《圆柱的体积练习课》教学设计
最新北师大版六年级下册数学圆柱的体积练习课精品教案 (7)

课题;圆柱的体积练习课教学内容:北师大版六年级数学下册9—10页。
教学目标:1、进一步理解圆柱体积公式的由来。
2、能灵活地运用公式解决一些简单的实际问题,提高解决问题的能力。
教学重、难点:目标2。
教学过程:教师活动学生活动活动一:复习圆柱体积的计算公式。
1、长、正方体的体积都可以用什么公式进行计算?2、圆柱的体积该怎样计算?活动二:解决简单的实际问题。
1、看图计算下面各圆柱的体积。
2、一个底面直径是14指名请学生说。
明确:长、正方体和圆柱的体积都可以用底面积乘高来进行计算。
说说每个图已知什么和什么,求什么?怎么求?自己试独立计算,请同学板演。
集体讲评。
请先求杯子的容积,再求能装厘米,高是20厘米的杯子。
能装下3000毫升的牛奶多少杯?要求能装多少杯牛奶,必须先求什么?3、一个装满稻谷的圆柱形粮屯,底面面积为2平方米,高为80厘米。
每立方米稻谷约重600千克,这个粮屯存放的稻谷约重多少千克?通过读题,你发现了什么?(要换算单位)要求这个粮屯能存放多少稻谷,必须先求什么?(先求体积)4、一个正方体的棱长4分米,一个圆柱的底面直径2分米,高4分米。
这两个立体图哪个面积大?为什么?师:高相等,可以比较底面积几杯?自己独立计算。
明确题意后,自己独立计算。
先独立思考,然后同桌交流自己的想法。
说说看不计算,怎样判断他们的大小?求铁块的体积就是求底面直径是10厘米,高2厘米的圆柱形的水的体积。
圆柱的表面积包括什么?怎样计算?侧面积怎样计算?的大小。
5、一个圆柱形容器的底面直径是10厘米,把一块铁块放入这个容器中,水面上升2厘米,这块铁块的体积是多少?这个铁块的体积和什么有关系?求铁块的体积就是求什么?6、一根圆柱形木料底面周长是12。
56分米,高是4米。
1)它的表面积是多少平方米?2)它的体积是多少立方米?3)如果把它截成三段小圆柱,表面积增加多少平方分米?7、一个圆柱形水桶的体积是24立方分米,底面积体积怎样计算?要求底面积先求什么?表面积增加的部分是什么?增加了几个底面?必须先求什么?弄清题意,自己计算。
《圆柱的体积》教学设计6篇

《圆柱的体积》教学设计6篇《圆柱的体积》教学设计6篇《圆柱的体积》教学设计1 教材简析:本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积,第十一册圆柱的体积公开课。
教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比拟找两个图形之间的关系,可推导出圆柱的体积计算公式。
教学目的:1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的才能4.借助实物演示,培养学生抽象、概括的思维才能。
教具:圆柱的体积公式演示教具,多媒体课件教学过程:一、情景引入1、出示圆柱形水杯。
〔1〕老师在杯子里面装满水,想一想,水杯里的水是什么形状的?〔2〕你能用以前学过的方法计算出这些水的体积吗?〔3〕讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
〔4〕说一说长方体体积的计算公式。
2、创设问题情景。
〔课件显示〕假如要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚刚那样的方法吗?刚刚的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。
〔出示课题:圆柱的体积〕〔设计意图:问题是思维的动力。
通过创设问题情景,可以引导学生运用已有的生活经历和旧知,积极考虑,去探究和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究气氛。
〕二、新课教学:设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,如今能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来讨论这个问题。
板书课题:圆柱的体积。
1.探究推导圆柱的体积计算公式。
《圆柱的体积》教学设计

《圆柱的体积》教学设计《圆柱的体积》教学设计1教学目标1、知识与技能:理解教材中形体转化的过程,掌握圆柱体积的计算公式,会用公式计算圆柱的体积,解决有关简单的实际问题。
拓展教材内容,初步了解直柱体的相关知识。
2、过程与方法:利用教材空间,为学生搭建思维平台。
让学生经历观察、想象、思考、交流等教学活动过程,理解圆柱体积计算公式的推导过程,提高学生思维能力,同时体验转化和极限的思想。
3、情感与态度:挖掘教材内涵,把图形的变换过程,转变为学生思维能力的培养、提高的过程,并进一步发展其空间观念,领悟学习数学的方法,激发学生学习兴趣,渗透事物是普遍联系的唯物辩证思想。
教学重点:理解圆柱体积计算公式的推导过程,运用圆柱体积计算公式准确解决实际问题。
教学难点:正确理解圆柱体积计算公式的推导过程。
教学过程一、情境导入:老师手拿一个圆柱形橡皮泥(大小适宜)。
1、师:通过前面的学习,关于圆柱你已经知道什么?还想了解它的哪些知识?生1:(已学知识)。
生2:圆柱是一种立体图形,那么它的体积怎么计算?【学情分析:在学习圆柱的认识和表面积的基础上,学生能够顺利回忆已学的知识,而且质疑提出即将学习的知识,明确学习目标,为本节课的学习找到思维与认知源泉。
】2、师:联系已经掌握的有关立体图形的知识,你能想办法求出这个圆柱体的体积吗?生1:圆柱体的体积计算没有学过,无法计算。
生2:将这个圆柱放入一个盛有水的长方体容器中,量出上升了的水的长、宽、高,就可以求出它的体积。
生3:圆柱体在水中必须完全浸没,而且水还不能溢出。
【学情分析:学生在五年级学习长方体、正方体有关知识的基础上,很容易想到运用“排水法”来解决问题,所以这一环节也充分给予学生展示自我的机会,培养思维中的自信心。
】教师在学生中找出小助手,帮助测量有关数据,全体同学计算水的体积,并作记载。
师:运用转化思想,联系已学知识,解决新生问题,同学们真了不起!【设计意图:学生的学习活动要建立在已有的知识和认知基础上,通过水的变形把圆柱的体积转化为长方体的体积来计算,使学生初步感知数学转化思想在解决问题中的价值,同时提高学生解决问题能力和思维能力。
《圆柱的体积》数学教学设计(优秀4篇)

《圆柱的体积》数学教学设计(优秀4篇)《圆柱的体积》数学教案篇一教学目标:1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力4、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。
教学过程:一、复习1、复习圆柱体积的推导过程长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。
2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、解决实际问题1、练习三第7题。
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2、练习三第5题。
(1)指导学生变换公式:因为V=Sh,所以h=VS。
也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习三第8题。
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习三第9、10题(1)学生独立审题,完成9、10两题。
(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。
利用这个底面积再求出另一个圆柱的体积。
三、布置作业完成一课三练的相关练习。
《圆柱的体积》数学教案篇二一、教学目标(一)知识与技能用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
圆柱的体积⑴数学教案

圆柱的体积⑴数学教案标题:圆柱的体积数学教案一、教学目标:1. 知识与技能:- 学生能够理解和掌握圆柱体的概念。
- 学生能熟练运用公式计算圆柱体的体积。
2. 过程与方法:- 通过实际操作,引导学生探索和理解圆柱体的体积公式。
- 通过问题解决,培养学生分析问题和解决问题的能力。
3. 情感态度与价值观:- 培养学生的观察力和空间想象力。
- 增强学生对数学学习的兴趣和自信心。
二、教学重难点:重点:理解并掌握圆柱体的体积公式。
难点:运用公式解决实际问题。
三、教学过程:(一)导入新课教师展示一些生活中常见的圆柱形物体,如水杯、铅笔等,提问:“这些物体有什么共同的形状?”引导学生回答出“圆柱形”。
(二)新知讲解1. 引导学生回忆学过的平面图形面积公式,特别是圆形面积公式,并提出问题:“如果将这个圆形沿直径旋转一周,会形成什么立体图形?”引发学生思考,得出结论——圆柱体。
2. 接着,教师演示如何用一个圆形绕其直径旋转一周得到一个圆柱体,让学生直观感知圆柱体的形成过程。
3. 教师介绍圆柱体的定义:以矩形的一边为轴旋转一周所形成的立体图形叫做圆柱体。
然后请学生观察并描述圆柱体的特征。
4. 提出问题:“我们已经知道如何求圆的面积,那么如何求圆柱体的体积呢?”激发学生思考。
5. 教师解释圆柱体的体积公式V=πr²h,并进行推导。
先让学生回顾圆的面积公式S=πr²,然后指出圆柱体的底面积就是圆的面积,所以底面积为πr²;又因为圆柱体的高是h,所以圆柱体的体积V就是底面积乘以高,即V=πr²h。
(三)课堂活动1. 让学生分组,每组准备一张纸,一支铅笔,一把直尺和一个圆规。
让他们按照刚才的方法制作一个圆柱体,然后测量并计算其体积。
2. 组织学生进行讨论,分享他们的实验结果,以及在计算过程中遇到的问题和解决办法。
(四)巩固练习提供一些关于圆柱体体积的题目,让学生进行解答,以此来检查他们是否掌握了本节课的知识点。
《圆柱的体积》教学设计与意图

《圆柱的体积》教学设计与意图教材简析:本课的学习是在学生已经掌握了圆柱的特征、圆面积的推导方法,以及长方体、正方体的体积公式的基础上进行的。
教材例题的安排围绕“建立猜想——验证猜想——回顾反思”展开。
教材呈现底面积和高分别相等的长方体、正方体和圆柱,引导学生通过观察和类比,提出有关圆柱体积计算方法的猜想;再启发学生把以前探索圆面积公式的经验和方法迁移到探索圆柱体积公式的过程中来,进而推导出圆柱的体积公式,验证自己的猜想。
最后引导学生回顾圆柱体积公式的探索过程,说说自己的体会,帮助学生进一步明晰圆柱体积公式的推导过程,梳理活动过程中积累的数学活动经验,感悟转化的思想方法,发展数学思维能力。
同时安排适度的练习,让学生应用公式计算圆柱的体积,解决相关的实际问题,在应用中感受数学知识和方法的学习价值。
学情简析:从知识的角度来说,学生已经掌握了体积的含义、圆柱的特征和长方体和正方体的体积计算方法;从研究方法、经验的角度来说,学生经历了圆面积的推导过程,掌握了圆面积的推导方法,在平面图形的面积计算公式(如平行四边形的面积、三角形的面积、梯形的面积、圆的面积)推导中积累了比较丰富的研究经验,对转化思想在数学问题研究中的运用有了一定的理解与感悟,这些是学生学好本部分内容的重要基础。
因此,在学习过程中,要引导学生主动联系已有的知识、经验、方法去展开圆柱体积的学习。
教学目标:1. 结合具体情境,经历观察、操作、猜想、验证、类比和归纳等数学活动,探索并掌握圆柱体积的计算方法,初步学会应用公式计算圆柱的体积,并解决相关的实际问题。
2. 在探索圆柱体积计算公式的过程中,进一步感受转化思想,积累数学活动经验,培养应用已有知识探究和解决新问题的能力;发展观察、比较、分析、概括等思维能力,增强空间观念。
3. 在参与数学活动的过程中,进一步感受数学知识和方法的学习价值,培养善于提问、善于思考的品质,在体会探索和获得新知识的成功过程中,提高学习数学的兴趣和学好数学的自信心。
《圆柱的体积》教学设计(精选9篇)

《圆柱的体积》教学设计(精选9篇)《圆柱的体积》数学教案篇一探究目标:1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。
2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。
3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。
4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。
教学重难点:学生会应用圆柱体积公式解决实际问题。
探究过程:一、迁移引入提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。
提问:如果已知的是底面半径和高,该怎么求呢?二、自主探究1、出示长方体鱼缸。
要计算这个长方体鱼缸能装多少水,就是求什么?怎样求这个长方体的容积呢?2、出示圆柱形鱼缸。
⑴估测。
这个圆柱形鱼缸的容积大约是多少?⑴操作、汇报。
如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。
学生可能的回答有:生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)生2:我们小组测量的是底面直径和高。
底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)生3:我们测量的是底面半径和高。
3.14×152×12=8478(立方厘米)⑴评价。
组织学生间进行评价。
你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。
⑴反思。
引导学生将实际计算结果与自己的估测结果进行对比。
自己矫正偏差。
⑴延伸。
如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?3、自学例题。
《圆柱的体积》教案(15篇)

《圆柱的体积》教案(15篇)《圆柱的体积》教案1教学目标:1、使同学掌控圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。
2、让同学经受观测、操作、争论等数学活动过程,理解圆柱体积公式的推导过程,引导同学探讨问题,体验转化和极限的思想。
3、在图形的变换中,培育同学的迁移技能、规律思维技能,并进一步进展其空间观念,领悟学习数学的方法,激发同学爱好,渗透事物是普遍联系的唯物辨证思想。
教学重点:圆柱体积计算公式的推导过程并能正确应用。
教学难点:借助教具演示,弄清圆柱与长方体的关系。
教具预备:多媒体课件、长方体、圆柱形容器假设干个;同学预备推导圆柱体积计算公式用学具。
教学设想:《圆柱的体积》是同学在有了圆柱、圆和长方体的相关的基础上进行教学的。
在知识与技能上,通过对圆柱的详细讨论,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经受和体验中思索,培育同学科学的思维方法;贴近同学生活实际,创设情境,解决问题,表达数学知识从生活中来到生活去的理念,激发同学的学习爱好和对科学知识的求知欲,使同学乐于探究,擅长探究。
教学过程:一、创设情境,激疑引入水是生命之源!节省用水是我们每个公民应尽的义务。
前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。
1、出示装了水的圆柱容器。
〔1〕启发思索:容器里面的水形成了什么外形?〔圆柱〕你能知道这些水的体积?〔2〕争论后汇报生1:用量筒或量杯径直量出它的体积;生2:用秤称出水的重量,然后进一步知道体积;生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。
师:现在老师只有这些工具〔圆柱形容器,长方形容器,半圆形容器和其他不规章容器〕,你怎么办?生1:把水到入长方体容器中生2:我们学过了长方体的体积计算,只要量出长、宽、高就行[设计意图:通过本环节,给同学创设一个生活中的情境,提出问题,学习身边的数学,激起同学的学习爱好;依据需要渗透圆柱体〔新问题〕和长方体〔已知〕的知识联系为所学内容作了铺垫的预备]2、创设问题情境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱的体积练习课
教学内容:
教材第21、22页的练习三
教学目标:
知识与技能:使学生能够运用公式正确地计算圆柱的体积和容积。
过程与方法:初步学会用转化的数学思想和方法,解决实际问题的能力
情感态度与价值观:渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。
教学过程:
一、复习
1、复习圆柱体积的推导过程
长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。
2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、解决实际问题
1、练习三第7题。
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2、练习三第5题。
(1)、指导学生变换公式:因为V=Sh,所以h=V÷S。
也可以列方程解答。
(2)、学生选择喜爱的方法解答这道题目。
3、练习三第8题。
(1)、学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。
(2)、在充分理解题意后学生独立完成,集体订正。
4、练习三第9、10题
(1)、学生独立审题,完成9、10两题。
(2)、评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)
(3)、指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。
利用这个底面积再求出另一个圆柱的体积。
三、布置作业
完成《练习册》第7页的练习
课后反思:
. .。