存储器管理

合集下载

存储器管理实验实验报告

存储器管理实验实验报告

存储器管理实验实验报告一、实验目的存储器管理是操作系统的重要组成部分,本次实验的目的在于深入理解存储器管理的基本原理和方法,通过实际操作和观察,掌握存储器分配与回收的算法,以及页面置换算法的实现和性能评估。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。

三、实验内容与步骤(一)存储器分配与回收算法实现1、首次适应算法(1)原理:从空闲分区链的首地址开始查找,找到第一个满足需求的空闲分区进行分配。

(2)实现步骤:建立空闲分区链表,每个节点包含分区的起始地址、大小和状态(已分配或空闲)。

当有分配请求时,从链表头部开始遍历,找到第一个大小满足需求的空闲分区。

将该分区进行分割,一部分分配给请求,剩余部分仍作为空闲分区留在链表中。

若找不到满足需求的空闲分区,则返回分配失败。

2、最佳适应算法(1)原理:从空闲分区链中选择与需求大小最接近的空闲分区进行分配。

(2)实现步骤:建立空闲分区链表,每个节点包含分区的起始地址、大小和状态。

当有分配请求时,遍历整个链表,计算每个空闲分区与需求大小的差值。

选择差值最小的空闲分区进行分配,若有多个差值相同且最小的分区,选择其中起始地址最小的分区。

对选中的分区进行分割和处理,与首次适应算法类似。

3、最坏适应算法(1)原理:选择空闲分区链中最大的空闲分区进行分配。

(2)实现步骤:建立空闲分区链表,每个节点包含分区的起始地址、大小和状态。

当有分配请求时,遍历链表,找到最大的空闲分区。

对该分区进行分配和处理。

(二)页面置换算法实现1、先进先出(FIFO)页面置换算法(1)原理:选择在内存中驻留时间最久的页面进行置换。

(2)实现步骤:建立页面访问序列。

为每个页面设置一个进入内存的时间戳。

当发生缺页中断时,选择时间戳最早的页面进行置换。

2、最近最久未使用(LRU)页面置换算法(1)原理:选择最近一段时间内最长时间未被访问的页面进行置换。

存储器管理的课程设计

存储器管理的课程设计

存储器管理的课程设计一、教学目标本课程的教学目标是使学生掌握存储器管理的基本原理和操作方法,能够运用存储器管理的知识和技能解决实际问题。

具体来说,知识目标包括掌握存储器的基本概念、分类和特点,理解存储器管理的基本原理和方法,了解存储器管理技术的发展趋势。

技能目标包括能够运用存储器管理的知识和技能进行存储器的分配和回收,能够进行存储器性能的评估和优化。

情感态度价值观目标包括培养学生的创新意识和团队合作精神,提高学生的问题解决能力和实践能力。

二、教学内容本课程的教学内容主要包括存储器的基本概念、分类和特点,存储器管理的基本原理和方法,存储器管理技术的发展趋势。

具体来说,第一部分将介绍存储器的基本概念,包括存储器的定义、功能和分类,以及存储器的主要特点。

第二部分将讲解存储器管理的基本原理,包括存储器的分配和回收策略,存储器的扩充和压缩技术,以及存储器的共享和保护机制。

第三部分将介绍存储器管理技术的发展趋势,包括非易失性存储器技术、存储器层次结构和存储器网络技术。

三、教学方法为了实现本课程的教学目标,我们将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法。

首先,通过讲授法,我们将向学生系统地传授存储器管理的基本知识和理论。

其次,通过讨论法,我们将引导学生进行思考和交流,培养学生的创新意识和团队合作精神。

然后,通过案例分析法,我们将提供实际案例,让学生运用存储器管理的知识和技能解决实际问题。

最后,通过实验法,我们将让学生亲自动手进行存储器管理的实验操作,提高学生的实践能力和问题解决能力。

四、教学资源为了支持本课程的教学内容和教学方法的实施,我们将准备多种教学资源,包括教材、参考书、多媒体资料和实验设备。

首先,我们将选择合适的教材和参考书,为学生提供全面和深入的存储器管理知识。

其次,我们将收集和整理多媒体资料,如图片、视频和动画,以丰富学生的学习体验。

然后,我们将准备实验设备,让学生能够进行存储器管理的实验操作,提高学生的实践能力。

操作系统第17讲 习题三new

操作系统第17讲 习题三new

A,B(1)提高系统吞吐量(2)提高存储空
间的利用率(3)降低存储费用(4)提高换入换出
的速度。
10
东北大学秦皇岛分校计算机与通信工程学院
第四章 存储器管理
5、对重定位存储管理方式,应(A),当程序执行时,
是由(B)与(A)中的(C)相加得到(D),用(D)
来访问内存。
A(1)在整个系统中设置一个重定位寄存器;(2)
Ⅰ. 修改页表 Ⅱ.磁盘I/O Ⅲ.分配页框
A.仅Ⅰ、Ⅱ B.仅Ⅱ C.仅Ⅲ D.Ⅰ、Ⅱ和Ⅲ
21
东北大学秦皇岛分校计算机与通信工程学院
第四章 存储器管理
10.当系统发生抖动(thrashing)时,可用采取
的有效措施是()
Ⅰ. 撤销部分进程
Ⅱ.增加磁盘交换区的容量
Ⅲ.提高用户进程的优先级
A.仅Ⅰ B.仅Ⅱ C.仅Ⅲ D.仅Ⅰ、Ⅱ
空闲区大小递减
8
东北大学秦皇岛分校计算机与通信工程学院
第四章 存储器管理
3、在回收内存时能出现下述几种情况(1)释放区与插
入点前一分区F1相邻,此时应(A);(2)释放区与
插入点后一分区F2相临界,此时应(B);(3)释放
区不与F1和F2相邻接,此时应(C)。
A,B,C:(1)为回收分区建立一分区表项,填上分
第四章 存储器管理
1、在动态分区式内存管理中,倾向于优先使用低
地址部分的空闲区的算法是(A);能使内存空间
中空闲分区分布得较均匀的算法是(B);每次分
配时,把即能满足需要,又能最小的空间区分配给
进程的算法是(C)
A,B,C:(1)最佳适应算法;(2)最坏适
应算法;(3)首次适应算法(4)循环首次适应算

操作系统复习存储器管理

操作系统复习存储器管理

第一章 存储器管理4.1 存储器的层次结构—存储器应容量大,便宜,速度跟上处理器4.1.1 多级存储器结构通常有三层,细分为六层,如图4-1, 越往上,速度越快,容量越小,价格越贵; 寄存器和主存又称可执行存储器,进程可直接用指令访问,辅存只能用I/O 访问;4.1.2 主存储器与寄存器1.主存储器---内存,保存进程运行时的程序和数据;CPU与外围设备交换的信息一般也依托于主存储器地址空间;为缓和访存速度远低于CPU 执行指令的速度,在计算机系统中引入了寄存器和高速缓存;2.寄存器---与CPU 协调工作,用于加速存储器的访问速度,如用寄存器存放操作数,或用地址寄存器加快地址转换速度等;4.1.3 高速缓存和磁盘缓存1.高速缓存---根据程序执行的局部性原理将主存中一些经常访问的信息程序、数据、指令等存放在高速缓存中,减少访问主存储器的次数,可大幅度提高程序执行速度;2.磁盘缓存---将频繁使用的一部分磁盘数据和信息,暂时存放在磁盘缓存中,可减少访问磁盘的次数;它依托于固定磁盘,提供对主存储器存储空间的扩充,即利用主存中的存储空间,来暂存从磁盘中读/写入的信息;4.2 程序的装入和链接多道程序运行,需先创建进程;而创建进程第一步是将程序和数据装入内存;将源程序变为可在内存中执行的程序,通常都要经过以下几个步骤:编译---若干个目标模块;链接---链接目标模块和库函数,形成装入模块;装入---图 4-2 对用户程序的处理步骤寄存器高速缓存主存磁盘缓存磁盘可移动存储介质CPU 寄存器主存辅存第一步第二步第三步内存4.2.1 程序的装入——无需连接的单目标模块装入理解装入方式1. 绝对装入方式Absolute Loading Mode ---只适用单道程序环境如果知道程序的内存位置,编译将产生绝对地址的目标代码,按照绝对地址将程序和数据装入内存;由于程序的逻辑地址与实际内存地址完全相同,故不须对程序和数据的地址进行修改;绝对地址:可在编译时给出或由程序员直接赋予;若由程序员直接给出,不利于程序或数据修改,因此,通常是在程序中采用符号地址,然后在编译或汇编时转换为绝对地址;2. 可重定位装入方式Relocation Loading Mode ---适于多道程序环境多道程序环境下,编译程序不能预知目标模块在内存的位置;目标模块的起始地址是0,其它地址也都是相对于0计算的;此时应采用可重定位装入方式,根据内存情况,将模块装入到内存的适当位置,如图4-3 作业装入内存时的情况 ;3.动态运行时装入方式Dynamic Run-time Loading ---适于多道程序环境可重定位装入方式并不允许程序运行时在内存中移动位置;但是,在运行过程中它在内存中的位置可能经常要改变,此时就应采用动态运行时装入方式;动态运行时的装入程序,在把装入模块装入内存后,并不立即把装入模块中的相对地址转换为绝对地址,而是把这种地址转换推迟到程序真正执行时才进行;因此,装入内存后的所有地址都仍是相对地址;问题:程序装入内存后修改地址的时机是什么4.3 连续分配方式4.3.3 动态分区分配——根据进程需要动态分配内存1. 分区分配中的数据结构1 空闲分区表—用若干表目记录每个空闲分区的分区序号、分区始址及分区的大小等数据项;2 空闲分区链--为实现对空闲分区的分配和链接,在每分区起始部分,设置前向指针,尾部则设置一后向指针;为检索方便,在分区前、后向指针中,重复设置状态位和分区大小表目;当分0内存空间区被分配后,把状态位由“0”改为“1”时,前、后向指针失去意义;图 4-5 空闲链结构2. 分区分配算法P1231首次适应算法first-fit —空闲分区链以地址递增次序链接 每次按分区链的次序从头查找,找到符合要求的第一个分区;2 循环首次适应算法—FF 算法的变种从上次找到的空闲分区位置开始循环查找,找到后,修改起始查找指针; 3 最佳适应算法—空闲分区按容量从小到大排序 把能满足要求的、最小的空闲分区分配给作业 4 最坏适应算法——空闲分区按容量从大到小排序 挑选最大的空闲区分给作业使用;5) 快速适应算法—根据容量大小设立多个空闲分区链表3. 分区分配操作1.分配内存请求分区u.size; 空闲分区m.size; m.size-u.size ≤size,说明多余部分太小, 不再切割,将整个分区分配给请求者;否则从该分区中划分一块请求大小的内存空间,余下部分仍留在空闲分区链;如图4-6 内存分配流程;2.回收内存1 回收区与插入点的前一空闲分区F1相邻:合并,修改F1大小;2 回收区与后一空闲分区F2相邻:合并,修改首地址和大小;3 回收区同时与前、后两个分区邻接:合并,修改F1大小,取消F2;4 回收区不邻接:新建表项,填写首地址和大小,并插入链表;如图前向指针N +20N 个字节可用后向指针N +2图 4-6 内存分配流程4.3.6 可重定位分区分配1.动态重定位的引入例:在内存中有四个互不邻接的小分区,容量分别为10KB 、30KB 、14KB 和26KB;若现有一作业要获得40KB 的内存空间,因连续空间不足作业无法装入;可采用的一种解决方法是:通过移动内存中作业的位置,以把原来多个分散的小分区拼接成一个大分区的方法,称为“拼接”或“紧凑;由于用户程序在内存中位置的变化,在每次“紧凑”后,都必须对移动了的程序或数据进行重定位;图 4-8 紧凑的示意4.3.7 对换即中级调度1. 对换Swapping 的引入(a ) 紧凑前(b ) 紧凑后“活动阻塞”进程占用内存空间;外存上的就绪作业不能进入内存运行;所谓“对换”,是指把内存中暂时不能运行的进程或者暂时不用的程序和数据,调出到外存上,以便腾出足够的内存空间;再把已具备运行条件的进程或所需要的程序和数据,调入内存;对换是提高内存利用率的有效措施;根据对换单位可分为:进程对换、页面对换和分段对换;为了能实现对换,系统应具备以下三方面功能:对换空间的管理、进程的换出与换入2. 进程的换出与换入1进程的换出选择阻塞且优先级最低的进程,将它的程序和数据传送到磁盘对换区上;回收该进程所占用的内存空间,并对该进程的进程控制块做相应的修改;2进程的换入找出“就绪” 但已换出到磁盘上时间最久的进程作为换入进程,将之换入,直至已无可换入的进程;4.4 基本分页存储管理方式前面的连续分配方案会形成许多“碎片”,“紧凑”方法可以解决碎片但开销大;是否允许进程离散装入 离散单位不同,称分页式存储和分段式存储;不具备对换功能称为“基本分页式”,支持虚拟存储器功能称为“请求基本分页式”;4.4.1 页面与页表1. 页面1 页面和物理块---将进程的逻辑地址空间分成若干个大小相等的片,称为页面,并为各页编号;相应地把内存空间分成与页面相同大小的若干个存储块,称为物理块,也同样编号;分配时,将进程中的页装入到物理块中,最后一页经常装不满一块而形成 “页内碎片”;2 页面大小---页面的大小应选择适中;页面太小,内存碎片减小,利用率高;但页表过长,占大量内存;页面较大,页表长度小;但页内碎片大;因此,页面的大小应选择得适中,且页面大小应是2的幂,通常为512 B~8 KB;2. 地址结构分页地址中的地址结构如下:31 12 11 0它含有两部分:页号P12~31位,最多有1M 页和页内位移量W0~11位,每页的大小4KB ; 对某特定机器,其地址结构是一定的;若给定一个逻辑地址空间中的地址为A,页面的大小为L,则页号P 和页内地址d 可按下式求得:MODL A d L A INT P ][=⎥⎦⎤⎢⎣⎡=3. 页表---实现从页号到物理块号的地址映射用户程序0 页1 页2 页3 页4 页5 页…n 页页表内存4.4.2 地址变换机构任务:将逻辑地址转换为物理地址;页内地址变换:因页内地址与物理地址一一对应, 可直接转换;页号变换:页表可实现从逻辑地址中页号到内存中物理块号的变换; 1.基本的地址变换机构a. 页表功能可由一组专门的寄存器实现原理;b. 页表大多驻留内存,系统中只设置一页表寄存器来存放页表在内存的始址和页表长度实际操作;c. 进程未执行时,页表始址和长度存放在PCB 中;执行时才将这两个数据装入页表寄存器中过程;图 4-12 分页系统的地址变换机构2. 具有快表的地址变换机构a. 仅用页表寄存器时,CPU 每存取一数据要两次访问内存页表-地址变换-数据;b. 为提高地址变换速度,可在地址变换机构中增设一具有并行查寻能力的特殊高速缓冲寄存器用以存放当前访问的那些页表项,称为“快表”;c. ->在CPU 给出逻辑地址,将页号P 送入快表 ->页号匹配,读物理块号后送物理地址寄存器->无匹配页号,再访问内存中页表,把从页表项中读出的物理块号送地址寄存器;同时,再将此页表项存入到快表中;->如快表已满,则OS 须找到一换出页表项换出; 为什么增加“快表”为了提高地址变换速度,可在地址变换机构中增设一个具有并行查寻能力的特殊高速缓冲寄存器,又称为“联想寄存器”Associative Memory,或称为“快表 “快表”有何缺点越界中断图 4-13 具有快表的地址变换机构4.5 基本分段存储管理方式4.5.1 分段存储管理方式的引入为什么引入推动内存从固定分配到动态分配直到分页存储,主要动力是内存利用率,而引入分段存储管理方式,主要是为了满足用户和程序员的下述一系列需要:1方便编程---把作业按逻辑关系划分为若干段,每段有自己的名字和长度,并从0开始编址;LOAD 1,A|<D>; STORE 1,B|<C>2 信息共享---段是信息的逻辑单位;为实现共享,存储管理应与用户程序分段的组织方式相适应;3 信息保护---对信息的逻辑单位进行保护,应分段管理;4 动态增长---分段存储能解决数据段使用过程中动态增长;5 动态链接---运行过程中动态调入以段为单位的目标程序;4.5.2 分段系统的基本原理1. 分段作业划分为若干段,如图4-16,每个段用段号来代替段名,地址空间连续;段的长度由逻辑信息长度决定,因而各段长度不等;其逻辑地址由段号段名和段内地址所组成,结构如下: 31 16 15 0该地址结构中,允许一个作业最多有64K 个段,每个段的最大长度为64KB;编译程序能自页表寄存器逻辑地址L 物理地址动根据源程序产生若干个段;2.段表,其中每段占一个表项,中;图4-16 利用段表实现地址映射3.分页和分段的主要区别1 页是信息的物理单位,分页是为提高内存的利用率,是为满足系统管理的需要;段则是信息的逻辑单位,分段是为了能更好地满足用户的需要;2 页的大小固定且分页由系统硬件实现;而段的长度不固定,通常由编译程序根据信息的性质来划分;3 分页的作业地址空间是一维的,程序只需一个地址记忆符;而分段的作业地址空间是二维的,程序员既需给出段名,又需给出段内地址;4.5.3 信息共享可重入代码纯代码:允许多个进程同时访问的代码;绝对不允许可重入代码在执行中改变,因此,不允许任何进程修改它;4.5.4 段页式存储管理方式1.基本原理---,,,4KB;作业空间内存空间子程序段数据段(a)段号(S)段内页号(P)页内地址(W)(b)主程序段图4-21 利用段表和页表实现地址映射4.6 虚拟存储器的基本概念前面各种存储器管理方式共同点:它们要求将一个作业全部装入内存后方能运行,于是出现了下面这样两种情况:1 有的作业很大,其所要求的内存空间超过了内存总容量,作业不能全部被装入内存,致使该作业无法运行;2 有大量作业要求运行,但由于内存容量不足以容纳所有这些作业,只能将少数作业装入内存让它们先运行,而将其它大量的作业留在外存上等待;4.5.1 虚拟存储器的引入1.常规存储器管理方式的特征1 一次性;将作业全部装入内存后方能运行,此外有许多作业在每次运行时,并非其全部程序和数据都要用到;一次性装入,造成了对内存空间的浪费;2 驻留性;作业装入内存后一直驻留,直至运行结束;尽管因故等待或很少运行,都仍将继续占用宝贵的内存资源;现在要研究的问题是:一次性及驻留性在程序运行时是否必需;2.局部性原理早在1968年, Denning.P就曾指出:1 程序执行时,除了少部分的转移和过程调用指令外,在大多数情况下仍是顺序执行的;2 过程调用将会使程序的执行轨迹由一部分区域转至另一部分区域,但经研究看出,过程调用的深度在大多数情况下都不超过5;3 程序中存在许多循环结构,这些虽然只由少数指令构成, 但是它们将多次执行;4 程序中还包括许多对数据结构的处理, 如对数组进行操作,它们往往都局限于很小的范围内;局限性主要表现在下述两个方面:1 时间局限性-由于循环操作的存在;如果程序中的指令或数据一旦执行,则不久以后可能再次访问;2 空间局限性-由于程序的顺序执行;程序在一段时间内所访问的地址,可能集中在一定的范围之内;3. 虚拟存储器定义---基于局部性原理程序运行前,仅须将要运行的少数页面或段装入内存便可启动,运行时,如果需要访问的页段尚未调入内存缺页或缺段,用OS提供请求调页段功能调入;如果此时内存已满,则还须再利用页段的置换功能,将内存中暂时不用的页段调至外存,腾出足够的内存空间后,再将要访问的页段调入;所谓虚拟存储器,是指具有请求调入功能和置换功能,能从逻辑上扩充内存容量的一种存储器系统;其逻辑容量由内存容量和外存容量之和所决定,其运行速度接近于内存,成本接近于外存;4.6.3 虚拟存储器的特征1)多次性---一个作业被分成多次调入内存运行,最初装入部分程序和数据,运行中需要时,再将其它部分调入;2)对换性---允许在作业的运行过程中进行换进、换出;换进和换出能有效地提高内存利用率;3)虚拟性---从逻辑上扩充内存容量,使用户所看到远大于实际内存容量;这是虚拟存储器最重要的特征和最重要的目标;4)离散性---是以上三个特性的基础,在内存分配时采用离散分配的方式;备注:虚拟性是以多次性和对换性为基础的,而多次性和对换性又必须建立在离散分配的基础上;4.7 请求分页存储管理方式4.6.1 请求分页中的硬件支持---页表、缺页中断和地址变换请求分页系统是在分页的基础上,增加了“请求调页”和“页面置换”功能,每次调入和换出基本单位都是长度固定的页,实现比请求分段简单;1.页表机制---将用户地址空间中的逻辑地址变换为内存空间中的物理地址,因只将部分调入内存,需增设若干项;在请求分页系统中的每个页表项如下所示:1 状态位P:该页是否已调入内存,供访问时参考;2 访问字段A:记录一段时间内本页被访问的频率,供选择换出页时参考;3 修改位M:页在调入内存后是否被修改过,供置换页面时参考;4 外存地址:指出该页在外存上的地址,即物理块号,供调入该页时参考;4.7.2 内存分配策略和分配算法1.最小物理块数的确定是指能保证进程正常运行所需的最小物理块数,当系统为进程分配的物理块数少于此值时,进程将无法运行;进程应获得的最少物理块数与计算机的硬件结构有关;对于某些简单的机器,所需的最少物理块数为2,分别用于存放指令和数据,间接寻址时至少要有三块;对于某些功能较强的机器,因其指令本身、源地址和目标地址都可能跨两个页面,至少要为每个进程分配6个物理块,以装入这些页面;2. 物理块的分配策略请求分页系统的两种内存分配策略:即固定和可变分配策略;两种置换策略:即全局置换和局部置换;可组合出以下三种策略;1 固定分配局部置换Fixed Allocation, Local Replacement--每进程分配一定数目的物理块,在整个运行期间都不再改变,换入换出都限于这些物理块;每个进程物理块难以确定,太多太少都不好2 可变分配全局置换Variable Allocation, Global Replacement --每进程分配一定数目的物理块,OS 保持一空闲物理块队列;进程缺页时,摘下一空闲块,并将该页装入;3 可变分配局部置换Variable Allocation, Local Replacemen --每进程分配一定数目的物理块;进程缺页时,只允许从该进程内存页中选出一页换出;若缺页中断频繁,再为该进程分配若干物理块,直至缺页率减少;若缺页率特低,则减少该进程的物理块数,应保证缺页率无明显增加;3. 物理块分配算法1 平均分配算法--将所有可供分配的物理块,平均分配给各个进程; 例如,有100个物理块,5个进程,每进程可分20个物理块;未考虑到各进程本身的大小;2 按比例分配算法--根据进程的大小按比例分配物理块;共n 个进程,每进程页面数为si,则页面数的总和为:设可用的物理块为m,每进程分到的物理块数为bi,有:3 考虑优先权的分配算法--为了照顾重要、紧迫的作业尽快完成,为它分配较多的空间;通常采取:把可供分配的物理块分成两部分:一部分按比例分给各进程;另一部分根据优先权分给各进程;有的系统是完全按优先权来分配;4.7.3 调页策略1. 何时调入页面1 预调页策略缺页前 :页面存放连续,用预测法一次调入多个相邻页,预测成功率仅为50%;2 请求调页策略缺页时:运行中,发现不在内存,立即请求,由OS 调入;2. 从何处调入页面请求分页系统中外存分为两部分:文件区和对换区;这样,当发生缺页请求时,系统应从何处将缺页调入内存:1 系统拥有足够的对换区,可以全部从对换区调入所需页面;在进程运行前,须将有关的文件拷贝到对换区;2 系统缺少足够的对换区,这时凡是不会被修改的文件,都直接从文件区调入,由于它们未被修改而不必换出;但对于可能被修改的部分,换出时调到对换区,以后需要时,再从对换区调入;3 UNIX 方式;凡是未运行过的页面,都应从文件区调入;曾运行过但已换出的页面,放在∑==ni iS S 1m SS b ii ⨯=对换区,下次应从对换区调入;4.8 页面置换算法当进程运行时,所访问的页面不在内存而需要将他们调入内存,但内存无空闲时,需要选择一页面换出到对换区,选择算法即页面置换算法;算法评价:页面置换频率低,调出页面将不会或很少访问;4.8.1 最佳置换算法和先进先出置换算法1. 最佳Optimal 置换算法由Belady 于1966年提出的一种理论上的算法;原理:其所选择的被淘汰页面,将是以后永不使用的, 或是在最长未来时间内不再被访问的页面;特点:通常可获得最低的缺页率,但由于进程运行不可预知而无法实现,用来评价其他算法;假定系统为某进程分配了三个物理块,并考虑有以下的页面号引用串:7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1进程运行时,先将7,0,1三页装入内存;当进程要访问页面2时,将会产生缺页中断,此时OS 根据最佳置换算法,将选择页面7予以淘汰;共发生6次页面置换;图 4-25 利用最佳页面置换算法时的置换图 2. 先进先出FIFO 页面置换算法---总是置换最先进入内存的页面;用FIFO 算法共发生12次页面置换;该算法与进程的实际运行规律不相符,有些页面经常被访问全局变量,常用函数;图 4-26 利用FIFO 置换算法时的置换图4.8.2 最近最久未使用Least Recently Used LRU 置换算法1. LRU置换算法 ---在无法预测各页面将来使用情况下,利用“最近过去”作为“最近将来”的近似选择最近最久未使用的页面予以淘汰;用LRU 算法共发生9次页面置换;引用率70770170122010320304243230321201201770101页框(物理块)203图 4-27 LRU 页面置换算法2. LRU 置换算法的硬件支持LRU 算法比较好,但为了快速知道哪一页是最近最久未使用的页面,需要硬件支持:寄存器或栈;1 寄存器为了记录某进程在内存中各页的使用情况,须为每个页面配置一个移位寄存器,可表示为:原理:进程访问某物理块时,先将寄存器的Rn-1位设成1;此时,定时信号将每隔一定时间将寄存器右移一位;若将n 位寄存器的数看做是一整数,那么,具有最小数值的寄存器所对应的页面,就是最近最久未使用的页面;例:某进程在内存中有8个页面,为每页面配置一8位寄存器时的LRU 访问情况,如图4-28图 4-28 某进程具有8个页面时的LRU 访问情况2 栈--利用栈来保存当前使用的各页面的页面号;原理:每当进程访问某页面时,便将该页面的页面号从栈中移出,将它压入栈顶;因此,栈顶始终是最新被访问页面的编号,而栈底则是最近最久未使用页面的页面号;假定现有一进程所访问的页面的页面号序列为:4,7,0,7,1,0,1,2,1,2,6随着进程的访问,栈中页面号的变化情况如图4-29所示;在访问页面6时发生了缺页,此时页面4是最近最久未被访问的页,应将它置换出去;LRU 算法较好,但要求较多硬件支持, 实际使用接近LRU算法-Clock 算法;图引用率70770170122010323104430230321013201770201页框2304204230230127127011474074704170401741074210741207421074621074-29 用栈保存当前使用页面时栈的变化情况。

移动存储器设备管理制度

移动存储器设备管理制度

第一章总则第一条为加强公司移动存储器设备的管理,确保公司数据安全,提高工作效率,特制定本制度。

第二条本制度适用于公司内部所有移动存储器设备,包括U盘、移动硬盘、光盘等。

第三条移动存储器设备管理应遵循“安全第一、预防为主、责任到人”的原则。

第二章设备采购与领用第四条移动存储器设备的采购应严格按照公司采购流程进行,确保设备质量符合要求。

第五条公司内部各部门需申请移动存储器设备时,应向信息管理部门提交书面申请,说明用途、数量及预算。

第六条信息管理部门对各部门申请进行审核,确认设备用途后,统一采购。

第七条采购到的移动存储器设备由信息管理部门进行登记、编号,并建立设备台账。

第八条部门领取移动存储器设备时,需填写《移动存储器设备领用单》,经部门负责人签字确认后,由信息管理部门发放。

第三章设备使用与管理第九条移动存储器设备的使用应遵循以下规定:(一)使用前,应确保设备无病毒、无恶意软件。

(二)不得将公司内部敏感信息存储在个人移动存储器设备上。

(三)不得将移动存储器设备带出公司使用。

(四)不得使用非公司提供的移动存储器设备进行工作。

第十条移动存储器设备的使用人员应妥善保管设备,防止丢失、损坏。

第十一条移动存储器设备的使用人员应定期清理设备中的文件,确保设备空间充足。

第十二条移动存储器设备出现故障时,应及时向信息管理部门报修。

第十三条信息管理部门对移动存储器设备的使用情况进行定期检查,确保设备正常运行。

第四章设备回收与处置第十四条移动存储器设备使用期满或因工作需要更换时,应向信息管理部门办理回收手续。

第十五条信息管理部门对回收的移动存储器设备进行登记、编号,并建立回收台账。

第十六条回收的移动存储器设备,需进行数据清除处理,确保数据安全。

第十七条数据清除处理完毕后,信息管理部门对设备进行分类处置,符合回收条件的设备可进行二次利用,不符合条件的设备按规定进行报废。

第五章奖惩与责任第十八条对遵守本制度,积极维护公司数据安全的个人和部门,给予表彰和奖励。

计算机操作系统实验三存储器管理

计算机操作系统实验三存储器管理

计算机操作系统实验三存储器管理引言存储器管理是计算机操作系统中非常重要的一部分。

它负责管理计算机中的存储器资源,以便有效地分配和管理内存。

在操作系统的设计和实现中,存储器管理的性能和效率对整个系统的稳定性和性能有着重要的影响。

本文档将介绍计算机操作系统实验三中的存储器管理的实验内容及相关的知识点。

我们将从内存分区管理、页式存储管理和段式存储管理三个方面进行讨论。

内存分区管理内存分区管理是一种常见的存储器管理方法,旨在将物理内存分成若干个不同大小的区域,以便为不同的进程分配内存。

在实验三中,我们将学习和实现两种内存分区管理算法:首次适应算法和最佳适应算法。

首次适应算法是一种简单直观的算法,它从内存的起始位置开始查找第一个满足要求的空闲分区。

而最佳适应算法则是通过遍历整个内存空间,选择最合适的空闲分区来满足进程的内存需求。

通过实验,我们将学习如何实现这两种算法,并通过比较它们的性能和效果来深入理解内存分区管理的原理和实现。

页式存储管理页式存储管理是一种将物理内存分成固定大小的页框(page frame)和逻辑地址分成固定大小的页面(page)的管理方法。

在操作系统中,虚拟内存通过将进程的地址空间划分成大小相等的页面,并与物理内存中的页框相对应,实现了大容量的存储管理和地址空间共享。

在实验三中,我们将学习和实现页式存储管理的基本原理和算法。

我们将了解页表的结构和作用,以及如何通过页表将逻辑地址转换为物理地址。

此外,我们还将学习页面置换算法,用于处理内存不足时的页面置换问题。

段式存储管理段式存储管理是一种将逻辑地址分成不同大小的段并与物理内存中的段相对应的管理方法。

在操作系统的设计中,段式存储管理可以提供更灵活的地址空间管理和内存分配。

实验三将介绍段式存储管理的基本原理和实现方法。

我们将学习段表的结构和作用,以及如何通过段表将逻辑地址转换为物理地址。

同时,我们还将探讨段的分配和释放过程,并学习如何处理外部碎片的问题。

第四章存储器管理

第四章存储器管理

考点一内存管理概念一、单项选择题在下面关于存储功能的论述中正确的是()A.即使在多道程序管理下用户也可以编制用物理地址直接访问内存的程序。

B.内存分配的基本任务是为每道程序分配内存空间,其追求的目的则是提高内存的利用率。

C.为提高内存保护的灵活性,内存保护通常由软件完成。

D.地址映射是指将程序物理地址转变为内存的逻辑地址二、综合应用题1.请列举出逻辑地址和物理地址的两个不同之处。

2.一个进程被换出内存,它就失去了使用CPU的机会。

除了换出内存这种情形,请列举出其它一种情形,进程虽然失去了使用CPU的机会,但它并没有被换出内存。

3.存储管理的主要研究内容是什么?4.什么是动态链接?用何种内存分配方法可以实现这种链接技术?5.某系统把任一程序都分成代码和数据两部分。

CPU知道什么时候要指令(如取指令周期),什么时候要数据(如取数据周期或存数据周期)。

所以,需要两种寄存器(基地址寄存器、界限寄存器),一组用于指令,一组用于数据。

用于指令的是只读的,以便于用户的共享。

请分析这种策略的优缺点。

6.什么是地址的重定位?有哪几种常用的地址重定位的方法?7.在现代计算机系统中,存储器是十分重要的资源,能否合理有效的使用存储器,在很大程度上反映了操作系统的性能,并直接影响到计算机系统作用的发挥。

请问:(1)主存利用率不高主要体现为哪几种形式?(2)可以通过哪些途径来提高主存利用率8.内存保护是否可以完全由软件来实现?为什么?考点二交换与覆盖一、单项选择题1.存储管理方案中,()可采用覆盖技术。

A.单一连续存储管理B.可变分区存储管理C.段式存储管理D.段页式存储管理2.在存储系统管理中,采用覆盖技术与交换技术的目的是( )。

A.节省主存空间B.物理上扩充主存容量C.提高CPU利用率D.实现主存共存二、综合应用题1.在存储管理中,覆盖和对换技术所以解决的是什么问题?各有什么特点?2请写出你对交换过程和覆盖过程的认识,它们的主要区别有哪些?考点三连续分配管理方式一、单项选择题1.在可变式分区分配方案中,某一作业完成后,系统收回其主存空间并与相邻空闲区合并,为此需要修改空闲区表,造成空闲区域减1的情况是()。

存储器管理

存储器管理

第四章存储器管理第0节存储管理概述一、存储器的层次结构1、在现代计算机系统中,存储器是信息处理的来源与归宿,占据重要位置。

但是,在现有技术条件下,任何一种存储装置,都无法从速度、容量、是否需要电源维持等等多方面,同时满足用户的需求。

实际上它们组成了一个速度由快到慢,容量由小到大的存储装置层次。

图4-1 计算机系统存储器层次示意图2、各种存储器•寄存器、高速缓存Cache:容量很小、非常快速、昂贵、需要电源维持、CPU可直接访问;•内存RAM:容量在若干KB、MB、GB,中等速度、中等价格、需要电源维持、CPU可直接访问;•磁盘高速缓存:一般设于主存中;•多种类型的磁盘:容量在数MB或数GB,低速、价廉、不需要电源维持、CPU不可直接访问;由操作系统协调这些存储器的使用。

二、存储管理(主存管理)的目的1、尽可能地方便用户;提高主存储器的使用效率,使主存储器在速度、规模和成本之间获得较好的权衡。

(注意CPU和主存储器,这两类资源管理的区别)2、存储管理的主要功能:•地址重定位•主存空间的分配与回收•主存空间的保护和共享•主存空间的扩充三、逻辑地址与物理地址1、逻辑地址(相对地址,虚地址):用户源程序经过编译/汇编、链接后,程序内每条指令、每个数据等信息,都会生成自己的地址。

●一个用户程序的所有逻辑地址组成这个程序的逻辑地址空间(也称地址空间)。

这个空间是以0为基址、线性或多维编址的。

2、物理地址(绝对地址,实地址):是一个实际内存(字节)单元的编址。

●计算机内所有内存单元的物理地址组成系统的物理地址空间,它是从0开始的、是一维的;●将用户程序被装进内存,一个程序所占有的所有内存单元的物理地址组成该程序的物理地址空间(也称存储空间)。

四、地址映射(变换、重定位)当程序被装进内存时,通常每个信息的逻辑地址和它的物理地址是不一致的,需要把(程序中的)逻辑地址转换为对应的物理地址----地址映射;例如指令LOAD L,2500 /*将2500号单元内的数据送入寄存器L*/ ----P123图4-3 作业装进内存时的情况地址映射分静态和动态两种方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
存储器管理
主要内容
存储管理机制 存储管理功能 分区管理 分页管理 分段管理 段页式管理
存储体系
高速缓存Cache: 少量的、非常快速、昂贵、易变的 内存RAM: 若干兆字节、中等速度、中等价格、易变的 磁盘: 数百兆或数千兆字节、低速、价廉、不易变的 直接存取要求内存速度尽量快到与CPU取指速度相匹配,大到能 装下当前运行的程序与数据,否则CPU执行速度就会受到内存速度和 容量的影响而得不到充分发挥。
物理地址
页框号D
偏移量W
则P=2,W=122
页表
页表:为了能在内存中找到每页所对应的物理块,系统为每个进程 建立一张页面映射表即页表。(大多驻留内存) 页表项结构:
页号 块号
页表
内存 0 作业A的 相对地址空间 0 100 1KB 第1页 2KB 952 3000 3KB 10KB XXXXXX 第2页 7KB+952 8KB 9KB 作业A(第1页) 第9块 call 3000 操作系统 4KB 4KB+100 call 3000 作业A(第0页) 5KB 第0页 6KB 7KB 952 XXXXXX 作业A(第2页) 第8块 第7块 7K+952=8120 (0~3块) 第4块(2, 952) 第5块 第6块 页表 页号 0 1 2 块号 4 9 7
CPU pid p d i d 内 存
pid
分页存储管理特点
优点: 有效地解决了存储器的零头问题,提高了存储器利 用率。 缺点: 采用了动态地址变换机构,增加了计算机的成本。 必须用内存存储各种表格,且管理费时。 分区间的碎片消除了,但出现了页内碎片。 作业地址空间受内存容量限制。
分段存储管理
引入原因:
方便编程 分段共享 分段保护 动态链接 动态增长
分段
作业按逻辑关系划分成若干段,每个段都有自己的 段名和长度 逻辑地址是二维的,由段号(名)和段内偏移量决定 段长不固定 地址结构
段号
31 16 15
段内位移
0
段数:216=64k段 段长度:216=64kB
段表
段表实现逻辑段到物理内存区的映射。
用户程序 内存
1
映 射
2 3 4 5 6 7 …
分页存储管理-地址结构 分页存储管理 地址结构
31 12 11 0
逻辑地址
页号P 页面数 220=1MB
偏移量W 页面大小 212=4KB
页内地 址
给定地址空间中的地址为A, 页面大小为L,则 P=INT[A/L] W=A MOD L 如A=2170B ,页大小为1KB,
页内地址
12 11 0
210
页表分页 的始址
210
两级页表地址转换
页表分页首址
页表项地址
解决了大页表无需大片连续存储空间的问题。
反置页表
页表项按物理块的序号排序,页表项的内容是页号及隶属进程的 标识号。 用进程标识符和页号检索反置页表,若有匹配项,则表项的序号 i便是页所在的物理块号。否则,检索的页尚未调入内存,则产 生请求调页中断。 能有效地减少页表占用的内存。
10k 10k 14k
30k 14k
动态重定位分区分配
碎片:又称零头,指内存中存在的无法被利用的小分区。 紧凑:将分散的内存分区拼接成一个大分区。
操作系统 用户程序1 10kb 用户程序2 12kb 用户程序3 … 紧凑后
操作系统 用户程序1 用户程序2 用户程序3 22kb … 程序地址发 生变化
特点
低址部分不断划分,造成一批较小的空闲区。 查找总从低址部分开始,增大了开销。 较大的分区集中在高址部分。
分区分配算法
循环首次适应算法
进程分配内存空间时,查找不再是每次从链首开始, 而是从上次找到的空闲块的下一个空闲区开始,直至找 到满足的空闲分区。 实现本算法,需要设置一起始查寻指针,以指示下一 次起始查寻的空闲分区,并采用循环查找方式。
连续分配存储管理
单一连续分配(适用于单用户、单任务OS)
系统区 用户区
内存
单一连续分区存储管理
缺点 只能有一个作业进入内存,故它不适用于多道程序设计, 整个系统的工作效率不高,资源利用率低下。 只要作业比用户区小,那么在用户区里就会形成碎片, 造成内存储器资源的浪费。如果用户作业很小,那么这 种浪费是巨大的。 若用户作业的相对地址空间比用户区大,那么该作业就 无法运行。即大作业无法在小内存上运行。
程序的装入和链接
编译
链接
装入
程序装入
绝对装入方式
编译程序产生绝对地址的目标代码。绝对装入程序按照装入模 块中的地址,将程序和数据装入内存。
可重定位装入方式
逻辑地址:又称相对地址或虚地址。用户程序经过汇编或编译 后形成目标代码,目标代码通常采用相对地址的形式,其首地址为0, 其余指令中的地址都相对于首地址而计算。 物理地址:又称为绝对地址,标识程序在内存中物理单元实际 位置。装入程序根据内存的使用情况,将装入模块放到内存的某个 位置,其逻辑地址与实际装入内存的地址是不相同的。 重定位:装入时对目标程序中指令和数据地址进行修改的过程。 作业运行时不能按其相对地址访问内存单元,而应按相应的物理地 址访问,需要进行相对地址到物理地址的转换。
动态重定位
动态重定位:是指程序真正运行时,完成逻辑地址到物理地址的转 换,需要硬件地址变换机构的支持。 重定位寄存器:存放程序在内存中的起始地址。
动态重定位分区分配算法
请求U.size分区
检索空闲区链表 否 分配失败 否 空闲区>u.size 是 紧凑形成连续空闲区 动态分区方式分配 返回分区号 及首址
程序改变,因此将装入模块装入内 存后,不立即把其相对地址转换为绝对地址,而是把地址转换推迟 到程序真正执行时才进行。装入内存后的地址仍是相对地址。
程序的链接
静态链接
将目标模块链接成一个装入模块。
地址修改 变换外部 调用符号
程序的链接
装入时动态链接
页面大小的确定
页面大小由硬件决定的。 页面小:减少内存碎片,提高内存利用率;但页表过 长,占用过多内存,并且降低了换进换出的效率。 页面大:过多页内碎片产生。 一般选择512byte~4KB
地址变换机构
① ② 页号*页表项长度+ 页表始址 ③ ④ ⑤
注意:每存取一次数据都要两次访问内存。
练习
1.设有8页的逻辑空间,每页有1024字节,它们被映射到32块的物理 13 15 存储区,那么逻辑地址的有效位是______位,物理地址至少_______位。 2.在采用页式存储管理的系统中,某作业J(或某进程)的逻辑地址 空间为4页(每页为2048字节),且已知该作业的页表如下,求出有效 逻辑地址4965所对应的物理地址,并画出地址变换图。
空闲区总和 >u.size
修改有关数据结构
修改有关数据结构
对换
解决问题:由于内存紧张而导致系统无法正常进行。 对换: 把内存中暂不能运行的进程,或暂时不用的程序和数据,换出到外存 上,以腾出足够的内存空间,把已具备运行条件的进程,或进程所需 要的程序和数据,换入内存。 对换类型:进程对换、页面对换或分段对换 文件区:采用离散分配方 文件区 式,提高文件存储空间利 用率。 对换区 对换区:采用连续分配方 式,提高进程的换入、换 就绪且换出状态 出速度。 外存 换出时间
连续分配存储管理-分区式 连续分配存储管理 分区式
固定分区分配 (多道程序)
存储空间划分为若干大小任意的区域。这些区域是 在系统启动时划定的,在用户装入及运行过程中,其区 域的大小和边界是不能改变的。
0 分区号 1 2 3 4 大小(KB) 15 30 50 100 始址(K) 30 45 75 125 状态 分配 分配 分配 未分配 75 125 30 45 操作系统 作业A 作业B 作业C ……
动态分区分配-数据结构 动态分区分配 数据结构
空闲分区说明表
序号 分区大小 分区始址 状态
空闲分区链
分区分配算法
首次适应算法
空闲分区链按地址递增的次序链接; 进行内存分配时,从链首开始顺序查找,直至找到一 个满足大小要求的空闲分区为止。 将此空白分区分成两部分,一部分与作业请求空间大 小相等,分配给作业,余下的空闲分区仍留在空闲链表 中。
存储器管理目的
充分利用内存,为多道程序并发执行提供存储基础 尽可能方便用户,自动装入用户程序,用户程序中不必考虑硬 件细节 系统能够解决程序空间比实际内存空间大的问题 程序在执行时支持动态伸缩 内存存取速度快 存储保护与安全 共享与通信
存储器管理
功能: 内存分配 内存共享与保护 地址映射 内存扩充 分类: 分区式存储管理 分页存储管理 分段存储管理 段页式存储管理
特点
内存中空闲分区分布得更均匀。 减少查找空闲分区的开销。 缺乏大的空闲分区。
分区分配算法
最佳适应算法
内存分配时,总选择满足请求的最小空闲分区分配 给作业。 为加速寻找,将空闲区按由小递增的顺序形成空 闲区链。
特点
存储器中会留下许多难以利用的小空闲区。
分区分配操作
分配内存 回收内存
序号1 序号 1 2
分区说明表
连续分配存储管理-分区式 连续分配存储管理 分区式
动态分区分配 (多道程序)
分区的大小及数目是可变的。 基本思想:在作业要求装入内存储器时,如果内存中有足够的存储 空间满足该作业的需求,那么就划分出一个与作业相对地址空间大 小相等的分区分配给它。 解决问题: 分区分配采用的数据结构 分区的分配算法 分区的分配与回收
段页式 存储管 理
离散分配方式
分页存储管理
基本思想: 进程逻辑空间分成若干大小相等的片,称为页面或页。 内存空间分成与页相同大小的若干个存储块,称为物理块或页框。 为进程分配内存时,以块为单位将进程中的若干页分别装入多个可不相 邻接的块中。 不足:会造成页内碎片。
相关文档
最新文档