭能力较小):跨中弯矩支点弯矩式中:,为1米宽简支板条的跨中活载弯矩(,对于汽车荷载:式中: —加重车后轴的轴重;-- 板的有效工作宽度;—板的计算跨径,当梁肋不宽时(如窄肋T形梁)就取梁肋中距;当主梁肋部宽度较大时(如箱形梁肋),可取梁肋间的净距和板厚,即,但不大于此处为板的净跨径,为梁肋宽度;-- 冲击系数,对于行车道板通常为1.3。
为每米板宽的跨中恒载弯矩,可由下式计算:支点剪力:(一个车轮荷载)其中:矩形部分荷载的合力为(以代入):三角形部分荷载的合力为(以代入):式中:和——对应于有效工作宽度和处的荷载强度;和——对应于荷载合力A1和A2的支点剪力影响线竖标值;——板的净跨径。
第2篇第6章 简支梁桥的计算--6挠度预拱度的计算

ηө ——扰度长期增长系数,
1.
对悬臂体系的桥梁
f 可变
l' ≤ 300
•
2. 3.
C40以下:1.60 C40:1.45;C80及以上:1.35;其他内插 计算预应力混凝土简支梁的反拱时:2.0ຫໍສະໝຸດ •武汉理工大学交通学院
武汉理工大学交通学院
1
6.6 挠度、预拱度的计算 3.挠度计算公式
1) 钢筋混凝土简支梁(一般带裂缝工作),按荷载短期 效应组合作用下跨中短期扰度计算的一般式为:
第二篇 混凝土梁式桥
6.6 挠度、预拱度的计算 1. 极限状态设计法回顾
第六章 简支梁桥的计算
两种极限状态 z 承载能力极限状态 z 正常使用极限状态 正常使用极限状态一般包括如下3项校核: ¾ 限制应力 ¾ 扰度验算 ¾ 裂缝宽度的限制
•
武汉理工大学交通学院
制作:汪国相
•
武汉理工大学交通学院
6.6 挠度、预拱度的计算 2.挠度的概念、产生的原因及限值
可不设预拱度,否则,应按规定设置。 2)预应力混凝土梁:当预应力产生的反拱值大于f 时,不设;当预应力产生的反拱值小于f 时,设的值为 两者之差。
•
M cr = (σ pc + γf tk )W0
•
武汉理工大学交通学院
武汉理工大学交通学院
2
6.6 挠度、预拱度的计算 4. 预拱度的方法
对钢筋混凝土结构 预拱度的大小按结构自重和1/2可变频遇值产生的长期扰度,即 M s= MGK +M可变频遇 /2计算
f = 1.6
5 M sl 2 48 B
梁底做成平顺曲线 P115 例题自学
•
武汉理工大学交通学院
混凝土简支梁桥的计算

1/19/2019
• 着重理解计算原理,掌握如何应用数学、力学方 法求解具体答案,把原抽象结构简化成简单的计
算图式。
• 混凝土梁桥结构设计计算的项目一般有:主梁、 横隔梁和桥面板。 • 本章以混凝土简支T梁桥为例,讲述桥面板、主 梁和横隔梁的受力特点、最不利内力及其内力组 合的计算。
1/19/2019
当 t / h 1/ 4 时(即主梁抗扭能力较大):
跨中弯矩: 支点弯矩:
c.荷载靠近支承边处
ax a ' 2x a
x—荷载离支承边缘的距离。 说明:荷载从支点处向跨中移 动时,相应的有效分布宽度可 近似地按45°线过渡。 按上述公式算得的所有分布宽 度,均不得大于板的全宽度。
1/19/2019
②悬臂板的荷载有效分布宽度a 根据弹性薄板理论, 当荷载 P 作用在板边时 悬臂根部最大负弯矩:
1/19/2019
一般主梁间距比横隔梁的间距小,桥面板属于单向板。
1/19/2019
二、桥面板的受力分析
1.车轮荷载在板上的分布 车轮均布荷载— a2 b2 (纵、横) 桥面铺装的分布作用:按450 角分布。 沿行车方向 沿横向
a1 a2 2H
b1 b2 2H
当有一个车轮作用于桥面板上时,作用于板面上的局部分 布荷载为:
三、行车道板的内力计算
行车道板一般由弯矩控制设计,计算时,通常取单位 宽板条来进行计算。由板的有效工作宽度,可以得到板条 上的荷载集度及其内力。
(1)多跨连续单向板的内力计算 (2)悬臂板的内力计算 (3)铰接悬臂板内力
1/19/2019
1、多跨连续单向板的内力 • 从构造上看,行车道板与主梁梁肋是整体连结 在一起的,因此当板上有荷载作用而变形时, 主梁也发生相应的变形,而这种变形反过来又 会影响板的内力。
混凝土简支梁桥的设计与计算

2. 双向板:整体现浇T梁,长宽比﹤2时,需按两个方向
配置受力钢筋。
3. 悬臂板:装配式T梁,长宽比≥ 2,两主梁翼板之间采用
钢板焊接接头联结,作为沿短跨一端嵌固另一端为自由 端的悬臂板计算。
4. 铰接板:装配式T梁,长宽比≥ 2,两主梁翼板之间采用
矩。 比拟正交异性板法——将主梁和横隔梁的刚度换算成两向刚度
不同的比拟弹性平板来求解,并由实用的曲线图表进行荷载横 向分布计算。
.
2.杠杆原理法
计算原理
➢忽略主梁之间横向结构的联系,假设桥面板在主梁
上断开,当作横向支承在主梁上的简支梁或悬臂梁。 (基本假定)
➢在计算时,通常可利用各主梁的反力影响线进行,
8a 2
恒载弯矩:
.
M 0g
1 8
gl 2
3)考虑有效工作宽度后的支点剪力
不考虑板和主梁的弹性固结作 用,车轮布置在支承附近。
对于跨内只有一个车轮荷载的
l
情况:
Q sg2 l0(1)(A 1y1A2y2)
其中,矩形部分荷载的合力为:
A1pb12aPb1b12Pa 三角形部分荷载的合力为:
A 21 2(q ' q ) (a a ') 8 a a P 'b 1 a a ')2
湿接接头联结,作为沿短跨一端嵌固另一端铰接的铰接 悬臂板计算。
.
.
二、车轮荷载在板上的分布
车轮均布荷载— a2 (b纵2 、横) 桥面铺装的分布作用:按450 角分布。
a1 a2 2H
b1 b2 2H
加重车后轮轮压:
p P 2 a1b1
国外采用较长的压力边长:
第6讲 简支梁计算 第一部分桥面板计算

3. 桥面板计算中何时需要考虑多个车轮作用?(横向 和纵向问题);
4.桥面板内力计算中实际结构简化为力学计算模式时存 在哪些误差?
5.桥面板计算的主要步骤
桥梁工程
2016-03
40
第四次作业,请于3月26日前提交
根据以下桥例基本资料,进行该桥行车道板设计内力 计算:
1. 桥梁跨径及桥宽:标准跨径40m (墩中心距离),主梁全长 39.96m;计算跨径39.00m; 桥面净空:14m+2×1. 75m=17. 5m。
-1 μ p
l
0
-
b
1
4a 4
140 2
0.82
-1.3
0.71 -
4 3.24
4
-14.18kN m
作用于每米宽板条上的剪力为:
3.内力组合
Q Ap 1 μ p
140 2 1.3
28.09kN
4a
4 3.24
(1)承载能力极限状态内力组合计算
Mud 1.2M Ag 1.4M Ac 1.2(1.35)1.4(14.18)21.47kN m
桥梁工程
2016-03
32
第三章 第一节 桥面板的计算
2.汽车车辆荷载产生的内力
将汽车荷载后轮作用于铰缝轴线上,
后轴作用力为P=140kN,轮压分布宽
度如图所示。车辆荷载后轮着地长
度为a2=0.20m,宽度为b2=0.60m,则
a a 2H 0.20 20.11 0.42m
1
2
b b 2H 0.60 20.11 0.82m
(c)荷载靠近板的支承处
= + 2 ≤ (8)
*注意:算得有效分布宽度 不能大于板的全宽
第四章简支梁设计计算(1)

第四章简支梁设计计算(1)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第四章 简支梁(板)桥设计计算第一节 简支梁(板)桥主梁内力计算对于简支梁桥的一片主梁,知道了永久作用和通过荷载横向分布系数求得的可变作用,就可按工程力学的方法计算主梁截面的内力(弯矩M 和剪力Q ),有了截面内力,就可按结构设计原理进行该主梁的设计和验算。
对于跨径在10m 以内的一般小跨径混凝土简支梁(板)桥,通常只需计算跨中截面的最大弯矩和支点截面及跨中截面的剪力,跨中与支点之间各截面的剪力可以近似地按直线规律变化,弯矩可假设按二次抛物线规律变化,以简支梁的一个支点为坐标原点,其弯矩变化规律即为:)(42maxx l x lM M x -=(4-1) 式中:x M —主梁距离支点x 处的截面弯矩值;m ax M —主梁跨中最大设计弯矩值;l —主梁的计算跨径。
对于较大跨径的简支梁,一般还应计算跨径四分之一截面处的弯矩和剪力。
如果主梁沿桥轴方向截面有变化,例如梁肋宽度或梁高有变化,则还应计算截面变化处的主梁内力。
一 永久作用效应计算钢筋混凝土或预应力混凝土公路桥梁的永久作用,往往占全部设计荷载很大的比重(通常占60~90%),桥梁的跨径愈大,永久作用所占的比重也愈大。
因此,设计人员要准确地计算出作用于桥梁上的永久作用。
如果在设计之初通过一些近似途径(经验曲线、相近的标准设计或已建桥梁的资料等)估算桥梁的永久作用,则应按试算后确定的结构尺寸重新计算桥梁的永久作用。
在计算永久作用效应时,为简化起见,习惯上往往将沿桥跨分点作用的横隔梁重力、沿桥横向不等分布的铺装层重力以及作用于两侧人行道和栏杆等重力均匀分摊给各主梁承受。
因此,对于等截面梁桥的主梁,其永久作用可简单地按均布荷载进行计算。
如果需要精确计算,可根据桥梁施工情况,将人行道、栏杆、灯柱和管道等重力像可变作用计算那样,按荷载横向分布的规律进行分配。
混凝土简支梁桥的计算

第四章混凝土简支梁桥的计算习题一、填空题:1、设置横隔梁的作用:。
2、为消除梁桥的恒载挠度而设置预拱度,其值通常取为:。
3、偏压法计算横隔梁内力的力学模型是:。
二、名词解释:1、荷载横向分布影响线2、板的有效分布宽度3、预拱度4、单向板三、简答题:1、偏心压力法计算荷载横向分布系数的基本假定和适用条件。
2、杠杆原理法计算荷载横向分布系数的基本假定和适用条件。
3、试述荷载横向分布计算的铰接板法的基本假定和适用条件。
4、设计桥梁时,为什么要设置预拱度,如何设置?四、计算题:1、如图所示T梁翼缘板之间为铰接连接。
试求该行车道板在公路—Ⅰ级荷载作用下的计算内力,已知铺装层的平均厚度12cm,容重22.8kN/m3,T梁翼缘板的容重为25kN/m3。
(依《桥规》,车辆荷载的前轮着地尺寸a1=0.2m,b1=0.3m,中、后轮着地尺寸a1=0.2m,b1=0.6m)2、某五梁式简支梁桥,标准跨径25.0m,计算跨径为24.20m,两车道,设有六道横隔梁(尺寸如图所示),设计荷载为公路—Ⅱ级荷载,已求得2#主梁的跨中及支点截面的横向分布系数分别为m cq=0.542、m oq=0.734,。
试求:1)画图说明2#梁的横向分布系数沿跨径的一般变化规律。
2)在公路—Ⅱ级荷载作用下,2#梁的跨中最大弯矩及支点最大剪力。
答案一、填空题:1、设置横隔梁的作用:保证各根主梁相互连接成整体,共同受力。
2、为消除梁桥的恒载挠度而设置预拱度,其值通常取为:全部恒载和一半静活载所产生的竖向挠度值。
3、偏压法计算横隔梁内力的力学模型是:将桥梁的中横隔梁近似的视做竖向支承在多根弹性主梁的多跨弹性支承连续梁。
二、名词解释:1、荷载横向分布影响线:单位荷载沿桥面横向作用在不同位置时,某梁所分配的荷载比值变化曲线。
2、板的有效分布宽度:行车道板在荷载作用下,除了直接承受荷载的板条外,相邻板条也发生挠曲变形而承受部分弯矩,弯矩的实际图形呈曲线形分布,最大弯矩为m xmax。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精选
9
三、公路桥面板(行车道板)的计算 1.计算模型 2.车辆荷载在板上的分布
3.板的有效工作宽度 4.行车道板的内力计算
精选
10
1.计算模型 (1)概述 (2)行车道板的分类
精选
11
(1)概述
混凝土肋梁桥的桥面板是直接承受车辆轮压的混凝 土板,它与主梁梁肋和横隔梁联接在一起,既保证梁 的整体作用,又将活载传递于主梁。
精选
17
(1)概述
公路汽车车轮压力通过桥面铺状层扩散到钢筋混凝土路桥面板, 由于板的计算跨径相对于轮压分布宽度不是很大,故在计算中将轮 压作为分布荷载来处理。
为了方便计算,通常可近似的把车轮与桥面的接触面看作是矩形面
积。
图 6.3.2
荷载在铺状层内的扩散分布,根据试验研究,对混凝土或沥青面层,
可以偏安全的假定呈45°角扩散。因此作用在钢筋混凝土桥面板顶面 的矩形荷载压力面的边长为:
铁路普通高度钢筋混凝土梁设计中,梁高与跨度之比,约为 1/6~1/9,而预应力混凝土梁的高跨比为1/10~1/11,跨度越大, 比值越小。公路普通钢筋混凝土梁高跨比的经济范围约为 1/11~1/16;预应力混凝土梁的高跨比为1/15~1/25,通常随跨 度增大而取较小值。
精选
6
(2)梁肋厚度
梁肋厚度取决于最大主拉应力和主筋布置要求。因支座处剪力比跨 中大,故主拉应力决定梁肋厚度时,跨中区段可以减薄。梁肋变截面 位置可由主拉应力小于容许应力值及斜筋布置要求加以确定。为了减 轻构件重量,在满足受力要求的情况下,梁肋应尽量做的薄一些但需 要保证梁肋屈曲稳定条件,也不能使混凝土发生捣固困难。
精选
12
(2)行车道板的分类
混凝土肋板式梁桥的行车道板在构造上与主梁和横隔梁联结在
一起,形成复杂的梁格体系图6.3.1。按其支情况可分为: (一)单边支承 (二)两边支承 (三)三边支承 (四)四边支承
精选
13
载的根绝据大研部究分,会对沿四短边边支方承向的传板递只,要而板沿的长长边边方与向短传边递之的比荷≥2载,将l不a 足则/ l6荷b%。
(3)结构的构造应当简单,接头少。接头必须有耐久性,具有 足够的刚度以保证结构的整体性
(4)为便于制造及更换,截面尺寸应力求标准化。
精选
4
2、尺寸的拟定的内容 (1)主梁梁高 (2)梁肋厚度 (3)上翼缘板尺寸 (4)下翼缘板尺寸
精选
5
(1)主梁梁高
梁高的确定应通过多方面的比较,它取决于经济、梁重、建筑 高度以及运输净空等因素,标准设计还要考虑梁的标准化。
第三节 混凝土简支梁桥的设计计算
一、概述 二、结构尺寸的拟定 三、公路桥面板(行车道板)的计算 四、铁路桥面板(道碴槽板)的计算 五、公路桥梁荷载横向分布计算 六、公路和铁路主梁内力计算 七、横隔梁内力计算 八、挠度、预拱度的计算
精选
1
一、概述
在桥梁设计中,一般总是先根据使用要求、跨径大小、桥面净空、荷 载等级、施工条件等基本资料,运用对结构的构造知识,并参考已有桥 梁的设计经验,来拟定结构物各构件的截面形式和细部尺寸,估算结构 的自重;然后根据作用在结构上的荷载,用熟知的数学力学方法计算出 结构各部分可能产生的最不利的内力;再由已求得的内力进行强度、刚 度和稳定性的验算,依此来判断原先拟定的尺寸是否符合要求。如不满 足则重新修正原来的尺寸再进行验算,直到满意为止。
在简支梁设计计算中的项目一般有主梁、横隔梁、桥面板和支座 等。
计算的一般步骤为:主梁、横隔梁、桥面板、支座。
精选
2
二、结构尺寸的拟定
1、尺寸的拟定的原则 2、尺寸的拟定的内容
精选
3
1、尺寸的拟定的原则
(1)每片梁的重量应当满足当地现有的运输工具和架梁设备 的起吊能力,梁的平面尺寸必须满足装载限界的要求。 (2)结构应该是经济的
铁路钢筋混凝土简支梁的梁肋厚度,一般可采用20cm(跨中) ~60cm(端部)。
预应力混凝土梁的梁肋厚度一般不小于14cm,并且当腹板内有预 应力箍筋时,腹板厚度不得小于上下翼板梗腋之间腹板高度的1/20, 当无预应力箍筋时,则不得小于1/15。
公路混凝土桥常用的梁肋厚度为15~18cm,视梁内主筋的直径和 钢筋骨架的片数而定。
比值越大沿长边方向传递的荷载越小。
la
/
lb
<2的板,则称为双向板,需要按两个方向分别配置受力钢 筋。
la
/
lb
≥2的周边支承板当作仅由短跨承受荷载的单向板来设计 计算,而在长跨方向只布置一些构造钢筋。
la / lb ≥ 2 的装配式T梁,板的支承有两种情况:
精选
14
(A)对翼缘板的端边是自由边,另三边由主梁及横隔梁支承的板, 可以像边梁外侧的翼缘板一样视为沿短跨一端嵌固而另一端为自由的悬 臂板来分析。
(B)对相邻翼缘板在端部相互形成铰接缝的情况,则行车道板应按 一端嵌固另一端铰接的悬臂板进行计算。
总之,按受力情况,实际工程中最常见的行车道板可以分为:单向 板、悬臂板、铰结板和双向板.
精选
15
6.3.1 梁格构造和精桥选面板的支承方式
16
2.车辆荷载在板上的分布 (1)概述 (2)车辆荷载在板上的分布面积
精选
7
(3)上翼缘板尺寸 上翼缘板宽度视主梁间距而定,在实际预制公路T梁时,上翼缘板宽
度应比主梁中距小2cm左右,以便在安装过程中调整位置和制作上的 误差。
铁路桥梁道碴槽顶宽不应小于3.9cm,以此确定上翼缘板宽度。
翼缘板厚度应满足强度和构造最小尺寸的要求。 根据受力特点,翼缘板通常都做成变厚度的,即端部较薄。向根部 逐渐加厚。
为了保证翼缘ห้องสมุดไป่ตู้与梁肋联结的整体性,翼缘板与梁肋衔接处的厚度 不应小于主梁高度的1/12。对铁路桥梁,板与梗腋相交处不得小于梁 高的1/10(当梗腋斜坡不大于1:3时)
精选
8
(4)下翼缘板尺寸
下翼缘板尺寸根据主筋数量、类型、排列及规定的钢 筋净距和保护层厚度加以确定。对预应力混凝土梁,则 主要取决预预应力钢筋的布置。为了获得最大偏心距, 预应力钢筋应尽量排列在下翼缘板内,要求紧凑而且对 称于梁截面竖轴,混凝土保护层和钢丝束管道净距应符 合有关规定。同时还应考虑到张拉端锚头的布置以及在 运输和架设过程中移梁的稳定性要求。
精选
18
(2)车辆荷载在板上的分布面积
沿行车方向 a1=a2+2H 沿横向 b1=b2+2H