(06)第6章 假设检验(贾俊平)
应用统计学 第 6 章 假设检验

多大的P 值合适?
显著性检验的目的是要描述样本所提供不利于原假 设的证据有多强。P值就在做这件事。但是,要证明 原假设不正确,P值要多小,才能令人信服呢?这要 根据两种情况来确定 • • 原假设的可信度有多高?如果H0 所代表的假设 是人们多年来一直相信的,就需要很强的证据 (小的P值)才能说服他们 拒绝的结论是什么?如果拒绝H0而肯定H1 ,就 需要有很强的证据显示要支持H1 。比如,H1 代 表要花很多钱把产品包装改换成另一种包装,你 就要有很强的证据显示新包装一定会增加销售量 (因为拒绝H0要花很高的成本)
6. 用Excel进行检验
6.1
6.1.1 6.1.2 6.1.3 6.1.4
假设检验的基本问题
假设的陈述 两类错误与显著性水平 统计量与拒绝域 利用P值进行决策
假设的陈述
什么是假设? (hypothesis)
• 对总体参数的具体
数值所作的陈述 – 总体参数包括总体 均值、比例、方差 等 – 分析之前必须陈述
H0 : 30%
H1 : 30%
提出假设 (结论与建议)
1. 原假设和备择假设是一个完备事件组,而 且相互对立
– 在一项假设检验中,原假设和备择假设必 有一个成立,而且只有一个成立
2. 先确定备择假设,再确定原假设
3. 等号“=‖总是放在原假设上
4. 因研究目的不同,对同一问题可能提出不 同的假设(也可能得出不同的结论)
– 原假设为正确时拒绝原假设 – 第Ⅰ类错误的概率记为
• 被称为显著性水平
• 2. 第Ⅱ类错误(取伪错误)
– 原假设为错误时未拒绝原假设 – 第Ⅱ类错误的概率记为(Beta)
假设检验中的两类错误 (决策结果)
应用统计学 第六章 假设检验

v (s12
s12 n1
s22 n2
2
n1)2 (s22 n2 )2
n1 1
n2 1
(6-13)
31
第三节 两个总体参数的检验
第 六 章
假
设
检 验
这时,检验统计量t的计算公式为:
t (x1 x2 ) (1 2 )
s12 s22 n1 n2
10
第一节 假设检验的基本问题
第 六 章
假 设
(五) 根据样本数据计算检验统计量的值
检
验
在提出原假设和备择假设,选取适当显著性水平 和检验统计量以后,接下来就要根据样
本观测值计算检验统计量的值,具体计算方法将在本章第二节进行详细介绍。例如,例6-1中检
验统计量的值为:
z x 0 2.21 2 2.67
t x 0 (6-3)
s/ n
18
第二节 一个总体参数的检验
第 六 章
假
综上所述,不同情况下总体均值的检验统计量如表6-3所示。
设
检
验
19
第二节 一个总体参数的检验
第 六 章
二、总体比例的检验
假
设 检
在实际应用中,常常需要检验总体比例是否为某个假设值 0 。例如,检验某课程的
验 考试通过率、产品的合格率、种子的发芽率等,民意调查中也经常用到总体比例检验。
样本条件下,要求总体服从正态分布,且总体标准差 已知时,可以使用z统计量。当
总体标准差 已知时,z统计量的计算公式为:
z x 0 / n
(6-1)
15
第二节 一个总体参数的检验
第 六 章 假 设 检 验
16
统计学(第五版)贾俊平-课后思考题和练习题答案(完整版)

统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法.推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1。
3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的.实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据.时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量.变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1。
7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学(第六版)贾俊平——_课后习题答案

第一章导论1.1 .1(1)数值型变量。
(2)分类变量。
(3)离散型变量。
(4)顺序变量。
(5)分类变量。
1.2(1)总体是该市所有职工家庭的集合;样本是抽中的2000 个职工家庭的集合。
(2)参数是该市所有职工家庭的年人均收入;统计量是抽中的2000 个职工家庭的年人均收入。
1.3(1)总体是所有IT 从业者的集合。
(2)数值型变量。
(3)分类变量。
(4)截面数据。
1.4(1)总体是所有在网上购物的消费者的集合。
(2)分类变量。
(3)参数是所有在网上购物者的月平均花费。
(4)参数(5)推断统计方法。
第二章数据的搜集1. 什么是二手资料?使用二手资料需要注意些什么?与研究内容有关的原始信息已经存在,是由别人调查和实验得来的,并会被我们利用的资料称为“二手资料” 。
使用二手资料时需要注意:资料的原始搜集人、搜集资料的目的、搜集资料的途径、搜集资料的时间,要注意数据的定义、含义、计算口径和计算方法,避免错用、误用、滥用。
在引用二手资料时,要注明数据来源。
2. 比较概率抽样和非概率抽样的特点,举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
概率抽样是指抽样时按一定概率以随机原则抽取样本。
每个单位被抽中的概率已知或可以计算,当用样本对总体目标量进行估计时,要考虑到每个单位样本被抽中的概率,概率抽样的技术含量和成本都比较高。
如果调查的目的在于掌握和研究总体的数量特征,得到总体参数的置信区间,就使用概率抽样。
非概率抽样是指抽取样本时不是依据随机原则,而是根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查。
非概率抽样操作简单、实效快、成本低,而且对于抽样中的专业技术要求不是很高。
它适合探索性的研究,调查结果用于发现问题,为更深入的数量分析提供准备。
非概率抽样也适合市场调查中的概念测试。
3. 调查中搜集数据的方法主要有自填式、面方式、电话式,除此之外,还有那些搜集数据的方法?实验式、观察式等。
统计学第四版答案(贾俊平)

请举出统计应用的几个例子:1、用统计识别作者:对于存在争议的论文,通过统计量推出作者2、用统计量得到一个重要发现:在不同海域鳗鱼脊椎骨数量变化不大,推断所有各个不同海域内的鳗鱼是由海洋中某公共场所繁殖的3、挑战者航天飞机失事预测请举出应用统计的几个领域:1、在企业发展战略中的应用2、在产品质量管理中的应用3、在市场研究中的应用④在财务分析中的应用⑤在经济预测中的应用你怎么理解统计的研究内容:1、统计学研究的基本内容包括统计对象、统计方法和统计规律。
2、统计对象就是统计研究的课题,称谓统计总体。
3、统计研究方法主要有大量观察法、数量分析法、抽样推断法、实验法等。
④统计规律就是通过大量观察和综合分析所揭示的用数量指标反映的客观现象的本质特征和发展规律。
举例说明分类变量、顺序变量和数值变量:分类变量:表现为不同类别的变量称为分类变量,如“性别”表现为“男”或“女”,“企业所属的行业”表现为“制造业”、“零售业”、“旅游业”等,“学生所在的学院”可能是“商学院”、“法学院”等顺序变量:如果类别有一定的顺序,这样的分类变量称为顺序变量,如考试成绩按等级分为优、良、中、及格、不及格,一个人对事物的态度分为赞成、中立、反对。
这里的“考试成绩等级”、“态度”等就是顺序变量。
数值变量:可以用数字记录其观察结果,这样的变量称为数值变量,如“企业销售额”、“生活费支出”、“掷一枚骰子出现的点数”。
定性数据和定量数据的图示方法各有哪些:1、定性数据的图示:条形图、帕累托图、饼图、环形图2、定量数据的图示:a、分组数据看分布:直方图b、未分组数据看分布:茎叶图、箱线图、垂线图、误差图c、两个变量间的关系:散点图d、比较多个样本的相似性:雷达图和轮廓图直方图与条形图有何区别:1、条形图中的每一个矩形表示一个类别,其宽度没有意义,而直方图的宽度则表示各组的组距。
2、由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。
统计学(贾俊平)第五版课后习题答案(完整版)

统计学(第五版)贾俊平课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学(第三版课后习题答案) 贾俊平版

区分指标与标志,总量指标分类、分配数列、上限不在内原则、各种平均数之间的关系、平均发展指标!计算可能考的公式有:计划完成情况相对指标、结构(比例/比较/强度/动态)相对指标、各种平均数算法、众数、中位数、四分位数、平均差、标准差、标准差系数、偏态和峰度、发展速度和增长速度、总指数(很重要)、平均指标指数、重要经济指数的编制(上证指数、工业产品产量总指数、农副产品收购价格指数)统计学(第三版课后习题答案) 贾俊平版2.1 (1)属于顺序数据。
(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)频率%A1414B2121C3232D1818E1515合计100100(3)条形图(略)2.2 (1)频数分布表如下:(2)某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40 100.0 2.3 频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)25~30 30~35 35~40 40~45 45~5046159610.015.037.522.515.0合计40 100.0 直方图(略)。
2.4 (1)排序略。
(2)频数分布表如下:100只灯泡使用寿命非频数分布按使用寿命分组(小时)灯泡个数(只)频率(%)650~660 2 2660~670 5 5670~680 6 6680~690 14 14690~700 26 26700~710 18 18710~720 13 13720~730 10 10730~740 3 3740~750 3 3合计100 100 直方图(略)。
2.5 (1)属于数值型数据。
(2)分组结果如下:分组天数(天)-25~-20 6-20~-15 8-15~-10 10-10~-5 13-5~0 120~5 45~10 7合计60(3)直方图(略)。
统计学第六版贾俊平第6章

统计学
第六版
2)分布
(图示)
选择容量为n 的 不同容量样本的抽样分布
n=1 n=4 n=10
总体
简单随机样本
计算样本方差S2
计算卡方值
n=20
2 = (n-1)S2/σ2
计算出所有的
2
2值
6 - 31
统计学
第六版
6.3 样本统计量的抽样分布
(两个总体参数推断时)
一. 两个样本均值之差的抽样分布 二. 两个样本比例之差的抽样分布 三. 两个样本方差比的抽样分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 17
x
X
统计学
第六版
中心极限定理
(central limit theorem)
X
的分 布趋 于正 态分 布的 过程
6 - 18
统计学
第六版
抽样分布与总体分布的关系
总体分布
(一个总体参数推断时)
一. 样本均值的抽样分布 二. 样本比例的抽样分布 三. 抽样方差的抽样分布
6-9
统计学
第六版
样本均值的抽样分布
6 - 10
统计学
第六版
样本均值的抽样分布
1. 容量相同的所有可能样本的样本均值的概 率分布
2. 一种理论概率分布 3. 进行推断总体总体均值的理论基础
6 - 11
3. 两个样本方差比的抽样分布,服从分子自由度 为(n1-1),分母自由度为(n2-1) F分布,即
S12 ~ F ( n1 1, n 2 1) 2 S1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 -7
统计学
STATISTICS
假设检验的基本思想
这个值不像我 们应该得到的 样本均值 ...
抽样分布
... 因此我们拒
绝假设 = 50
... 如果这是总 体的假设均值
20
= 50
6 -8
H0
样本均值
统计学
STATISTICS
总体
☺☺ ☺
☺☺ ☺☺ ☺☺
6 -9
假设检验的过程
提出假设
我认为人口的平 均年龄是50岁
解:研究者想收集证据予以支持的假 设是“该城市中家庭拥有汽车的比率 超过30%”。建立的原假设和备择假设 为
H0 : 30% H1 : 30%
6 - 15
统计学
STATISTICS
提出假设
(结论与建议)
1. 原假设和备择假设是一个完备事件组,而且 相互对立
▪ 在一项假设检验中,原假设和备择假设必有一 个成立,而且只有一个成立
6 - 12
统计学
STATISTICS
提出假设
(例题分析)
【例】一种零件的生产标准是直径应为10cm,为对生 产过程进行控制,质量监测人员定期对一台加工机 床检查,确定这台机床生产的零件是否符合标准要 求。如果零件的平均直径大于或小于10cm,则表 明生产过程不正常,必须进行调整。试陈述用来检 验生产过程是否正常的原假设和被择假设
▪ 指定为符号 =, 或
▪ 例如, H0 : 10cm
6 - 11
统计学
STATISTICS
备择假设
(alternative hypothesis)
1. 研究者想收集证据予以支持的假设 2. 也称“研究假设” 3. 总是有符号 , 或 4. 表示为 H1
▪ H1 : <某一数值,或 某一数值 ▪ 例如, H1 : < 10cm,或 10cm
解:研究者想收集证据予以证明的 假设应该是“生产过程不正常”。 建立的原假设和备择假设为
H0 : 10cm H1 : 10cm
6 - 13
统计学
STATISTICS
提出假设
(例题分析)
【例】某品牌洗涤剂在它的产品说明书中声称:平 均净含量不少于500克。从消费者的利益出发, 有关研究人员要通过抽检其中的一批产品来验 证该产品制造商的说明是否属实。试陈述用于 检验的原假设与备择假设
作出决策 拒绝假设
别无选择!
抽取随机样本
☺均x =值20☺
统计学
STATISTICS
原假设与备择假设
统计学
STATISTICS
原假设
(null hypothesis)
1. 研究者想收集证据予以反对的假设
2. 又称“0假设”
3. 总是有符号 , 或 4. 表示为 H0
▪ H0 : = 某一数值
2. 先确定备择假设,再确定原假设
3. 等号“=”总是放在原假设上
4. 因研究目的不同,对同一问题可能提出不同 的假设(也可能得出不同的结论)
6 - 16
统计学
STATISTICS
双侧检验与单侧检验
统计学
STATISTICS
双侧检验与单侧检验
1. 备择假设没有特定的方向性,并含有符号 “”的假设检验,称为双侧检验或双尾 检验(two-tailed test)
解:研究者抽检的意图是倾向于 证实这种洗涤剂的平均净含量并 不符合说明书中的陈述 。建立的 原假设和备择假设为
6 - 14 H0 : 500 H1 : < 500
500g
统计学
STATISTICS
提出假设
(例题分析)
【例】一家研究机构估计,某城市中家庭拥有汽车 的比率超过30%。为验证这一估计是否正确, 该研究机构随机抽取了一个样本进行检验。试 陈述用于检验的原假设与备择假设
错误
错误
正确
决策
实际情况 H0为真 H0为假
未拒绝H0
正确决策
(1 – )
第Ⅱ类错
误()
拒绝H0
第Ⅰ类错 正确决策
误() (1-)
6 - 22
统计学
STATISTICS
错误和 错误的关系
和 的关系就像 翘翘板,小 就 大, 大 就小
统计学
STATISTICS
第 6 章 假设检验
6.1 假设检验的基本问题 6.2 一个总体参数的检验 6.3 两个总体参数的检验
6 -1
统计学 假设检验在统计方法中的地位
STATISTICS
统计方法
描述统计
推断统计
参Байду номын сангаас估计
假设检验
6 -2
统计学
STATISTICS
学习目标
1. 假设检验的基本思想和原理 2. 假设检验的步骤 3. 一个总体参数的检验 4. 两个总体参数的检验 5. P值的计算与应用 6. 用Excel进行检验
左侧检验 右侧检验
H0 : = 0 H0 : 0 H0 : 0
备择假设 H1 : ≠0 H1 : < 0 H1 : > 0
6 - 19
统计学
STATISTICS
两类错误与显著性水平
统计学
STATISTICS
假设检验中的两类错误
1. 第Ⅰ类错误(弃真错误)
▪ 原假设为真时拒绝原假设
▪ 第Ⅰ类错误的概率记为
6 -3
统计学
STATISTICS
6.1 假设检验的基本问题
一、假设的陈述 二、两类错误与显著性水平 三、统计量与拒绝域 四、利用P值进行决策
统计学
STATISTICS
假设的陈述
统计学
STATISTICS
什么是假设?
(hypothesis)
对总体参数的具体数 值所作的陈述
▪ 总体参数包括总体均值、 比率、方差等
2. 备择假设具有特定的方向性,并含有符号 “>”或“<”的假设检验,称为单侧检验或 单尾检验(one-tailed test)
▪ 备择假设的方向为“<”,称为左侧检验 ▪ 备择假设的方向为“>”,称为右侧检验
6 - 18
统计学
STATISTICS
双侧检验与单侧检验
(假设的形式)
假设 原假设
单侧检验 双侧检验
▪ 分析之前必须陈述
我认为这种新药的疗效 比原有的药物更有效!
6 -6
统计学
STATISTICS
什么是假设检验?
(hypothesis test)
1. 先对总体的参数(或分布形式)提出某种假 设,然后利用样本信息判断假设是否成 立的过程
2. 有参数检验和非参数检验
3. 逻辑上运用反证法,统计上依据小概率 原理
• 被称为显著性水平
2. 第Ⅱ类错误(取伪错误)
▪ 原假设为假时未拒绝原假 设
▪ 第Ⅱ类错误的概率记为
(Beta)
6 - 21
统计学
STATISTICS
假设检验中的两类错误
(决策结果)
H : 无罪 假设检验就好像一场审判过程 0 陪审团审判
统计检验过程
H0 检验
裁决 无罪 有罪
实际情况
无罪
有罪
正确