线性代数习题及答案复旦版
复旦大学《线性代数》2019-2020学年第一学期期末试卷A

《线性代数》期末考试试卷A一、填空题(30分, 其中E 表示单位矩阵).1. 若A =102a ⎛⎞⎜⎟⎝⎠, B =300b ⎛⎞⎜⎟⎝⎠满足AB = BA , 则a , b 满足条件______________. 解: AB =102a ⎛⎞⎜⎟⎝⎠300b ⎛⎞⎜⎟⎝⎠=302ab b ⎛⎞⎜⎟⎝⎠, BA =300b ⎛⎞⎜⎟⎝⎠102a ⎛⎞⎜⎟⎝⎠=3302a b ⎛⎞⎜⎟⎝⎠; AB = BA ⇔ ab = 3a ⇔ a (b −3) = 0. 2. 若矩阵A , B 均可逆, 则分块矩阵2⎛⎞⎜⎟⎝⎠A O EB 的逆矩阵是__________________. 解: 12−×⎛⎞⎜⎟⎝⎠AO E O A EB O E →1(2)2−−×⎛⎞⎜⎟⎝⎠E E O A O E B O E →1112−−−⎛⎞⎜⎟×−⎝⎠E O A O O B B A E →11112−−−−⎛⎞⎜⎟−⎝⎠E O A O O EB A B . 可见12−⎛⎞⎜⎟⎝⎠A O E B =11112−−−−⎛⎞⎜⎟−⎝⎠AO B A B .3. 如果向量组(a , 1, 1), (1, a , 1), (1, 1, a )的秩为2, 则参数a =_________________.解: 向量组(a , 1, 1), (1, a , 1), (1, 1, a )的秩为2 ⇒111111a a a= 0 ⇒ (a +2)(a −1)2 = 0 ⇒ a = −2或1.当a = −2时, 原向量组的秩为2, 当a = 1时, 原向量组的秩为1. 故a = −2. 4. 若A =a c b d ⎛⎞⎜⎟⎝⎠, B =22a c c b d d −⎛⎞⎜⎟−⎝⎠, 则满足A = BP 的二阶矩阵P =__________. 解: 将B 的第2列的2倍加到第1列就可以得到A .又因为进行一次初等列变换相当于右乘一个相应的初等矩阵,所以P =1021⎛⎞⎜⎟⎝⎠. 5. 若α =1b ⎛⎞⎜⎟⎝⎠是矩阵A =112a ⎛⎞⎜⎟⎝⎠的相应于特征值2的特征向量, 则a b ⎛⎞⎜⎟⎝⎠=⎛⎞⎜⎟⎝⎠. 解: A α = 2α ⇒112a ⎛⎞⎜⎟⎝⎠1b ⎛⎞⎜⎟⎝⎠= 21b ⎛⎞⎜⎟⎝⎠⇒12b b a +⎛⎞⎜⎟+⎝⎠=22b ⎛⎞⎜⎟⎝⎠⇒a b ⎛⎞⎜⎟⎝⎠=01⎛⎞⎜⎟⎝⎠. 6. 如果A =12a b c ⎛⎞⎜⎟⎝⎠是在交矩阵, 且a , b > 0, 则A = ________________________. 解: A =12a b c ⎛⎞⎜⎟⎝⎠是在交矩阵⇒ AA T = A T A = E ⇒12a b c ⎛⎞⎜⎟⎝⎠12a b c ⎛⎞⎜⎟⎝⎠=12a b c ⎛⎞⎜⎟⎝⎠12a b c ⎛⎞⎜⎟⎝⎠=1001⎛⎞⎜⎟⎝⎠ ⇒221221124a b a bc a bc c ⎛⎞++⎜⎟++⎝⎠=211422212a abc ab c b c ⎛⎞++⎜⎟++⎝⎠=1001⎛⎞⎜⎟⎝⎠. 又因为a , b > 0, 所以a =2, b =12, c = −2. 因而A =. 7. 若二次型f (x 1, x 2, x 3) = x 12 + x 22 + kx 32 +2kx 1x 2是正定的, 则参数k 满足条件____. 解: (方法一) f (x 1, x 2, x 3) = x 12 + x 22 + kx 32 +2kx 1x 2 = (x 1 + kx 2)2 + (1−k 2)x 22 + kx 32.令1122233y x kx y x y x =+⎧⎪=⎨⎪=⎩, 则f (x 1, x 2, x 3) = y 12 + (1−k 2)y 22 + ky 32. 故f (x 1, x 2, x 3)正定⇔ 1−k 2 > 0且k > 0 ⇔ 0 < k < 1.(方法二) f (x 1, x 2, x 3) = x 12 + x 22 + kx 32 +2kx 1x 2的矩阵A =101000k k k ⎛⎞⎜⎟⎜⎟⎝⎠的顺序主子式为∆1 = 1 > 0, ∆2 =11kk = 1−k 2, ∆3 =101000k k k= (1−k 2)k .故f (x 1, x 2, x 3)正定⇔ ∆1, ∆2, ∆3全大于0 ⇔ 1−k 2 > 0且k > 0 ⇔ 0 < k < 1. (方法三) f (x 1, x 2, x 3) = x 12 + x 22 + kx 32 +2kx 1x 2的矩阵A =101000k k k ⎛⎞⎜⎟⎜⎟⎝⎠,|λE −A | =101000kk kλλλ−−−−−= (λ−1+k )(λ−1−k ) (λ−k ). 可见A 的特征值为: λ1 = 1−k , λ2 = 1+k , λ3 = k .故f (x 1, x 2, x 3)正定⇔ λ1, λ2, λ3全大于0 ⇔ 0 < k < 1.8. 若A =211121112⎛⎞⎜⎟⎜⎟⎝⎠, η = (1, k , 1)T 是A −1的特征向量, 则k 的可能的值为________.解: 设A −1η = λη, 则η = λA η, 即11k ⎛⎞⎜⎟⎜⎟⎝⎠= λ211121112⎛⎞⎜⎟⎜⎟⎝⎠11k ⎛⎞⎜⎟⎜⎟⎝⎠= λ3223k k k +⎛⎞⎜⎟+⎜⎟+⎝⎠. 由此可得k = 1或−2.9. 假设A , B 都是3×4矩阵, 则矩阵A T B 的行列式|A T B | = ______________________.解: A , B 都是3×4矩阵⇒ A T B 为4×4矩阵且 秩(A T B ) ≤ 秩(B ) ≤ 3 < 4 ⇒ |A T B | = 0.10. 设α是n 维单位列向量, 矩阵A = E + ααT 的行列式|A | = ____________________.解: 设ξ1, …, ξn −1为αT x = 0的基础解系, 则α, ξ1, …, ξn −1线性无关(否则, α能由ξ1, …, ξn −1线性表示, 因而αT α = 0, 这与“α是单位向量”矛盾!). 于是有A α = (E + ααT )α = E α + ααT α = α + α(αT α) = 2α ;A ξi = (E + ααT )ξi = E ξi + ααT ξi = ξi + α(αT ξi ) = ξi (i = 1, …, n −1).可见2和1是A 的特征值, α是对应于2的特征向量, ξ1, …, ξn −1是对应于1的特征向量. 因而|A | = 2×1(n −1) = 2.二、(10分)求行列式2301312053421531. 解:1)=3121314233000012−−= 1×(−1)= −0711017123−−=71117−= 60. 三、(14%)已知向量组α1 =111−⎛⎞⎜⎟⎜⎟⎝⎠, α2 =13m ⎛⎞⎜⎟⎜⎟⎝⎠与β1 =034⎛⎞⎜⎟⎜⎟⎝⎠, β2 =145⎛⎞⎜⎟−⎜⎟−⎝⎠, β3 =15n ⎛⎞⎜⎟⎜⎟⎝⎠等价. 求参数m , n 的值. 并将α2表示成β1, β2, β3的线性组合.解: 因为α1, α2与β1, β2, β3等价, 所以秩(α1, α2, β1, β2, β3) = 秩(α1, α2) ≤ 2.(α1, α2, β1, β2, β3) =0111134514513m n −⎛⎞⎜⎟−⎜⎟−⎝⎠→345101111454513m n −⎛⎞⎜⎟−××⎜⎟−⎝⎠→13309340111140548m n ×−+⎛⎞⎜⎟−⎜⎟+−⎝⎠→431031(4)0111140548m n +−⎛⎞×−⎜⎟−⎜⎟+−⎝⎠→438431031011110070m mn +−−⎛⎞⎜⎟−⎜⎟−⎝⎠记为C . 可见n −7 = 0, 843m−= 0. 故m = 2, n = 7. 此时C =103120111100000−⎛⎞⎜⎟−⎜⎟⎝⎠. 设α2 = x 1β1 + x 2β2 + x 3β3 , 则由C 可见1323321x x x x +=⎧⎨+=⎩. 令x 3 = k , 则x 1 = −3k +2, x 2 = −k + 1. 因而α2 = (−3k +2)β1 + (−k + 1)β2 + x 3β3 , 其中k 为任意实数.四、(12分)假设矩阵A =103022011⎛⎞⎜⎟⎜⎟⎝⎠, B =110000021⎛⎞⎜⎟⎜⎟⎝⎠. 求矩阵方程XA = 2X + B 的解.解: XA = 2X + B ⇔ X (A −2E ) = B . A −2E =103002011−⎛⎞⎜⎟⎜⎟−⎝⎠.(A −2E , E ) =12103100(1)002010011001−×−⎛⎞⎜⎟×⎜⎟−⎝⎠→121031000010013011001−−⎛⎞⎜⎟××⎜⎟−⎝⎠→32121210100001000101−⎛⎞⎜⎟⎜⎟⎝⎠→321212101000100100100−⎛⎞⎜⎟⎜⎟⎝⎠. 由此可得(A −2E )−1 =321212100100−⎛⎞⎜⎟⎜⎟⎝⎠. 故X = B (A −2E )−1 =3212100002−⎛⎞⎜⎟⎜⎟⎝⎠.五、(12分)设二次型f (x 1, x 2, x 3) = x 12 + x 22 + x 32 + 2ax 1x 3 + 2ax 2x 3.1. 给出二次型的矩阵.解: f (x 1, x 2, x 3)的矩阵A =10011a a a a ⎛⎞⎜⎟⎜⎟⎝⎠.2. 用配方法求一个可逆线性变换x = Cy 将f 化成其标准型.解: f (x 1, x 2, x 3) = x 12 + x 22 + x 32 + 2ax 1x 3 + 2ax 2x 3 = (x 1 + ax 3)2 − a 2x 32 + (x 2 + ax 3)2 − a 2x 32 + x 32 = (x 1 + ax 3)2 + (x 2 + ax 3)2 + (1−2a 2)x 32.令11322333y x ax y x ax y x =+⎧⎪=+⎨⎪=⎩, 即y =1001001a a ⎛⎞⎜⎟⎜⎟⎝⎠x , 则x =1001001a a −⎛⎞⎜⎟−⎜⎟⎝⎠y , 且f (x 1, x 2, x 3) = y 12 + y 32 + (1−2a 2)y 32.3. 根据a 的不同的值, 讨论A 的正、负特征值的个数.解: 因为A 的正、负特征值的个数分别等于A 的正、负惯性指数的个数,所以由上题可知(1) 当a < −2或a >2时, A 有2个正特征值, 1个负特征值. (2) 当a = ±2时, A 有2个正特征值, 0个负特征值.(3) 当−2< a <2时, A 有3个正特征值, 0个负特征值.六、(12分)已知矩阵A =1020140c a −⎛⎞⎜⎟⎜⎟⎝⎠与B =00010001b ⎛⎞⎜⎟⎜⎟⎝⎠相似.1. 分别求参数a , b 及c 的值.解: |A | = −6−a , |B | = b , tr(A ) = a , tr(B ) = b +2. 因为A 与B 相似, 所以|A | = |B |, tr(A ) = tr(B ).故a = −3, b = −5. 可见1是A的二重特征值, 因而秩(E−A) = 1.E−A =202400404c−×⎛⎞⎜⎟−⎜⎟−⎝⎠→20200000c−⎛⎞⎜⎟−⎜⎟⎝⎠. 由此可见c = 0.2. 求一个可逆矩阵P, 使得B = P−1AP.解: (−5E−A)x = 0的一个基础解系为ξ1 = (−12, 0 , 1)T.(E−A)x = 0的一个基础解系为ξ2 = (0, 1, 0)T,ξ3 = (1, 0, 1)T.令P = (ξ1, ξ2, ξ3) =1201010101−⎛⎞⎜⎟⎜⎟⎝⎠, 则B = P−1AP.七、(10分)假设A, B都是n×n矩阵.1. 若(A−B)(A−E) = O, 且A≠B, 证明: 1是A的特征值.证明: 因为(A−B)(A−E) = O, 且A≠B, 所以A−E不可逆(否则A−B = (A−B)(A−E)(A−E)−1 = O(A−E)−1 = O, 从而得A = B, 矛盾!).因此|A−E| = 0. 可见1是A的特征值.2. 若关于A, B的秩有不等式r(A) + r(B)<n, 证明: A, B有公共特征向量.证明: 因为r ⎛⎞⎜⎟⎝⎠AB≤ r(A) + r(B) <n, 所以齐次线性方程组⎛⎞⎜⎟⎝⎠AB x = 0有非零解,即存在非零向量ξ使得⎛⎞⎜⎟⎝⎠ABξ = 0. 于是有Aξ = 0 = 0ξ, Bξ = 0 = 0ξ.可见A, B有公共特征向量ξ.。
复旦大学《线性代数》2019-2020学年第一学期期末试题A卷

共4页第1页复旦大学期末考试卷(A 卷)课程名称线性代数考试学期19-20-1得分适用专业非电类专业考试形式闭卷考试时间长度120分钟题号一二三四五六七得分一.(30%)填空题(E 表示n 阶单位矩阵,O 表示n 阶零矩阵):1.若对任意3维列向量(,,)Tx y z η=,矩阵A 满足23x y A x z η+⎛⎫=⎪-⎝⎭,则A =。
2.假设1002A ⎛⎫=⎪⎝⎭,34x B x ⎛⎫= ⎪⎝⎭,且AB 是对称矩阵,则x 满足条件。
3.若1324A ⎛⎫=⎪⎝⎭,则A 的伴随矩阵*A 的逆矩阵1(*)A -=。
4.如果向量组1212,1,333k αβγ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭线性相关,则参数k =。
5.假设n 阶方阵A 满足232A A E O +-=,则1A-=。
6.向量空间{}(,,)|0V x y z x y z =--=的一组基是。
7.若33⨯矩阵A 的特征值是1,1,2-,则行列式22A A E --=。
8.如果矩阵1a a A a ⎛⎫= ⎪⎝⎭的特征值都大于零,则参数a 的取值范围是。
9.若矩阵1221A ⎛⎫=⎪⎝⎭与133B k ⎛⎫= ⎪⎝⎭合同,则参数k 的取值范围是。
10.已知22⨯矩阵,A P 满足11002P AP -⎛⎫= ⎪⎝⎭。
若()(),,,P Q αβαβα==-,则1Q AQ -=。
二.(12%)已知123012001A⎛⎫⎪= ⎪⎪⎝⎭,101210B⎛⎫= ⎪-⎝⎭,求矩阵X使得2XA B X-=。
三.(12%)根据参数a的值,讨论矩阵23123123aA aa⎛⎫⎪=-⎪⎪-⎝⎭的秩。
共4页第2页共4页第3页四.(14%)若方程组1231231():234x x x I x x ax +-=⎧⎨++=⎩的每个解都满足方程12():2II x x b +=。
求参数,a b 的值,并求线性方程组()I 的通解.五.(14%)设在正交变换x Qy =下,二次型22212312313(,,)2f x x x x ax x x x =+++变成标准形222123123(,,)22g y y y y by y =++,求参数,a b 的值,并求一个正交矩阵Q 。
复旦大学《线性代数》2019-2020学年第一学期期末试题B卷

共4页第页复旦大学期末考试试卷(B 卷)课程名称线性代数A 考试学期19-20-1得分适用专业非电类专业考试形式闭卷考试时间长度120分钟题号一二三四五六七得分一.(30%)填空题(E 表示单位矩阵):1.设03a A b ⎛⎫= ⎪⎝⎭,如果10A O =,则参数,a b 满足条件;2.设0k >,向量(,0,)T k k α=,如果矩阵T A E αα=-是1T B E k αα=+的逆矩阵,则参数k =;3.若,A B 都是n 阶可逆矩阵,则分块矩阵O A B E ⎛⎫ ⎪⎝⎭的逆矩阵为;4.若向量组(1,2,3),(1,,3),(1,2,)T T T x y 线性相关,则参数,x y 满足条件;5.3R 的子空间{}(,,)|0T V x y z x y z =--=的维数是;6.假设3阶矩阵A 的秩是2,123,,ηηη是线性方程组Ax b =的解,若12(2,2,4)T ηη+=,13(1,0,1)T ηη-=,则Ax b =的通解是;7.如果2阶矩阵A 的特征值是2和3,则A 的伴随矩阵*A 的特征值是;8.若2是1114335x y -⎛⎫ ⎪= ⎪ ⎪--⎝⎭A 的二重特征值,且A 相似于对角阵,则(,)x y =;9.如果二次型2212124x tx tx x ++是正定的,则参数t 满足条件;10.如果线性方程组31222393x y zx ay z x y bz +-=⎧⎪+-=⎨⎪++=⎩有3个线性无关的解向量,则(,)a b =。
共4页第页二.(14%)设112100010,020002201A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求矩阵方程2()AB B X B +=的解。
三.(10%)已知向量组12110,213αα-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭与向量组1231110,,120m n βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的秩相同,并且,3β可以由12,αα线性表示。
(完整版)新版线性代数习题及答案(复旦版主编:周勇朱砾)

线性代数习题及答案all in习题一1. 求下列各排列的逆序数.(1) 341782659; (2) 987654321;(3) n (n -1)…321; (4) 13…(2n -1)(2n )(2n -2)…2. 【解】(1) τ(341782659)=11; (2) τ(987654321)=36;(3) τ(n (n -1)…3·2·1)= 0+1+2 +…+(n -1)=(1)2n n -;(4) τ(13…(2n -1)(2n )(2n -2)…2)=0+1+…+(n -1)+(n -1)+(n -2)+…+1+0=n (n -1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案.4. 本行列式4512312123122x x x D xxx=的展开式中包含3x 和4x 的项.解: 设123412341234()41234(1)i i i i i i i i i i i i D a a a a τ=-∑ ,其中1234,,,i i i i 分别为不同列中对应元素的行下标,则4D 展开式中含3x 项有(2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-⋅⋅⋅⋅+-⋅⋅⋅⋅=-+-=-4D 展开式中含4x 项有(1234)4(1)2210x x x x x τ-⋅⋅⋅⋅=.5. 用定义计算下列各行列式.(1)0200001030000004; (2)1230002030450001.【解】(1) D =(-1)τ(2314)4!=24; (2) D =12.6. 计算下列各行列式.(1)2141312112325062-----; (2)ab ac ae bd cd de bfcfef-------;(3)111001101a b c d ---; (4)1234234134124123.【解】(1)125062312101232562r r D+---=--;(2)1114111111D abcdef abcdef--==------;21011111(3)(1)111011001011;b c D a a b cd c c d d dd abcd ab ad cd --⎡--⎤=+-=+++--⎢⎥⎣⎦=++++ 321221133142144121023410234102341034101130113(4)160.1041202220044101231114r r c c r r c c r r r r c c r r D -+-+-++---====-------7. 证明下列各式.(1)22222()111a ab b a a b b a b +=-; (2)2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++;(3)232232232111()111a a a a b b ab bc ca b b c c cc =++(4)2000()000n n a ba b D ad bc c d cd==-; (5)121111111111111nni i i i na a a a a ==++⎛⎫=+ ⎪⎝⎭+∑∏. 【证明】(1)1323223()()()2()2001()()()()()2()21c c c c a b a b b a b b a b a b b a b a b b a b a b b a b a b a b a b--+--=--+--+==-=-=--左端右端.(2)32213142412222-2-2232221446921262144692126021446921262144692126c c c c c c c c c c a a a a a a b b b b b b c c c c c cd d d d d d ---++++++++====++++++++左端右端. (3) 首先考虑4阶范德蒙行列式:2323232311()()()()()()()(*)11x x x a a a f x x a x b x c a b a c b c b b b c c c ==------从上面的4阶范德蒙行列式知,多项式f (x )的x 的系数为2221()()()()(),11a a ab bc ac a b a c b c ab bc ac b b cc ++---=++但对(*)式右端行列式按第一行展开知x 的系数为两者应相等,故231123231(1),11a a b b c c +- (4) 对D 2n 按第一行展开,得22(1)2(1)2(1)0000000(),n n n n ab aba ba bD abc dc dc d c d dc ad D bc D ad bc D ---=-=⋅-⋅=-据此递推下去,可得222(1)2(2)112()()()()()()n n n n n nD ad bc D ad bc D ad bc D ad bc ad bc ad bc ----=-=-==-=--=- 2().n n D ad bc ∴=-(5) 对行列式的阶数n 用数学归纳法.当n =2时,可直接验算结论成立,假定对这样的n -1阶行列式结论成立,进而证明阶数为n 时结论也成立. 按D n 的最后一列,把D n 拆成两个n 阶行列式相加:112211211111011111110111111101111111.n n nn n n a a a a D a a a a a a D ---++++=++=+但由归纳假设11121111,n n n i i D a a a a ---=⎛⎫+= ⎪⎝⎭∑ 从而有11211211121111111111.n n n n n i i n n nn n i i i i i i D a a a a a a a a a a a a a a a ---=-===⎛⎫+=+ ⎪⎝⎭⎛⎫⎛⎫++== ⎪ ⎪⎝⎭⎝⎭∑∑∑∏8. 计算下列n 阶行列式.(1)111111n x xD x=(2)122222222232222n D n=;(3)000000000nx y x y D x y yx=. (4)nijD a =其中(,1,2,,)ija i j i j n =-= ;(5)2100012100012000002100012nD =.【解】(1) 各行都加到第一行,再从第一行提出x +(n -1),得11111[(1)],11n x D x n x =+-将第一行乘(-1)后分别加到其余各行,得1111110[(1)](1)(1).01n n x D x n x n x x --=+-=+---(2)21311122221000101001002010002n r r n r r r r D n ---=-按第二行展开222201002(2)!.00200002n n -=---(3) 行列式按第一列展开后,得1(1)(1)(1)10000000000000(1)0000000(1)(1).n n n n n n n n x y y x y x y D xy x y x y yxx yx x y y x y +-+-+=+-=⋅+⋅-⋅=+-(4)由题意,知11121212221201211012213123n n n n n nnn a a a n a a a D n a a a n n n --==---- 0122111111111111111111111n n ------------后一行减去前一行自第三行起后一行减去前一行0122112211111120000200002000000000220n n n n --------=-按第一列展开1122000201(1)(1)(1)(1)2002n n n n n n -----=---按第列展开.(5)210002000001000121001210012100012000120001200000210002100021000120001200012n D ==+122n n D D --=-.即有112211n n n n D D D D D D ----=-==-=由()()()112211n n n n D D D D D D n ----+-++-=- 得11,121n n D D n D n n -=-=-+=+.9. 计算n 阶行列式.121212111n n n na a a a a a D a a a ++=+【解】各列都加到第一列,再从第一列提出11ni i a=+∑,得232323123111111,11n nnn i n i na a a a a a D a a a a a a a =+⎛⎫=++ ⎪⎝⎭+∑ 将第一行乘(-1)后加到其余各行,得23111010011.001001nnnn i i i i a a a D a a ==⎛⎫=+=+ ⎪⎝⎭∑∑10. 计算n 阶行列式(其中0,1,2,,ia i n ≠=).1111123222211223322221122331111123n n n n n n n n n n nn n n n n n nn n n n na a a a ab a b a b a b D a b a b a b a b b b b b ----------------=.【解】行列式的各列提取因子1(1,2,,)n j a j n -=,然后应用范德蒙行列式.3121232222312112123111131212311211111()().n n n n n n n n n n n n n j i n n j i n ij b b b b a a a a b b b b D a a a a a a a b b b b a a a a b b a a a a a ------≤<≤⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫-= ⎪⎝⎭∏11. 已知4阶行列式41234334415671122D =;试求4142A A +与4344A A +,其中4j A 为行列式4D 的第4行第j 个元素的代数余子式.【解】41424142234134(1)(1)3912.344344567167A A +++=-+-=+=同理43441569.A A +=-+=-12. 用克莱姆法则解方程组.(1)12312341234234 5,2 1, 2 2, 23 3.x x x x x x x x x x x x x x ++=⎧⎪+-+=⎪⎨+-+=⎪⎪++=⎩ (2) 121232343454556 1,56 0,56 0, 560,5 1.x x x x x x x x x x x x x +=⎧⎪++=⎪⎪++=⎨⎪++=⎪+=⎪⎩ 【解】方程组的系数行列式为1110111013113121110131180;12105212110121123140123123D -------=====≠-----1234511015101111211118;36;2211121131230323115011152111211136;18.122112120133123D D D D --====---====--故原方程组有惟一解,为312412341,2,2, 1.D D D Dx x x x D D D D========- 12345123452)665,1507,1145,703,395,212.15072293779212,,,,.66513335133665D D D D D D x x x x x ===-==-=∴==-==-=13. λ和μ为何值时,齐次方程组1231231230,0,20x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩ 有非零解?【解】要使该齐次方程组有非零解只需其系数行列式110,11121λμμ= 即(1)0.μλ-=故0μ=或1λ=时,方程组有非零解.14. 问:齐次线性方程组12341234123412340,20,30,0x x x ax x x x x x x x x x x ax bx +++=⎧⎪+++=⎪⎨+-+=⎪⎪+++=⎩ 有非零解时,a ,b 必须满足什么条件? 【解】该齐次线性方程组有非零解,a ,b 需满足11112110,113111aa b=-即(a +1)2=4b . 15. 求三次多项式230123()f x a a x a x a x =+++,使得(1)0,(1)4,(2)3,(3)16.f f f f -====【解】根据题意,得0123012301230123(1)0;(1)4;(2)2483;(3)392716.f a a a a f a a a a f a a a a f a a a a -=-+-==+++==+++==+++=这是关于四个未知数0123,,,a a a a 的一个线性方程组,由于012348,336,0,240,96.D D D D D ====-=故得01237,0,5,2a a a a ===-=于是所求的多项式为23()752f x x x =-+16. 求出使一平面上三个点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.【解】设平面上的直线方程为ax +by +c =0 (a ,b 不同时为0)按题设有1122330,0,0,ax by c ax by c ax by c ++=⎧⎪++=⎨⎪++=⎩ 则以a ,b ,c 为未知数的三元齐次线性方程组有非零解的充分必要条件为1122331101x y x y x y = 上式即为三点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.习题 二1. 计算下列矩阵的乘积.(1)[]11321023⎡⎤⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦=; (2) 500103120213⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (3)[]32123410⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (4) ()111213112321222323132333a a a x x x x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (5) 111213212223313233100011001a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (6) 1210131010101210021002300030003⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦. 【解】(1)32103210;64209630-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥-⎣⎦(2)531⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (3) (10);(4)3322211122233312211213311323322311()()()ij i j i j a x a x a x a a x x a a x x a a x x a x x ==++++++++=∑∑(5)111212132122222331323233a a a a a a a a a a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦; (6) 1252012400430009⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 2.设111111111⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,121131214⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦B ,求(1)2-AB A ;(2) -AB BA ;(3) 22()()-=-A+B A B A B 吗?【解】(1)2422;400024⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦AB A (2) 440;531311⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦AB BA(3) 由于AB ≠BA ,故(A +B )(A -B )≠A 2-B 2. 3. 举例说明下列命题是错误的.(1) 若2=A O , 则=A O ; (2) 若2=A A , 则=A O 或=A E ;(3) 若AX =AY ,≠A O , 则X =Y .【解】(1) 以三阶矩阵为例,取2001,000000⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦0A A ,但A ≠0(2) 令110000001-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,则A 2=A ,但A ≠0且A ≠E(3) 令11021,=,0111210110⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=≠=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A Y X 0则AX =AY ,但X ≠Y .4.设101A λ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦, 求A 2,A 3,…,A k .【解】2312131,,,.010101k k λλλ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A A A 5.100100λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A =,求23A ,A 并证明:121(1)2000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =.【解】2322233223213302,03.0000λλλλλλλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =A = 今归纳假设121(1)2000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =那么11211111(1)1020100000(1)(1)2,0(1)00k k k k k k k k k kk k kk k k k k k k k k λλλλλλλλλλλλλλλ+---+-++=-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦+⎡⎤+⎢⎥⎢⎥=+⎢⎥⎢⎥⎣⎦A A A= 所以,对于一切自然数k ,都有121(1)2.000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =6. 已知AP =PB ,其中100100000210001211⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B =,P =求A 及5A .【解】因为|P |= -1≠0,故由AP =PB ,得1100200,611-⎡⎤⎢⎥==⎢⎥⎢⎥--⎣⎦A PBP而51551()()100100100100210000210200.211001411611--==⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦A PBP PB P A7. 设a b cd ba d c c d ab dcba ⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦A =,求|A |. 解:由已知条件,A 的伴随矩阵为22222222()()a b c d b a dc a b cd a b c d c d a b dcba *⎡⎤⎢⎥--⎢⎥-+++=-+++⎢⎥--⎢⎥--⎣⎦A =A 又因为*A A =A E ,所以有22222()a b c d -+++A =A E ,且0<A ,即42222222224()()a b c d a b c d -++++++A =A A =A E于是有22222()a b c d ==-+++A .8. 已知线性变换112112212321331233232,3,232,2,45;3,x y y y z z x y y y y z z x y y y y z z =+=-+⎧⎧⎪⎪=-++=+⎨⎨⎪⎪=++=-+⎩⎩ 利用矩阵乘法求从123,,z z z 到123,,x x x 的线性变换. 【解】已知112233112233210,232415310,201013421124910116x y x y x y y z y z y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦-⎡⎤⎢⎥==-⎢⎥⎢⎥--⎣⎦X AY Y Bz X AY ABz z,从而由123,,z z z 到123,,x x x 的线性变换为11232123312342,1249,1016.x z z z x z z z x z z z =-++⎧⎪=-+⎨⎪=--+⎩ 9. 设A ,B 为n 阶方阵,且A 为对称阵,证明:'B AB 也是对称阵.【证明】因为n 阶方阵A 为对称阵,即A ′=A , 所以 (B ′AB )′=B ′A ′B =B ′AB , 故'B AB 也为对称阵.10. 设A ,B 为n 阶对称方阵,证明:AB 为对称阵的充分必要条件是AB =BA . 【证明】已知A ′=A ,B ′=B ,若AB 是对称阵,即(AB )′=AB .则 AB =(AB )′=B ′A ′=BA , 反之,因AB =BA ,则(AB )′=B ′A ′=BA =AB ,所以,AB 为对称阵.11. A 为n 阶对称矩阵,B 为n 阶反对称矩阵,证明: (1) B 2是对称矩阵.(2) AB -BA 是对称矩阵,AB +BA 是反对称矩阵. 【证明】因A ′=A ,B ′= -B ,故(B 2)′=B ′·B ′= -B ·(-B )=B 2; (AB -BA )′=(AB )′-(BA )′=B ′A ′-A ′B ′ = -BA -A ·(-B )=AB -BA ;(AB +BA )′=(AB )′+(BA )′=B ′A ′+A ′B ′ = -BA +A ·(-B )= -(AB +BA ).所以B 2是对称矩阵,AB -BA 是对称矩阵,AB+BA 是反对称矩阵.12. 求与A =1101⎡⎤⎢⎥⎣⎦可交换的全体二阶矩阵. 【解】设与A 可交换的方阵为a b c d ⎡⎤⎢⎥⎣⎦,则由 1101⎡⎤⎢⎥⎣⎦a b c d ⎡⎤⎢⎥⎣⎦=a b c d ⎡⎤⎢⎥⎣⎦1101⎡⎤⎢⎥⎣⎦, 得a cb d a a bcd c c d +++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦.由对应元素相等得c =0,d =a ,即与A 可交换的方阵为一切形如0a b a ⎡⎤⎢⎥⎣⎦的方阵,其中a,b 为任意数. 13. 求与A =100012012⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦可交换的全体三阶矩阵.【解】由于A =E +000002013⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦, 而且由111111222222333333000000,002002013013a b c a b c a b c a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦可得11122233333323232302300023222.023333c b c cb c a b c c b c a a b b c c -⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦由此又可得1113232332322333230,230,20,30,2,3,232,233,c b c a a a c b c b b b c c b c c c =-==-===--=-=-所以2311233230,2,3.a a b c c b c b b ======-即与A 可交换的一切方阵为12332300203a b b b b b ⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦其中123,,a b b 为任意数. 14. 求下列矩阵的逆矩阵.(1)1225⎡⎤⎢⎥⎣⎦; (2) 123012001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3)121342541-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦; (4)1000120021301214⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (5)5200210000830052⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (6) ()1212,,,0n n a a a a a a ⎡⎤⎢⎥⎢⎥≠⎢⎥⎢⎥⎣⎦,未写出的元素都是0(以下均同,不另注). 【解】(1)5221-⎡⎤⎢⎥-⎣⎦; (2) 121012001-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;(3)12601741632142-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (4)10011002211102631511824124⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦; (5)1200250000230058-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦; (6) 12111n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 15. 利用逆矩阵,解线性方程组12323121,221,2.x x x x x x x ++=⎧⎪+=⎨⎪-=⎩ 【解】因123111102211102x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,而1110022110≠-故112311101111122.02211130122*********x x x -⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦16. 证明下列命题:(1) 若A ,B 是同阶可逆矩阵,则(AB )*=B *A *. (2) 若A 可逆,则A *可逆且(A *)-1=(A -1)*. (3) 若AA ′=E ,则(A *)′=(A *)-1.【证明】(1) 因对任意方阵c ,均有c *c =cc *=|c |E ,而A ,B 均可逆且同阶,故可得|A |·|B |·B *A *=|AB |E (B *A *)=(AB ) *AB (B *A *)=(AB ) *A (BB *)A * =(AB ) *A |B |EA *=|A |·|B |(AB ) *.∵ |A |≠0,|B |≠0, ∴ (AB ) *=B *A *.(2) 由于AA *=|A |E ,故A *=|A |A -1,从而(A -1) *=|A -1|(A -1)-1=|A |-1A . 于是A * (A -1) *=|A |A -1·|A |-1A =E ,所以(A -1) *=(A *)-1. (3) 因AA ′=E ,故A 可逆且A -1=A ′. 由(2)(A *)-1=(A -1) *,得(A *)-1=(A ′) *=(A *)′.17. 已知线性变换11232123312322,35,323,x y y y x y y y x y y y =++⎧⎪=++⎨⎪=++⎩ 求从变量123,,x x x 到变量123,,y y y 的线性变换.【解】已知112233221,315323x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦X AY且|A |=1≠0,故A 可逆,因而1749,637324---⎡⎤⎢⎥==-⎢⎥⎢⎥-⎣⎦Y A X X所以从变量123,,x x x 到变量123,,y y y 的线性变换为112321233123749,637,324,y x x x y x x x y x x x =--+⎧⎪=+-⎨⎪=+-⎩ 18. 解下列矩阵方程.(1)12461321-⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦X =;(2)211211************--⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦X ;(3)142031121101⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦X =; (4)010100043100001201001010120-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦X .【解】(1) 令A =1213⎡⎤⎢⎥⎣⎦;B =4621-⎡⎤⎢⎥⎣⎦.由于13211--⎡⎤=⎢⎥-⎣⎦A故原方程的惟一解为13246820.112127----⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦X A B同理(2) X =100010001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3) X =11104⎡⎤⎢⎥⎢⎥⎣⎦; (4) X =210.034102-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦19. 若k A =O (k 为正整数),证明:121()k ---E A =E +A+A ++A .【证明】作乘法212121()()k k k k k ----=-----=-=E A E +A+A ++A E +A+A ++A A A A A E A E,从而E -A 可逆,且121()k ---E A =E +A+A ++A20.设方阵A 满足A 2-A -2E =O ,证明A 及A +2E 都可逆,并求A -1及(A +2E )-1.【证】因为A 2-A -2E =0, 故212().2-=⇒-=A A E A E A E由此可知,A 可逆,且11().2-=-A A E同样地2220,64(3)(2)41(3)(2)4--=--=--+=---+=A A E A A E E,A E A E E,A E A E E.由此知,A +2E 可逆,且1211(2)(3)().44-+=--=-A E A E A E21. 设423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦A =,2AB =A+B ,求B .【解】由AB =A +2B 得(A -2E )B =A . 而22310,1102121==-≠---A E即A -2E 可逆,故11223423(2)110110121123143423386.1531102961641232129--⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦B A E A 22. 设1-P AP =Λ.其中1411--⎡⎤⎢⎥⎣⎦P =,1002-⎡⎤⎢⎥⎣⎦=Λ, 求10A .【解】因1-P 可逆,且1141,113-⎡⎤=⎢⎥--⎣⎦P 故由1Λ-A =P P 得10110101101012121010()()141410331102113314141033110211331365136412421.34134031242--==⎡⎤⎢⎥---⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤⎢⎥--⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤-+-+⎡⎤==⎢⎥⎢⎥----⎣⎦⎣⎦A P P P P ΛΛ 23. 设m 次多项式01()m m f x a a x a x =+++,记01()m m f a a a =+++A E A A ,()f A 称为方阵A 的m 次多项式.(1)12λλ⎡⎤⎢⎥⎣⎦A =, 证明12kk k λλ⎡⎤⎢⎥⎣⎦A =,12()()()f f f λλ⎡⎤=⎢⎥⎣⎦A ; (2) 设1-A =P BP , 证明1k k -B =PA P ,1()()f f -=B P A P .【证明】(1)232311232200,00λλλλ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A 即k =2和k =3时,结论成立. 今假设120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 那么111111222000,000kk k k k k λλλλλλ+++⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA A = 所以,对一切自然数k ,都有120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 而011101220111012212()1100().()mm mm m mm m m f a a a a a a a a a a a a f f λλλλλλλλλλ=⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤+=⎢⎥+⎣⎦⎡⎤=⎢⎥⎣⎦A E +A++A ++++++ (2) 由(1)与A =P -1BP ,得B =PAP -1.且B k =( PAP -1)k = PA k P -1,又0111011011()()().mm m m mm f a a a a a a a a a f ----=+++=+++=++=B E B B E PAP PA P P E A+A PP A P24.a b c d ⎡⎤⎢⎥⎣⎦A =,证明矩阵满足方程2()0x a d x ad bc -++-=.【证明】将A 代入式子2()x a d x ad bc -++-得222222()()10()()010000.00a d ad bc a b a b a d ad bc c d c d ad bca bc ab bd a ad ab bd ad bc ac cd cb d ac cd ad d -++-⎡⎤⎡⎤⎡⎤=-++-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤++++⎡⎤=-+⎢⎥⎢⎥⎢⎥-++++⎣⎦⎣⎦⎣⎦⎡⎤==⎢⎥⎣⎦A A E0 故A 满足方程2()0x a d x ad bc -++-=.25. 设n 阶方阵A 的伴随矩阵为*A ,证明:(1) 若|A |=0,则|*A |=0;(2)1n *-=A A .【证明】(1) 若|A |=0,则必有|A *|=0,因若| A *|≠0,则有A *( A *)-1=E ,由此又得A =AE =AA *( A *)-1=|A |( A *)-1=0,这与| A *|≠0是矛盾的,故当|A | =0,则必有| A *|=0. (2) 由A A *=|A |E ,两边取行列式,得|A || A *|=|A |n ,若|A |≠0,则| A *|=|A |n -1 若|A |=0,由(1)知也有| A *|=|A |n -1.26. 设52003200210045000073004100520062⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =,B . 求(1)AB ; (2)BA ; (3) 1-A ;(4)|A |k (k 为正整数).【解】(1)2320001090000461300329⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦AB =; (2) 19800301300003314005222⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦BA =;(3)11200250000230057--⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦A =; (4)(1)k k =-A . 27. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.(1)1200025000003000001000001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)00310021********-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦; (3)20102020130010*******0001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.【解】(1) 对A 做如下分块12⎡⎤=⎢⎥⎣⎦A A A 00 其中1230012;,01025001⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A A12,A A 的逆矩阵分别为1112100523;,01021001--⎡⎤⎢⎥-⎡⎤⎢⎥==⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦A A 所以A 可逆,且1111252000210001.000030001000001----⎡⎤⎢⎥-⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦A A A同理(2)11112121310088110044.110055230055----⎡⎤-⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦A A A A A (3)1110012211300222.001000001001-⎡⎤--⎢⎥⎢⎥⎢⎥--⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A习题 三1. 略.见教材习题参考答案.2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 略.见教材习题参考答案.5.112223334441,,,=+=+=+=+βααβααβααβαα,证明向量组1234,,,ββββ线性相关.【证明】因为1234123412341312342()2()0+++=+++⇒+++=+⇒-+-=ββββααααββββββββββ 所以向量组1234,,,ββββ线性相关.6. 设向量组12,,,r ααα线性无关,证明向量组12,,,r βββ也线性无关,这里12.i i +++β=ααα【证明】 设向量组12,,,r βββ线性相关,则存在不全为零的数12,,,,r k k k 使得1122.r r k k k +++=0βββ把12i i +++β=ααα代入上式,得121232()()r r r r k k k k k k k +++++++++=0ααα.又已知12,,,r ααα线性无关,故1220,0, 0.r rr k k k k k k +++=⎧⎪++=⎪⎨⎪⎪=⎩该方程组只有惟一零解120r k k k ====,这与题设矛盾,故向量组12,,,r βββ线性无关.7. 略.见教材习题参考答案. 8.12(,,,),1,2,,i i i in i n ααα==α.证明:如果0ij a ≠,那么12,,,n ααα线性无关. 【证明】已知0ij a =≠A ,故R (A )=n ,而A 是由n 个n 维向量12(,,,),i i i in ααα=α1,2,,i n =组成的,所以12,,,n ααα线性无关.9. 设12,,,,r t t t 是互不相同的数,r ≤n .证明:1(1,,,),1,2,,n i i i t t i r -==α是线性无关的.【证明】任取n -r 个数t r +1,…,t n 使t 1,…,t r ,t r +1,…,t n 互不相同,于是n 阶范德蒙行列式21111212111121110,11n n rr r n r r r n nnnt t t t t t t t t t t t ---+++-≠从而其n 个行向量线性无关,由此知其部分行向量12,,,r ααα也线性无关.10. 设12,,,sααα的秩为r 且其中每个向量都可经12,,,rααα线性表出.证明:12,,,rααα为12,,,s ααα的一个极大线性无关组.【证明】若12,,,r ααα (1)线性相关,且不妨设12,,,t ααα (t <r ) (2)是(1)的一个极大无关组,则显然(2)是12,,,s ααα的一个极大无关组,这与12,,,s ααα的秩为r 矛盾,故12,,,r ααα必线性无关且为12,,,s ααα的一个极大无关组.11. 求向量组1α=(1,1,1,k ),2α=(1,1,k ,1),3α=(1,2,1,1)的秩和一个极大无关组.【解】把123,,ααα按列排成矩阵A ,并对其施行初等变换.1111111111111120010010101101001000111011001000k k k k kk k k ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦A 当k =1时,123,,ααα的秩为132,,αα为其一极大无关组. 当k ≠1时,123,,ααα线性无关,秩为3,极大无关组为其本身.12. 确定向量3(2,,)a b =β,使向量组123(1,1,0),(1,1,1),==βββ与向量组1α=(0,1,1),2α=(1,2,1),3α=(1,0,-1)的秩相同,且3β可由123,,ααα线性表出.【解】由于123123011120(,,);120011111000112112(,,),110101002a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A B αααβββ而R (A )=2,要使R (A )=R (B )=2,需a -2=0,即a =2,又12330112120(,,,),12001121110002a a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦c αααβ要使3β可由123,,ααα线性表出,需b -a +2=0,故a =2,b =0时满足题设要求,即3β=(2,2,0).13. 设12,,,n ααα为一组n 维向量.证明:12,,,n ααα线性无关的充要条件是任一n 维向量都可经它们线性表出.【证明】充分性: 设任意n 维向量都可由12,,,n ααα线性表示,则单位向量12,,,n εεε,当然可由它线性表示,从而这两组向量等价,且有相同的秩,所以向量组12,,,n ααα的秩为n ,因此线性无关.必要性:设12,,,n ααα线性无关,任取一个n 维向量α,则12,,,n ααα线性相关,所以α能由12,,,n ααα线性表示.14. 若向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,也可由向量组β1,β2,β3,β4线性表出,则向量组α1,α2,α3与向量组β1,β2,β3,β4等价.证明:由已知条件,1001103111R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,即两向量组等价,且123(,,)3R =ααα,又,向量组(1,0,0),(1,1,0),(1,1,1)可由向量组β1,β2,β3,β4线性表出,即两向量组等价,且1234(,,,)3R =ββββ,所以向量组α1,α2,α3与向量组β1,β2,β3,β4等价.15. 略.见教材习题参考答案. 16. 设向量组12,,,m ααα与12,,,s βββ秩相同且12,,,m ααα能经12,,,s βββ线性表出.证明12,,,m ααα与12,,,s βββ等价.【解】设向量组12,,,m ααα (1)与向量组12,,,s βββ (2)的极大线性无关组分别为12,,,r ααα (3)和12,,,r βββ (4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即1(1,2,,).ri ij jj a i r ===∑αβ因(4)线性无关,故(3)线性无关的充分必要条件是|a ij |≠0,可由(*)解出(1,2,,)j j r =β,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价. 17. 设A 为m ×n 矩阵,B 为s ×n 矩阵.证明:max{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .【证明】因A ,B 的列数相同,故A ,B 的行向量有相同的维数,矩阵⎡⎤⎢⎥⎣⎦A B 可视为由矩阵A 扩充行向量而成,故A 中任一行向量均可由⎡⎤⎢⎥⎣⎦A B 中的行向量线性表示,故 ()R R ⎡⎤≤⎢⎥⎣⎦A A B同理()R R ⎡⎤≤⎢⎥⎣⎦A B B故有max{(),()}R R R ⎡⎤≤⎢⎥⎣⎦A AB B又设R (A )=r ,12,,,i i ir ααα是A 的行向量组的极大线性无关组,R (B )=k , 12,,,j j jk βββ是B 的行向量组的极大线性无关组.设α是⎡⎤⎢⎥⎣⎦A B 中的任一行向量,则若α属于A 的行向量组,则α可由12,,,i i ir ααα表示,若α属于B的行向量组,则它可由12,,,j j jkβββ线性表示,故⎡⎤⎢⎥⎣⎦A B 中任一行向量均可由12,,,i i ir ααα,12,,,j j jk βββ线性表示,故()(),R r k R R ⎡⎤≤+=+⎢⎥⎣⎦A AB B 所以有max{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .18. 设A 为s ×n 矩阵且A 的行向量组线性无关,K 为r ×s 矩阵.证明:B =KA 行无关的充分必要条件是R (K )=r . 【证明】设A =(A s ,P s ×(n -s )),因为A 为行无关的s ×n 矩阵,故s 阶方阵A s 可逆. (⇒)当B =KA 行无关时,B 为r ×n 矩阵.r =R (B )=R (KA )≤R (K ),又K 为r ×s 矩阵R (K )≤r ,∴ R (K )=r .(⇐)当r =R (K )时,即K 行无关,由B =KA =K (A s ,P s ×(n -s ))=(KA s ,KP s ×(n -s))知R (B )=r ,即B 行无关. 19. 略.见教材习题参考答案.20. 求下列矩阵的行向量组的一个极大线性无关组.(1)2531174375945313275945413425322048⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)11221021512031311041⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 【解】(1) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为123,,ααα; (2) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为124,,ααα. 21. 略.见教材习题参考答案. 22. 集合V 1={(12,,,n x x x )|12,,,n x x x ∈R 且12n +++x x x =0}是否构成向量空间?为什么?【解】由(0,0,…,0)∈V 1知V 1非空,设121122(,,,),(,,,),n n V V k =∈=∈∈x x x y y y αβR )则112212(,,,)(,,,).n n n x y x y x y k kx kx kx +=+++=αβα因为112212121212()()()()()0,()0,n n n n n n x y x y x y x x x y y y kx kx kx k x x x ++++++=+++++++=+++=+++=所以11,V k V +∈∈αβα,故1V 是向量空间.23. 试证:由123(1,1,0),(1,0,1),(0,1,1)===ααα,生成的向量空间恰为R 3.【证明】把123,,ααα排成矩阵A =(123,,ααα),则11020101011==-≠A ,所以123,,ααα线性无关,故123,,ααα是R 3的一个基,因而123,,ααα生成的向量空间恰为R 3.24. 求由向量1234(1,2,1,0),(1,1,1,2),(3,4,3,4),(1,1,2,1)====αααα所生的向量空间的一组基及其维数.【解】因为矩阵12345(,,,,)113141131411314214150121301213,113260001200012024140241400000=⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A ααααα∴124,,ααα是一组基,其维数是3维的.25. 设1212(1,1,0,0),(1,0,1,1),(2,1,3,3),(0,1,1,1)===-=--ααββ,证明:1212(,)(,)L L =ααββ.【解】因为矩阵1212(,,,)1120112010110131,0131000001310000=⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦A ααββ 由此知向量组12,αα与向量组12,ββ的秩都是2,并且向量组12,ββ可由向量组12,αα线性表出.由习题15知这两向量组等价,从而12,αα也可由12,ββ线性表出.所以1212(,)(,)L L =ααββ.26. 在R 3中求一个向量γ,使它在下面两个基123123(1)(1,0,1),(1,0,0)(0,1,1)(2)(0,1,1),(1,1,0)(1,0,1)==-==-=-=αααβββ下有相同的坐标. 【解】设γ在两组基下的坐标均为(123,,x x x ),即111232123233112233(,,)(,,),110011001110101101x x x x x x x x x x x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦γαααβββ即1231210,111000x x x --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求该齐次线性方程组得通解123,2,3x k x k x k ===- (k 为任意实数)故112233(,2,3).x x x k k k =++=-γεεε27. 验证123(1,1,0),(2,1,3),(3,1,2)=-==ααα为R 3的一个基,并把1(5,0,7),=β2(9,8,13)=---β用这个基线性表示.【解】设12312(,,),(,),==A B αααββ又设11112123132121222323,x x x x x x =++=++βαααβααα,即11121212321223132(,)(,,),x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ββααα 记作 B =AX . 则2321231235912359()111080345170327130327131235910023032713010330022400112r r r r r r -+↔--⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥−−−−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦A B 作初等行变换因有↔A E ,故123,,ααα为R 3的一个基,且1212323(,)(,,),3312⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦ββααα即1123212323,332=+-=--βαααβααα.习题四1. 用消元法解下列方程组.(1) 12341241234123442362242322312338;x x x x ,x x x ,x x x x ,x x x x +-+=⎧⎪++=⎪⎨++-=⎪⎪++-=⎩ (2) 1231231232222524246;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩【解】(1)412213223123(1)14236142362204211021()322313223112338123381423603215012920256214236012920321502562r r r r r r r r r r -⋅---⋅↔--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎢⎥---⎢⎥−−−−→⎢⎥---⎢⎥--⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥---⎢⎥--⎣⎦A b 32434243324142360129200426100112614236142360129201292,0011260011260042610007425r r r r r r r +↔++-⎡⎤⎢⎥-⎢⎥−−−→−−−→⎢⎥-⎢⎥⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦得12342343444236 292 126 7425x x x x x x x x x x +-+=⎧⎪-+=⎪⎨+=⎪⎪=⎩ 所以1234187,74211,74144,7425.74x x x x ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩(2)解②-①×2得 x 2-2x 3=0 ③-① 得2x 3=4 得同解方程组由⑥得 x 3=2, 由⑤得 x 2=2x 3=4,由④得 x 1=2-2x 3 -2x 2 = -10, 得 (x 1,x 2,x 3)T =(-10,4,2)T . 2. 求下列齐次线性方程组的基础解系.(1)123123123 320 5 03580;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ (2) 1234123412341234 5 0 2303 8 0 3970;x x x x ,x x x x ,x x x x ,x x x x -+-=⎧⎪+-+=⎪⎨-++=⎪⎪+-+=⎩ (3)1234512341234 22702345 03568 0;x x x x x ,x x x x ,x x x x ++++=⎧⎪+++=⎨⎪+++=⎩ (4) 123451234512345 222 0 2 320247 0.x x x x x ,x x x x x ,x x x x x +-+-=⎧⎪+-+-=⎨⎪+-++=⎩ 【解】(1)123123123320503580.x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ 32213123132132132151021021358042000r r r r r r +--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A。
复旦大学《线性代数》2017-2018学年第一学期期末试卷B

《线性代数》期末考试试卷B一、(30分)填空题(E 表示相应的单位矩阵).1. 设3阶矩阵A = (α1, α2, α3)的行列式|A | = 3, 矩阵B = (α2, α3, α1), 则矩阵A − B 的行列式|A − B | =______.解: (法一) |A − B | = |α1−α2, α2−α3, α3−α1| = |α1, α2−α3, α3−α1| + |−α2, α2−α3, α3−α1|= |α1, α2−α3, α3| + |−α2, −α3, α3−α1| = |α1, α2, α3| + |−α2, −α3, −α1| = |α1, α2, α3| − |α2, α3, α1| = |α1, α2, α3| − |α1, α2, α3| = 0.(法二) A − B = (α1−α2, α2−α3, α3−α1) = (α1, α2, α3)101110011−⎛⎞⎜⎟−⎜⎟−⎝⎠= AP ,其中P =101110011−⎛⎞⎜⎟−⎜⎟−⎝⎠, |P | =101110011−−−= 0, 故|A − B | = |AP | = |A ||P | = 0.2. 若矩阵A 满足A 2 = O , 则E +A 的逆矩阵(E +A )−1 = _______.解: A 2 = O ⇒ (E +A )(E −A ) = E 2 −A 2 = E ⇒ (E +A )−1 = E −A .3. 若向量组α1 = (1, t , 1), α2 = (1, 1, t ), α3 = (t , 1, 1)的秩为2, 则参数t 满足条件___________.解: 令A = (α1, α2, α3), 则秩(A ) = 秩(α1, α2, α3) = 2 ⇒111111tt t = |A | = 0 ⇒ (t +2)(t −1)2 = 0 ⇒ t = −2或1.当t = −2时, 秩(A ) = 2; 当t = 1时, 秩(A ) = 1. 故t = −2.4. 假设3阶矩阵A 的特征值为1, 2, −1, 矩阵B = E −2A *, 其中A *是A 的伴随矩阵, 则B 的行列式|B |= _______.解: 3阶矩阵A 的特征值为1, 2, −1 ⇒存在P 使得P −1AP =100020001⎛⎞⎜⎟⎜⎟−⎝⎠记为Λ, 而且|A | = 1×2×(−1) = −2.故P −1A −1P = (P −1AP )−1 = Λ−1 =10001/20001⎛⎞⎜⎟⎜⎟−⎝⎠. 由A *A = |A |E 可得A * = |A |A −1 = −2A −1, 于是有|B | = |P |−1⋅|B |⋅|P | = |P −1|⋅|B |⋅|P | = |P −1BP | = |P −1(E −2A *)P | = |P −1EP −2P −1A *P | = |E − 2P −1A *P |= |E + 4P −1A −1P | = |E + 4Λ−1| =500030003−= −45.5. 若矩阵A =10022312x −⎛⎞⎜⎟⎜⎟⎝⎠与矩阵B =03y ⎛⎞⎜⎟⎜⎟⎝⎠相似, 则(x , y ) =________.解: |A | = 2(1−x ), |B | = 0, tr(A ) = 1+x , tr(B ) = 3+y . 因为矩阵A 与B 相似, 所以|A | = |B |, tr(A ) = tr(B ).由此可得x = 1, y = −1. (x , y ) = (1, −1). 6. 设(1, −1, 0)T , (1, 0, −1)T 是3阶实对称矩阵A 的相应于某个非零二重特征值的特征向量. 若A 不可逆,则A 的另一个特征值为______, 相应的一个特征向量为__________.解: 3阶矩阵A 有非零二重特征值而且A 不可逆 ⇒ A 的另一个特征值为0.设ξ为对应于0的特征向量, 则ξ与(1, −1, 0)T , (1, 0, −1)T 正交, 即ξ为12130x x x x −=⎧⎨−=⎩的非零解向量. 由此可得A 的一个对应于0的特征向量为ξ = (1, 1, 1)T .7. 已知3元非齐次线性方程组Ax = b 的系数矩阵的秩为2, 并且α1, α2, α3是Ax = b 的3个解向量, 其中α1 = (1, 1, 1)T , α2 + α3 = (2, 4, 6)T , 则Ax = b 的通解是_______________.解: 3元非齐次线性方程组Ax = b 的系数矩阵的秩为2 ⇒ Ax = 0的基础解系中有且仅有1个解向量.α1, α2, α3是Ax = b 的3个解向量 ⇒ A (α2 + α3 − 2α1) = A α2 + A α3 − 2A α1 = b + b − 2b = 0. α1 = (1, 1, 1)T , α2 + α3 = (2, 4, 6)T ⇒ α2 + α3 − 2α1 = (0, 2, 4)T . 可见ξ = (0, 2, 4)T 是Ax = 0的基础解系,因而Ax = b 的通解是x = k (0, 2, 4)T + (1, 1, 1)T , 其中k 为任意实数. 8. 若4阶方阵A , B 的秩都等于1, 则矩阵A +B 的行列式|A +B | = ________.解: 4阶方阵A , B 的秩都等于1 ⇒ 秩(A +B ) ≤ 秩(A )+秩(B ) = 2 < 4 ⇒ |A +B | = 0. 9. 若矩阵A =211x ⎛⎞⎜⎟⎝⎠与矩阵B =1221⎛⎞⎜⎟−⎝⎠合同, 则参数x 满足条件___________.解: 设λ1, λ2为A 的特征值, µ1, µ2为B 的特征值.µ1µ2 = |B | = −5 < 0 ⇒ µ1, µ2异号 ⇒ B 的秩为2, 正惯性指数为1.A 与B 合同 ⇒ A 的秩为2, 正惯性指数为1 ⇒ λ1, λ2异号 ⇒ 2x − 1 = |A | = λ1λ2 < 0 ⇒ x < 1/2.二、(10分)计算下述行列式的值: D =111+11111+11111111x x x x −−. 解: +1111+111111111111x x x x −−=1111+111111111111x x x −−+1111+11000111111x x x x−−=0000001111x x x−−+ x111+111111x x x −− =000000x x x −−+ x 111+111111x x x −−= x 3 + x 2111+00x x x x x −−= x 3 + x 22111+000x x x x x−= x 3 + (x 4 − x 3) = x 4. 三、(15分)设线性方程组1231231233032314x x x x x x x x x λµ++=⎧⎪++=−⎨⎪−++=⎩. 问: 当参数λ, µ取何值时, 线性方程组有唯一解? 当参数λ, µ取何值时, 线性方程组有无穷多组解? 当线性方程组有无穷多组解时, 求出其通解.解: 该方程组的增广矩阵(A , b ) =1310(3)1323114λµ×−×⎛⎞⎜⎟−⎜⎟−⎝⎠→13100701071λµ⎛⎞⎜⎟−−⎜⎟+⎝⎠→131007010011λµ⎛⎞⎜⎟−−⎜⎟+−⎝⎠. (1) 当λ ≠ −1, µ为任意实数时, 秩(A ) = 秩(A , b ) = 3, 此时线性方程组有唯一解.(2) 当λ = −1, µ = 1时, 秩(A ) = 秩(A , b ) = 2 < 3, 此时线性方程组有无穷多组解,131007010011λµ⎛⎞⎜⎟−−⎜⎟+−⎝⎠=1713100701()0000⎛⎞⎜⎟−−×−⎜⎟⎝⎠→171310010(3)0000⎛⎞⎜⎟×−⎜⎟⎝⎠→37171010100000−⎛⎞⎜⎟⎜⎟⎝⎠由此可得3137127x x x +=−⎧⎨=⎩, 即3137127x x x =−−⎧⎨=⎩. 故通解为x = k (−1, 0, 1)T + (−37,17, 0)T , 其中k 为任意实数.四、(12分)设矩阵A =101012001⎛⎞⎜⎟−⎜⎟⎝⎠, C =103101⎛⎞⎜⎟−⎜⎟⎝⎠, 矩阵X 满足A −1X = A *C + 2X , 其中A *是A 的伴随矩阵,求X .解: |A | = −1, 在A −1X = A *C + 2X 两边同时左乘以A 得X = −C + 2AX . 故(E −2A )X = −C .(E −2A , −C ) =10210(1)0343100101(1)−−−×−⎛⎞⎜⎟−−⎜⎟−−×−⎝⎠→1021003431001014(2)⎛⎞⎜⎟−−⎜⎟××−⎝⎠→13100120303500101−⎛⎞⎜⎟−×⎜⎟⎝⎠→5312100010100101−⎛⎞⎜⎟−⎜⎟⎝⎠. 由此可得X =5312101−⎛⎞⎜⎟−⎜⎟⎝⎠. 五、(10分)已知向量组η1, η2, η3线性无关, 问: 参数a , b , c 满足什么条件时, 向量组a η1+η2, b η2+η3, c η3+η1线性相关?解: (a η1+η2, b η2+η3, c η3+η1) = (η1, η2, η3)011001a b c ⎛⎞⎜⎟⎜⎟⎝⎠. 令P =011001a b c ⎛⎞⎜⎟⎜⎟⎝⎠, 则|P | = abc + 1. 由条件可知:a η1+η2,b η2+η3,c η3+η1线性相关 ⇔ 秩(a η1+η2, b η2+η3, c η3+η1) < 3 ⇔ 秩(P ) < 3 ⇔ |P | = 0 ⇔ abc = −1. 六、(15分)已知二次型f (x 1, x 2, x 3) = x 12 + 2x 22 + x 32 − 2x 1x 3.1. 写出二次型f 的矩阵;2. 求一正交变换x = Qy , 将f 变成其标准形(并写出f 的相应的标准形);3. 求当x T x = 1时f (x 1, x 2, x 3)的最大值.解: 1. 二次型f 的矩阵A =101020101−⎛⎞⎜⎟⎜⎟−⎝⎠.2. |λE −A | =101020101λλλ−−−= (λ−2)2λ, 可见A 的特征值为λ1 = λ2 = 2, λ3 = 0.解(2E −A )x = 0得对应于λ1 = λ2 = 2的两个正交的特征向量ξ1 = (1, 0, −1)T , ξ2 = (0, 1, 0)T ,解(0E −A )x = 0得对应于λ3 = 0的一个特征向量ξ3 = (1, 0, 1)T .令Q = (11||||ξξ,22||||ξξ,33||||ξξ) =1/00101/0⎛⎜⎜⎜−⎝, 则正交变换x = Qy 将f 变成标准形2y 12 + 2y 22.3. x T x = 1 ⇔ (Qy )T (Qy ) = 1 ⇔ y T Q T Qy = 1 ⇔ y T y = 1 ⇔ y 12 + y 22 + y 32 = 1, 此时y 12 + y 22 ≤ 1. 故当x T x = 1时f (x 1, x 2, x 3) = 2y 12 + 2y 22的最大值为2.七、(8分)证明题.1. 设向量组α1, α2, α3, α4中, α1, α2, α3线性相关, α2, α3, α4线性无关, 证明: α1能由α2, α3, α4线性表示. 证明: 因为α1, α2, α3线性相关, 所以α1, α2, α3, α4线性相关.又因为α2, α3, α4线性无关, 所以α1能由α2, α3, α4线性表示.2. 设A 是n 阶正定矩阵, 证明: 矩阵A +A −1−E 也是正定矩阵.证明: 设λ1, …, λn 为A 的特征值, Λ =1n λλ⎛⎞⎜⎟⎜⎟⎝⎠O . A 是n 阶正定矩阵 ⇒ 存在可逆矩阵P 使得P −1AP = Λ, 其中λ1, …, λn > 0⇒ P −1(A +A −1−E )P = P −1AP + P −1A −1P − P −1EP = Λ + Λ−1 − E =111111n n λλλλ+−⎛⎞⎜⎟⎜⎟⎜⎟+−⎝⎠O, 其中 λ1+11λ−1, …, λn +1n λ−1> 0 ⇒ A +A −1−E 也是正定矩阵.。
复旦大学线性代数试卷

n+1阶行列式计算:(共20分,每小题10分)
(1)
(2)
二、假设为阶矩阵,且可逆,其中为阶单位阵,证明:也可逆,
并求(14分)
三、设,
(1)求正交阵使得是对角阵;
(2)计算。
(共14分)
四、设有两个方程组:
(I)
(II)
(1)求出方程组(I)导出的齐次方程组的基础解系,并求出方程组(I)的通解;
(2)假设方程组(I)与方程组(II)同解,求出。
(20分)
五、设是数域上的维线性空间,是空间上的线性变换,在数域上有个不同的特征值,证明:(1)的特征向量都是的特征向量的充要条件是;
(2)若,则是的线性表示,其中表示上的恒等变换。
(20分)
六、设实二次型
,
其中是的一次齐次式,
证明:的正惯性指数,负惯性指数。
(12分)。
线性代数习题答案详解__复旦大学出版社

线性代数课后习题答案习题一1、2、3(答案略)4、 (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数故所求为127485639(2) ∵(397281564)25119τ=+++= (奇数) ∴所求为3972815645、(1)∵(532416)421106τ=++++= (偶数)∴项前的符号位()611-=+ (正号)(2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+=∴ 项前的符号位5(1)1-=- (负号) 6、 (1) (2341)(1)12n n τ-⋅L L 原式=(1)(1)!n n -=- (2)()((1)(2)21)1(1)(2)21n n n n n n τ--⋅⋅---⋅⋅L L 原式=(1)(2)2(1)!n n n --=-(3)原式=((1)21)12(1)1(1)n n n n n a a a τ-⋅--L L (1)212(1)1(1)n n n n n a a a --=-L7、8(答案略)9、 ∵162019(42)0D x =⨯-⨯+⨯--⨯=∴7x =10、 (1)从第2列开始,以后各列加到第一列的对应元素之上,得[]11(1)111001(1)1110(1)11(1)111x x n x x x n x x x n x x n x x +-+--==+-+--L LL L L L L L L L L L L L L L L L LLL[]1(1)(1)n x n x -=+--(2)按第一列展开: 11100000(1)(1)0n n n n n y xy D x x yx y xy-++=⋅+-=+-L L L L L L L L(3)1231134114512(1)2113211221n n n n n D n n n n n -+=----L L L LL L L L L L L 12310111101111(1)20111101111n n n n n n n n ---+=--L L L LL L L L L L L11111111(1)211111111n n n n n n--+=--L L LL L L L L L(2)(3)2111111111(1)(1)211111111n n nn n n n n-+-+++--+=⨯---L L L L L L L L L L(1)(2)211111111(1)(1)211111111n n n n n n n-----+=-⋅----L L LL L L L L L (1)(2)(1)1221100(1)(1)(1)221001n n n n n n n n n n n n n-------++=-⋅=-⋅----LLL L LL L LL习题二1、2、3、4、5(答案略) 6、 设 11122122xx x x ⎛⎫= ⎪⎝⎭B 为与A 可交换的矩阵,则有=AB BA即 111211122122************x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 解之得 11122122,,,x a x b x b x a ==== 7、 (1)112233*********x y x y x y -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ , 记为X =AY11223111101y z y z y ⎛⎫⎛⎫⎛⎫⎪ ⎪=- ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭ ,记为Y =BZ(2)()()X =A BZ =AB Z 即 11223325013x z x z x ⎛⎫⎛⎫⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪-⎝⎭⎝⎭ 8(答案略)9、2345()32181010341f -⎛⎫ ⎪=++= ⎪ ⎪⎝⎭A A A E10、(1)2222()()+-=+--=-A B A B A BA AB B A B(2) 2()()()+=++A B A B A B22=+++A BA AB B=222++A AB B11、 ∵21,()2==+A A A B E∴ 222,44=-=-+=B A E B A A E E 反之 若 2=B E ,则 244-=A A O ,即 2=A A12、 (1) 设2(),()ij ij a b ==A A ∵T =A A ∴ij ji a a =又∵ 2=A O ∴0ii b =又 1122ij i j i j in nj b a a a a a a =+++L 22212i i in a a a =+++L (,1,2,,)i j n =L当 1,2,,i j n ==L 时,有1112121222120,0,0n n n n nn a a a a a a a a a ============L L L∴ 0A =(2)设 ()ij a =A ,()T ij b =AA 则1122ij i j i j in jn b a a a a a a =+++L∵ 0T =A A ∴ 0(,1,2,,)ij b i j n ==L 当 i j = 时,有 222120(1,2,,)i i in a a a i n +++==L L 故 120(1,2,,)i i in a a a i n =====L L 即 0=A 13、(1) ∵ ()T T T =A A A A ∴T A A 为对称矩阵同理 T AA 也为对称矩阵(2) ∵ ()T T T T +=+=+A A A A A A ∴ T +A A 为对称矩阵又 ∵()()T T T T -=-=--A A A A A A ∴ T -A A 为反对称矩阵(3)∵111()()()222T T T T =++-=++-A A A A A A A A A由(2)知,1()2T +A A 为对称矩阵,1()2T -A A 为反对称矩阵故 A 可表示成一个对称矩阵与一个反对称矩阵的与。
复旦大学《线性代数》2018-2019学年第二学期期末试卷A卷

复旦大学考试试卷2018——2019学年第二学期时间:100分钟《线性代数》课程32学时2学分考试形式:闭卷总分:100分一、填空题(每小题3分,共15分)1、设2()3f x x =-,矩阵⎪⎪⎭⎫⎝⎛-=3 4 0 1A ,则)(A f =.2、设B A ,为n 阶矩阵,如果有n 阶可逆矩阵P ,使成立,则称A 与B 相似.3、n 元非齐次线性方程组m n A x b ⨯=有唯一解的充分必要条件是.4、已知二次型()323121232221321662355,,x x x x x x x x x x x x f -+-++=,则二次型f 对应的矩阵A =.5、设4阶方阵A 满足:0,30,2T A E A AA E <+==(其中E 是单位矩阵),则A 的伴随矩阵*A 必有一个特征值为.二、选择题(每小题3分,共15分)1、已知4阶方阵A 的伴随矩阵为*A ,且A 的行列式A =3,则*A =().(A )81.(B )27.(C )12.(D )9.2、设A 、B 都是n 阶方阵,且A 与B 有相同的特征值,并且A 、B 都有n 个线性无关的特征向量,则()。
(A )A 与B 相似.(B )A =B .(C )B A ≠,但0||=-B A .(D )A 与B 不一定相似,但||||B A =.3、设n 阶方阵A 为正定矩阵,下面结论不正确的是().(A )A 可逆.(B )1-A 也是正定矩阵.(C )0||>A .(D )A 的所有元素全为正.4、若n 阶实方阵2A A =,E 为n 阶单位阵,则().(A )()()R A R A E n +->.(B )()()R A R A E n +-<.(C )()()R A R A E n +-=.(D )无法比较()()R A R A E n +-与的大小.5、设1234123400110111c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为().(A )123ααα,,.(B )124ααα,,.(C )134ααα,,.(D )234ααα,,.三(本题满分10分)计算n (2n ≥)阶行列式n xa a a x a D aax=,n D 的主对角线上的元素都为x ,其余位置元素都为a ,且x a ≠.四(本题满分10分)设3阶矩阵,A B 满足关系:1100216,041007A BA A BA A -⎛⎫ ⎪ ⎪⎪=+= ⎪ ⎪ ⎪ ⎪⎝⎭且,求矩阵B .五(本题满分10分)设方阵A 满足220A A E --=(其中E 是单位矩阵),求11,(2)A A E --+.六(本题满分12分)已知向量组A :11412α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,22131α⎛⎫ ⎪- ⎪= ⎪- ⎪⎝⎭,31541α⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭,43670α⎛⎫ ⎪- ⎪= ⎪- ⎪⎝⎭,(1)求向量组A 的秩;(2)求向量组A 的一个最大线性无关组,并把不属于该最大无关组的其它向量用该最大无关组线性表示.七(本题满分14分)设矩阵11111A ααββ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与矩阵000010002B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似,(1)求,αβ;(2)求正交矩阵P ,使1P AP B -=.八(本题满分14分)设有线性方程组为23112131231222322313233323142434x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩(1)证明:若1a ,2a ,3a ,4a 两两不等,则此方程组无解.(2)设13a a k ==,24a a k ==-(0k ≠),且已知1β,2β是该方程组的两个解,其中1(1, 1, 1)T β=-,2(1, 1, 1)T β=-,写出此方程组的通解.参考答案一、填空题(每小题3分,共15分)1、-2 08 6⎛⎫ ⎪⎝⎭;2、1P AP B -=;3、()(,)R A R A b n ==;4、513153333-⎛⎫⎪-- ⎪ ⎪-⎝⎭;5、43二、选择题(每小题3分,共15分)BADCC三(本题满分10分,见教材P44习题第5题)解:后面1n -列都加到第1列,得(1)(1)(1)n x n a a a x n ax aD x n a a x+-+-=+-xaa x a a a n x a n x c111])1([])1([1-+===-+÷])1([)(0101001])1([1)()()(1223a n x a x ax ax a n x n c a c c a c c a c nn -+-=---+====--+-+-+.四、(本题满分10分,与典型题解P172例6类似)解:111121166()6416327161B A E ----⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥⎪ ⎪ ⎪ ⎪=-=-==⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.五、(本题满分10分,见练习册P118第五大题第1小题和典型题解P173例7)解:212022A E A EA A E A E A -----=⇒=⇒=.22212112()202(2)()(4A E A A E A E A A E A A ------=⇒+=⇒+===)或34E A-六、(本题满分12分,见教材P89习题3第2题,或典型题解P178例6)解:1213101141560112134700002110000--⎛⎫⎛⎫⎪ ⎪---⎪ ⎪→→ ⎪ ⎪--- ⎪ ⎪-⎝⎭⎝⎭,12()2,,R A αα=为所求的一个最大线性无关组,且312412,2αααααα=-+=-+.七、(本题满分14分,见典型题解P190例14)解:(1)由,A B 相似知,,A B 有相同的特征值,而B 的特征值为0,1,2,故得A 的特征值为1230,1,2λλλ===,从而有0010E A E A ⎧⋅-=⎪⎨⋅-=⎪⎩,由此解得0α=,β=0.(2)对于10λ=,解()00E A X ⋅-=,得特征向量101-⎛⎫⎪⎪ ⎪⎝⎭,单位化得:⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210211p ;对于21λ=,解()0E A X -=,得特征向量为⎪⎪⎪⎭⎫⎝⎛=0101p ;对于32λ=,解()20E A X -=,得特征向量为101⎛⎫⎪⎪ ⎪⎝⎭,单位化得:⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p 令()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,则P 为正交阵,且使1P AP B -=.八、(本题满分14分,见教材P87例3.13)解:(1)增广矩阵B 的行列式是4阶范德蒙行列式:231112322223143332344411||()11ji i j a a a a a a B aa a a a a aa≤<≤==-∏由于1a ,2a ,3a ,4a 两两不等,知||0B ≠,从而()4R B =,但系数矩阵A 的秩()3R A ≤,故()()R A R B ≠,因此方程组无解.(2)13a a k ==,24a a k ==-(0k ≠)时,方程组变为23123231232312323123x kx k x k x kx k x k x kx k x k x kx k x k⎧++=⎪-+=-⎪⎨++=⎪⎪-+=-⎩即2312323123x kx k x k x kx k x k⎧++=⎨-+=-⎩因为1201kk k=-≠-,故()()2R A R B ==,所以方程组有解,且对应的齐次方程组的基础解系含3-2=1个解向量,又1β,2β是原非齐次方程组的两个解,故21(2, 0, 2)T ξββ=-=-是对应齐次方程组的解;由于0ξ≠,故ξ是它的基础解系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数习题及答案(复旦版)[]线性代数习题及答案习题一1. 求下列各排列的逆序数.(1) 341782659;(2) 987654321;(3) n(n?1)…321;(4) 13…(2n?1)(2n)(2n?2)…2.【解】(1) τ(341782659)=11;(2) τ(987654321)=36;(3) τ(n(n?1)…3²2²1)= 0+1+2 +…+(n?1)=;(4) τ(13…(2n?1)(2n)(2n?2)…2)=0+1+…+(n?1)+(n?1)+(n?2)+…+1+0=n(n?1).2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 本行列式的展开式中包含和的项.解:设,其中分别为不同列中对应元素的行下标,则展开式中含项有展开式中含项有.5. 用定义计算下列各行列式.(1);(2).【解】(1) D=(?1)τ(2314)4!=24; (2) D=12.6. 计算下列各行列式.(1);(2) ;(3);(4) .【解】(1) ;(2) ;7. 证明下列各式.(1) ;(2) ;(3)(4) ;(5) .【证明】(1)(2)(3) 首先考虑4阶范德蒙行列式:从上面的4阶范德蒙行列式知,多项式f(x)的x的系数为但对(*)式右端行列式按第一行展开知x的系数为两者应相等,故(4) 对D2n按第一行展开,得据此递推下去,可得(5) 对行列式的阶数n用数学归纳法.当n=2时,可直接验算结论成立,假定对这样的n?1阶行列式结论成立,进而证明阶数为n时结论也成立.按Dn的最后一列,把Dn拆成两个n阶行列式相加:但由归纳假设从而有8. 计算下列n阶行列式.(1) (2) ;(3). (4)其中;(5).【解】(1) 各行都加到第一行,再从第一行提出x+(n?1),得将第一行乘(?1)后分别加到其余各行,得(2) 按第二行展开(3) 行列式按第一列展开后,得(4)由题意,知.(5).即有由得.9. 计算n阶行列式.【解】各列都加到第一列,再从第一列提出,得将第一行乘(?1)后加到其余各行,得10. 计算阶行列式(其中)..【解】行列式的各列提取因子,然后应用范德蒙行列式.11. 已知4阶行列式;试求与,其中为行列式的第4行第j个元素的代数余子式. 【解】同理12. 用克莱姆法则解方程组.(1) (2)【解】方程组的系数行列式为故原方程组有惟一解,为13. λ和μ为何值时,齐次方程组有非零解?【解】要使该齐次方程组有非零解只需其系数行列式即故或时,方程组有非零解.14. 问:齐次线性方程组有非零解时,a,b必须满足什么条件?【解】该齐次线性方程组有非零解,a,b需满足即(a+1)2=4b.15. 求三次多项式,使得【解】根据题意,得这是关于四个未知数的一个线性方程组,由于故得于是所求的多项式为16. 求出使一平面上三个点位于同一直线上的充分必要条件.【解】设平面上的直线方程为ax+by+c=0 (a,b不同时为0)按题设有则以a,b,c为未知数的三元齐次线性方程组有非零解的充分必要条件为上式即为三点位于同一直线上的充分必要条件.习题二1. 计算下列矩阵的乘积.(1);(2);(3);(4);(5);(6).【解】(1) (2); (3) (10);(4)(5); (6) .2.设,,求(1);(2) ;(3) 吗?【解】(1) (2)(3) 由于AB≠BA,故(A+B)(A?B)≠A2?B2.3. 举例说明下列命题是错误的.(1) 若,则;(2) 若,则或;(3) 若,,则.【解】(1) 以三阶矩阵为例,取,但A≠0(2) 令,则A2=A,但A≠0且A≠E(3) 令则AX=AY,但X≠Y.4.设, 求A2,A3,…,Ak.【解】5.,求并证明:.【解】今归纳假设那么所以,对于一切自然数k,都有6. 已知,其中求及.【解】因为|P|= ?1≠0,故由AP=PB,得而7. 设,求||.解:由已知条件,的伴随矩阵为又因为,所以有,且,即于是有.8.已知线性变换利用矩阵乘法求从到的线性变换.【解】已知从而由到的线性变换为9.设,为阶方阵,且为对称阵,证明:也是对称阵.【证明】因为n阶方阵A为对称阵,即A′=A,所以(B′AB)′=B′A′B=B′AB,故也为对称阵.10.设A,B为n阶对称方阵,证明:AB为对称阵的充分必要条件是AB=BA. 【证明】已知A′=A,B′=B,若AB是对称阵,即(AB)′=AB.则AB=(AB)′=B′A′=BA,反之,因AB=BA,则(AB)′=B′A′=BA=AB,所以,AB为对称阵.11. A为n阶对称矩阵,B为n阶反对称矩阵,证明:(1) B2是对称矩阵.(2) AB?BA是对称矩阵,AB+BA是反对称矩阵.【证明】因A′=A,B′= ?B,故(B2)′=B′²B′= ?B²(?B)=B2;(AB?BA)′=(AB)′?(BA)′=B′A′?A′B′= ?BA?A²(?B)=AB?BA;(AB+BA)′=(AB)′+(BA)′=B′A′+A′B′= ?BA+A²(?B)= ?(AB+BA).所以B2是对称矩阵,AB?BA是对称矩阵,AB+BA是反对称矩阵.12. 求与A=可交换的全体二阶矩阵.【解】设与A可交换的方阵为,则由=,得.由对应元素相等得c=0,d=a,即与A可交换的方阵为一切形如的方阵,其中a,b为任意数.13. 求与A=可交换的全体三阶矩阵.【解】由于A=E+,而且由可得由此又可得所以即与A可交换的一切方阵为其中为任意数.14.求下列矩阵的逆矩阵.(1) ;(2) ;(3);(4);(5);(6),未写出的元素都是0(以下均同,不另注).【解】(1) ; (2) ;(3) ; (4) ;(5) ; (6) .15. 利用逆矩阵,解线性方程组【解】因,而故16. 证明下列命题:(1) 若A,B是同阶可逆矩阵,则(AB)*=B*A*.(2) 若A可逆,则A*可逆且(A*)?1=(A?1)*.(3) 若AA′=E,则(A*)′=(A*)?1.【证明】(1)因对任意方阵c,均有c*c=cc*=|c|E,而A,B均可逆且同阶,故可得|A|²|B|²B*A*=|AB|E(B*A*)=(AB) *AB(B*A*)=(AB) *A(BB*)A*=(AB) *A|B|EA*=|A|²|B|(AB) *.∵|A|≠0,|B|≠0,∴(AB) *=B*A*.(2) 由于AA*=|A|E,故A*=|A|A?1,从而(A?1) *=|A?1|(A?1)?1=|A|?1A.A* (A?1) *=|A|A?1²|A|?1A=E,所以(A?1) *=(A*)?1.(3) 因AA′=E,故A可逆且A?1=A′.由(2)(A*)?1=(A?1) *,得(A*)?1=(A′) *=(A*)′.17.已知线性变换求从变量到变量的线性变换.【解】已知且|A|=1≠0,故A可逆,因而所以从变量到变量的线性变换为18.解下列矩阵方程.(1) ;(2);(3) ;(4) .【解】(1) 令A=;B=.由于故原方程的惟一解为同理(2) X=; (3) X=; (4) X=19. 若(k为正整数),证明:.【证明】作乘法从而E?A可逆,且20.设方阵A满足A2-A-2E=O,证明A及A+2E都可逆,并求A?1及(A+2E)?1. 【证】因为A2?A?2E=0,故由此可知,A可逆,且同样地由此知,A+2E可逆,且21. 设,,求.【解】由AB=A+2B得(A?2E)B=A.即A?2E可逆,故22.设.其中,,求.【解】因可逆,且故由得23. 设次多项式,记,称为方阵的次多项式.(1),证明,;(2) 设,证明,.【证明】(1)即k=2和k=3时,结论成立.今假设那么所以,对一切自然数k,都有而(2) 由(1)与A=P ?1BP,得B=PAP ?1.且Bk=( PAP ?1)k= PAkP ?1,又24. ,证明矩阵满足方程.【证明】将A代入式子得故A满足方程.25. 设阶方阵的伴随矩阵为,证明:(1) 若||=0,则||=0;(2) .【证明】(1)若|A|=0,则必有|A*|=0,因若| A*|≠0,则有A*( A*)?1=E,由此又得A=AE=AA*( A*)?1=|A|( A*)?1=0,这与| A*|≠0是矛盾的,故当|A| =0,则必有| A*|=0.(2) 由A A*=|A|E,两边取行列式,得|A|| A*|=|A|n,若|A|≠0,则| A*|=|A|n?1若|A|=0,由(1)知也有| A*|=|A|n?1.26.设求(1) ; (2); (3) ;(4)||k (为正整数).【解】(1); (2) ;(3) ; (4).27. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.(1);(2);(3).【解】(1) 对A做如下分块其中的逆矩阵分别为所以A可逆,且同理(2)(3)习题三1. 略.见教材习题参考答案.2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 略.见教材习题参考答案.5.,证明向量组线性相关.【证明】因为所以向量组线性相关.6. 设向量组线性无关,证明向量组也线性无关,这里【证明】设向量组线性相关,则存在不全为零的数使得把代入上式,得.又已知线性无关,故该方程组只有惟一零解,这与题设矛盾,故向量组线性无关.7. 略.见教材习题参考答案.8. .证明:如果,那么线性无关.【证明】已知,故R(A)=n,而A是由n个n维向量组成的,所以线性无关.9. 设是互不相同的数,r≤n.证明:是线性无关的.【证明】任取n?r个数tr+1,…,tn使t1,…,tr,tr+1,…,tn互不相同,于是n阶范德蒙行列式从而其n个行向量线性无关,由此知其部分行向量也线性无关.10. 设的秩为r且其中每个向量都可经线性表出.证明:为的一个极大线性无关组.【证明】若(1)线性相关,且不妨设(t<r) (2)是(1)的一个极大无关组,则显然(2)是的一个极大无关组,这与的秩为r矛盾,故必线性无关且为的一个极大无关组.11. 求向量组=(1,1,1,k),=(1,1,k,1),=(1,2,1,1)的秩和一个极大无关组.【解】把按列排成矩阵A,并对其施行初等变换.当k=1时,的秩为为其一极大无关组.当k≠1时,线性无关,秩为3,极大无关组为其本身.12. 确定向量,使向量组与向量组=(0,1,1),=(1,2,1),=(1,0,?1)的秩相同,且可由线性表出.【解】由于而R(A)=2,要使R(A)=R(B)=2,需a?2=0,即a=2,又要使可由线性表出,需b?a+2=0,故a=2,b=0时满足题设要求,即=(2,2,0).13. 设为一组n维向量.证明:线性无关的充要条件是任一n维向量都可经它们线性表出. 【证明】充分性: 设任意n维向量都可由线性表示,则单位向量,当然可由它线性表示,从而这两组向量等价,且有相同的秩,所以向量组的秩为n,因此线性无关.必要性:设线性无关,任取一个n维向量,则线性相关,所以能由线性表示.14. 若向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,也可由向量组β1,β2,β3,β4线性表出,则向量组α1,α2,α3与向量组β1,β2,β3,β4等价.证明:由已知条件,,且向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,即两向量组等价,且,又,向量组(1,0,0),(1,1,0),(1,1,1)可由向量组β1,β2,β3,β4线性表出,即两向量组等价,且,所以向量组α1,α2,α3与向量组β1,β2,β3,β4等价.15. 略.见教材习题参考答案.16. 设向量组与秩相同且能经线性表出.证明与等价.【解】设向量组(1)与向量组(2)的极大线性无关组分别为(3)和(4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即因(4)线性无关,故(3)线性无关的充分必要条件是|aij|≠0,可由(*)解出,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.17. 设A为m³n矩阵,B为s³n矩阵.证明:.【证明】因A,B的列数相同,故A,B的行向量有相同的维数,矩阵可视为由矩阵A扩充行向量而成,故A中任一行向量均可由中的行向量线性表示,故同理故有又设R(A)=r,是A的行向量组的极大线性无关组,R(B)=k, 是B的行向量组的极大线性无关组.设是中的任一行向量,则若属于A的行向量组,则可由表示,若属于B的行向量组,则它可由线性表示,故中任一行向量均可由,线性表示,故所以有.18. 设A为s³n矩阵且A的行向量组线性无关,K为r³s矩阵.证明:B=KA行无关的充分必要条件是R(K)=r.【证明】设A=(As,Ps³(n?s)),因为A为行无关的s³n矩阵,故s阶方阵As可逆.()当B=KA行无关时,B为r³n矩阵.r=R(B)=R(KA)≤R(K),又K为r³s矩阵R(K)≤r,∴R(K)=r.()当r=R(K)时,即K行无关,由B=KA=K(As,Ps³(n?s))=(KAs,KPs³(n?s))知R(B)=r,即B行无关.19. 略.见教材习题参考答案.20. 求下列矩阵的行向量组的一个极大线性无关组.(1);(2).【解】(1) 矩阵的行向量组的一个极大无关组为;(2) 矩阵的行向量组的一个极大无关组为.21. 略.见教材习题参考答案.22. 集合V1={()|∈R且=0}是否构成向量空间?为什么?【解】由(0,0,…,0)∈V1知V1非空,设)则因为所以,故是向量空间.23. 试证:由,生成的向量空间恰为R3.【证明】把排成矩阵A=(),则,所以线性无关,故是R3的一个基,因而生成的向量空间恰为R3.24. 求由向量所生的向量空间的一组基及其维数.【解】因为矩阵∴是一组基,其维数是3维的.25. 设,证明:.【解】因为矩阵由此知向量组与向量组的秩都是2,并且向量组可由向量组线性表出.由习题15知这两向量组等价,从而也可由线性表出.所以.26. 在R3中求一个向量,使它在下面两个基下有相同的坐标.【解】设在两组基下的坐标均为(),即即求该齐次线性方程组得通解(k为任意实数)故27. 验证为R3的一个基,并把用这个基线性表示.【解】设又设,即记作B=AX.则因有,故为R3的一个基,且即.习题四1. 用消元法解下列方程组.(1) (2)【解】(1)得所以(2)①②③解②?①³2得x2?2x3=0③?①得2x3=4得同解方程组④⑤⑥由⑥得x3=2,由⑤得x2=2x3=4,由④得x1=2?2x3 ?2x2 = ?10, 得(x1,x2,x3)T=(?10,4,2)T.2. 求下列齐次线性方程组的基础解系.(1) (2)(3) (4)【解】(1)得同解方程组得基础解系为.(2) 系数矩阵为∴其基础解系含有个解向量.基础解系为(3)得同解方程组取得基础解系为(?2,0,1,0,0)T,(?1,?1,0,1,0). (4) 方程的系数矩阵为∴基础解系所含解向量为n?R(A)=5?2=3个取为自由未知量得基础解系3. 解下列非齐次线性方程组.(1) (2)(3) (4)【解】(1)方程组的增广矩阵为得同解方程组(2) 方程组的增广矩阵为得同解方程组即令得非齐次线性方程组的特解xT=(0,1,0,0)T.又分别取得其导出组的基础解系为∴方程组的解为(3)∴方程组无解.(4) 方程组的增广矩阵为分别令得其导出组的解为令,得非齐次线性方程组的特解为:xT=(?16,23,0,0,0)T,∴方程组的解为其中为任意常数.4. 某工厂有三个车间,各车间相互提供产品(或劳务),今年各车间出厂产量及对其它车间的消耗如下表所示.车间消耗系数车间123出厂产量(万元)总产量(万元)10.10.20.4522x120.20.20.3x230.50.1255.6表中第一列消耗系数0.1,0.2,0.5表示第一车间生产1万元的产品需分别消耗第一,二,三车间0.1万元,0.2万元,0.5万元的产品;第二列,第三列类同,求今年各车间的总产量.解:根据表中数据列方程组有即解之5. 取何值时,方程组(1)有惟一解,(2)无解,(3)有无穷多解,并求解.【解】方程组的系数矩阵和增广矩阵为|A|=.(1) 当≠1且≠?2时,|A|≠0,R(A)=R(B)=3.∴方程组有惟一解(2)当=?2时,R(A)≠R(B),∴方程组无解.(3) 当=1时R(A)=R(B)<3,方程组有无穷解.得同解方程组∴得通解为6. 齐次方程组当取何值时,才可能有非零解?并求解.【解】方程组的系数矩阵为|A|=当|A|=0即=4或=?1时,方程组有非零解.(i) 当=4时,得同解方程组(ii) 当=?1时,∴()T=k²(?2,?3,1)T.k∈R7. 当a,b取何值时,下列线性方程组无解,有惟一解或无穷多解?在有解时,求出其解.(1)(2)【解】方程组的增广矩阵为(1)(i) 当b≠?52时,方程组有惟一解(ii) 当b=?52,a≠?1时,方程组无解.(iii) 当b=?52,a=?1时,方程组有无穷解.得同解方程组(*)其导出组的解为非齐次线性方程组(*)的特解为取x4=1,∴原方程组的解为(2)(i) 当a?1≠0时,R(A)=R()=4,方程组有惟一解.(ii) 当a?1=0时,b≠?1时,方程组R(A)=2<R()=3,∴此时方程组无解.(iii) 当a=1,b= ?1时,方程组有无穷解.得同解方程组取∴得方程组的解为8. 设,求一秩为2的3阶方阵B使AB=0.【解】设B=(b1 b2 b3),其中bi(i=1,2,3)为列向量,由为Ax=0的解.求=0的解.由得同解方程组∴其解为取则9.已知是三元非齐次线性方程组Ax=b的解,且R(A)=1及求方程组Ax=b的通解.【解】Ax=b为三元非齐次线性方程组R(A)=1Ax=0的基础解系中含有3?R(A)=3?1=2个解向量.由为Ax=b的解为Ax=0的解,且线性无关为Ax=0的基础解系.又∴方程组Ax=b的解为10. 求出一个齐次线性方程组,使它的基础解系由下列向量组成.(1)(2)【解】(1) 设齐次线性方程组为Ax=0由为Ax=0的基础解系,可知令k1=x2 , k2=x3Ax=0即为x1+2x2?3x3=0.(2) A()=0A的行向量为方程组为的解.即的解为得基础解系为=(?5 ?1 1 1 0)T =(?1 ?1 1 0 1)TA=方程为11. 设向量组=(1,0,2,3),=(1,1,3,5),=(1,?1,a+2,1),=(1,2,4,a+8),=(1,1,b+3,5)问:(1)a,b为何值时,不能由,,,线性表出?(2)a,b为何值时,可由,,,惟一地线性表出?并写出该表出式.(3)a,b为何值时,可由,,,线性表出,且该表出不惟一?并写出该表出式. 【解】(*)(1) 不能由,,,线性表出方程组(*)无解,即a+1=0,且b≠0.即a=?1,且b≠0.(2) 可由,,,惟一地线性表出方程组(*)有惟一解,即a+1≠0,即a≠?1.(*) 等价于方程组(3) 可由,,,线性表出,且表出不惟一方程组(*)有无数解,即有a+1=0,b=0a=?1,b=0.方程组(*)为常数.∴12. 证明:线性方程组有解的充要条件是.【解】方程组有解的充要条件,即R(A)=4=R(A)得证.13. 设是非齐次线性方程组Ax=b的一个解,是对应的齐次线性方程组的一个基础解系.证明(1)线性无关;(2)线性无关.【证明】(1) 线性无关成立,当且仅当ki=0(i=1,2,…,n?r),k=0∵为Ax=0的基础解系由于.由于为线性无关∴线性无关.(2) 证线性无关.成立当且仅当ki=0(i=1,2,…,n?r),且k=0即由(1)可知,线性无关.即有ki=0(i=1,2,…,n?r),且∴线性无关.14. 设有下列线性方程组(Ⅰ)和(Ⅱ)(Ⅰ)(Ⅱ)(1) 求方程组(Ⅰ)的通解;(2) 当方程组(Ⅱ)中的参数m,n,t为何值时,(Ⅰ)与(Ⅱ)同解?解:(1)对方程组(Ⅰ)的增广矩阵进行行初等变换由此可知系数矩阵和增广矩阵的秩都为3,故有解.由方程组(*)得方程组(*)的基础解系令,得方程组(Ⅰ)的特解于是方程组(Ⅰ)的通解为,k为任意常数。