一元一次方程一次方程组专题训练

合集下载

完整版七年级数学一元一次方程应用题专题练习

完整版七年级数学一元一次方程应用题专题练习

完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。

问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。

变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。

请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。

2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。

变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。

一个盒身与两个盒底配成一套罐头盒。

现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。

变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。

如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。

一元一次方程组20道及答案

一元一次方程组20道及答案

一元一次方程组20道及答案
一、题目
1.求解方程组: \[ \begin{cases} x+2y=5 \\ 3x-2y=8 \end{cases} \]
2.解方程组: \[ \begin{cases} 2x-y=7 \\ 3x+4y=24 \end{cases} \]
3.求解下列方程组: \[ \begin{cases} 4x-3y=2 \\ 6x-5y=1 \end{cases} \] …
二、答案
1.第一题答案: $ x=2, y=1 $
2.第二题答案: $ x=4, y=1 $
3.第三题答案: $ x=1, y=2 $

三、解答
1.第一题解答:
方程组为: \[ \begin{cases} x+2y=5 \\ 3x-2y=8 \end{cases} \]
解方程可得: $ x=2, y=1 $
2.第二题解答:
方程组为: \[ \begin{cases} 2x-y=7 \\ 3x+4y=24 \end{cases} \]
求解可得: $ x=4, y=1 $
3.第三题解答:
方程组为: \[ \begin{cases} 4x-3y=2 \\ 6x-5y=1 \end{cases} \]
解得: $ x=1, y=2 $

四、总结
通过解这20道一元一次方程组题目,我们可以加深对于方程组解的理解。

这些题目的解答过程中,可以运用代入法、消元法等数学方法来求解方程组,希望此练习对大家的数学能力有所提升。

中考数学《一元一次方程》专题练习(附带答案)

中考数学《一元一次方程》专题练习(附带答案)

中考数学《一元一次方程》专题练习(附带答案)一、单选题1.方程x ﹣3=2x ﹣4的解为( )A .1B .﹣1C .7D .﹣72.下列等式变形正确的是( ) A .如果s=12ab ,那么b=s2aB .如果12x=6,那么x=3C .如果x ﹣3=y ﹣3,那么x ﹣y=0D .如果mx=my ,那么x=y3.某种商品,若单价降低110,要保持销售收入不变,那么销售量应增加( )A .110B .19C .18D .174.一个长方形的周长为 26cm ,若这个长方形的长减少 2cm ,宽增加 3cm ,就可以成一个正方形.设长方形的长为 xcm ,可列方程( ) A .x +2=(13−x)−3 B .x +2=(26−x)−3 C .x −2=(26−x)+3D .x −2=(13−x)+35.某超市将两件商品都以84元售出,一件提价 40% ,一件降价 20% ,则最后是( )A .无法确定B .亏本3元C .盈利3元D .不赢不亏6.下列方程变形中,正确的是( )A .方程3x +4=4x −5,移项得3x −4x =5−4B .方程−32x =4,系数化为1得x =4×(−32)C .方程3−2(x +1)=5,去括号得3−2x −2=5D .方程x−12−1=3x+13,去分母得3(x −1)−1=2(3x +1) 7.已知关于x 的一元一次方程 12020x +3=2x +b 的解为x=-3,那么关于y 的一元一次方程 12020(y +1)+3=2(y +1)+b 的解为( ) A .y=1B .y=-1C .y=-3D .y=-48.若(m ﹣2)x |2m ﹣3|=6是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数9.若关于x 的方程(k+1)x 2﹣ √2−k x+ 14=0有实数根,则k 的取值范围是( )A .k≤2且k≠﹣1B .k≤ 12且k≠﹣1C .k≤ 12D .k≥ 1210.下面是一个被墨水污染过的方程 12(1-2ax)=x+a ,答案显示此方程的解是x=-2,被墨水遮盖的是一个常数a ,则这个常数是( )A .1B .−52C .52D .−1211.把方程x2﹣x−16=1去分母,正确的是( )A .3x ﹣(x ﹣1)=1B .3x ﹣x ﹣1=1C .3x ﹣x ﹣1=6D .3x ﹣(x ﹣1)=612.解方程 2x−13+3x−44=0 时,去分母正确的是( ) A .4(2x −1)+9x −4=12 B .4(2x −1)+3(3x −4)=12 C .8x −1+9x +12=0D .4(2x −1)+3(3x −4)=0二、填空题13.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程 .14.如表所示,已知a ,b 满足表格中的条件,则b 的值是 .x ﹣1 ax ﹣1 ax 2+b415.若关于x ,y 的方程组{x −y =m +2x +3y =m的解适合方程x +y =−2,则m = .16.某村原有林地108公顷,旱地54公公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%.设把x 公顷旱地改为林地,则为可列方程为 .17.将方程 2x +3y =6 写成用含x 的代数式表示y ,则y= .18.在①2x ﹣1②2x+1=3x ③|π﹣3|=π﹣3④t+1=3中,等式有 方程有 (填入式子的序号)三、综合题19.在习近平主席提出的“一带一路”战略构想下,甲、乙两城市决定开通动车组高速列车,如图, AD是从乙城开往甲城的第一列动车组列车距甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象, BC 是一列从甲城开往乙城的普通快车离开甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象,它比第一列动车组动车晚出发 1 小时,请根据图中的信息,解答下列问题:(1)填空:甲、乙两城市之间的距离为千米(2)若普通快车的速度为100km/ℎ,①用待定系数法求BC的函数表达式,并写出自变量的取值范围:②若普通快车与第一列动车组列车相遇后0.4小时与第二列动车组列车相遇,请直接写出相邻两列动车组列车间隔的时间③在②的条件下,请直接写出第二列动车组列车与第一列动车组列车和普通快车距离相等时的t值.20.某超市购进甲、乙两种节能灯共1200只,这两种商品的进价、售价如下表进价(元|只)售价(元|只)甲2530乙4560(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?21.根据下列条件列出方程(1)x比它的78大15(2)2xy与5的差的3倍等于24(3)y的13与5的差等于y与1的差.22.“双11”期间,某市各大商场掀起促销狂潮,现有甲、乙、丙三个商场开展的促销活动如下表所示商场优惠活动甲全场按标价的6折销售乙实行“每满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“每满100元减50元的优惠”(如某顾客购物220元,他只需付款120元)(1)三个商场同时出售某种标价为370元的破壁机和某种标价为350元的空气炸锅,若赵阿姨想买这两样厨房电器,她选择哪家商场最实惠?(2)黄先生发现在甲、乙商场同时购买一件标价为280元的上衣和一条标价为200多元的裤子,最后付款额一样,请问这条裤子的标价是多少元?(3)如果某品牌的巴西大豆在三所商场的标价都是5元/kg,请探究是否存在分别在三个商场付同样多的100多元,并且都能够购买同样质量同品牌的该大豆?如果存在,请求出在乙商场购买该大豆的方案(并指出在三个商场购买大豆的质量是多少千克,支付的费用是多少元)如果不存在,请直接回答“不存在”.23.如图,点A、B、C是数轴上三点,点A、B、C表示的数分别为-10、2、6,我们规定数铀上两点之间的距离用字母表示.例如点A与点B之间的距离,可记为AB(1)写出AB= ,BC=,AC=(2)点P是A、C之间的点,点P在数轴上对应的数为x①若PB=5时,则x=②PA =,PC=(用含x的式子表示)(3)动点M、N同时从点A、C出发,点M以每秒2个单位长度的速度沿数轴向右运动,点N以每秒2个单位长度的速度沿数向左运动,设运动时间为t(t>0)秒,求当t为何值时,点M、N之间相距2个单位长度?24.某商场将进货价为35元台灯以50元销售价售出,平均每月能售出500个,市场调研表明当销售价每上涨1元时,其销售量就将减少10个,若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空涨价后,每个台灯的销售价为元,每台利润为元,商场的台灯平均每月的销售量为台,共可获利元.(2)如果商场要想销售利润平均每月至少达到10000元,现有三种方案.方案一“在原售价每台50元的基础上再上涨25元”方案二“在原售价每台50元的基础上在上涨15元”方案三“在原售价每台50元的基础上在上涨8元”.若为了减少库存,应该采用哪一种方案?并说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】D5.【答案】C6.【答案】C7.【答案】D8.【答案】A9.【答案】C 10.【答案】B 11.【答案】D 12.【答案】D 13.【答案】8x+38=50 14.【答案】3 15.【答案】−316.【答案】20%(108+x )=54﹣x 17.【答案】6−2x 3 (或 2−23x )18.【答案】②③④②④ 19.【答案】(1)600(2)解①设BC 的解析式为s=kt+b , 由题意B (1,0),C (7,600),则有 {k +b =07k +b =600 ,解得 {k =100b =−100 .∴s=100t − 100(1≤t≤7)②设普通快车与第一列动车组列车x 小时后相遇,则100(x -1)+150x=600 解得x=145(小时) 设第二列动车组列车行驶了y 小时与普通快车相遇,则150y+100×(0.4+ 145-1)=600 解得y=3815∴相邻两列动车组列车间隔的时间= 145 − ( 3815 − 0.4)= 23(小时)③当t= 145小时时,普通快车与第一列动车组列车相遇,此时第二列动车组列车与第一列动车组列车和普通快车距离相等.当 100(t −1)+150(t −23)−600=23×150 时,第二列动车组列车与第一列动车组列车和普通快车距离相等.∴100(t −1)+150(t −23)−600=23×150解得 t =185答第二列动车组列车与第一列动车组列车和普通快车距离相等时,t 的值是 145 或 185 .20.【答案】(1)解设商场购进甲型节能灯x 只,则购进乙型节能灯(1200-x )只由题意,得25x+45(1200-x )=46000 解得x=400购进乙型节能灯1200-x=1200-400=800只.答购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元(2)解设乙型节能灯需打a折0.1×60a-45=45×20%解得a=9答乙型节能灯需打9折.21.【答案】(1)解根据题意可得x﹣78x=15(2)解根据题意可得3(2xy﹣5)=24(3)解根据题意可得13y﹣5=y﹣122.【答案】(1)解选甲商场需付(370+350)×0.6=432(元)选乙商场需付370+(350−3×100)=420(元)选丙商场需付370+350−7×50=370(元)因为370<420<432,故答案为丙商场最实惠.(2)解设这条裤子的标价为x元.根据题意,得(280+x)×0.6=280+x−2×100解得x=220.故这条裤子的标价为220元.(3)解设在乙商场先购买ykg大豆,需付100多元,再用100元的购物券再在乙商场购买100÷5=20kg 大豆.根据题意,得5(y+20)×0.6=5y,解得y=30.此时,在甲商场和乙商场都购买了30+20=50kg大豆,都需付30×5=150元.在丙商场购买50kg需付5×50−2×50=150元.所以存在分别在三个商场付同样多的100多元,并且都能买到同样质量同样品牌的该大豆.所以在乙商场的购买方案为先购买30kg大豆付150元,再用100元的购物券再在乙商场购买20kg大豆,共付了150元,购买了50kg大豆.23.【答案】(1)12416(2)解-3x+106-x(3)解相遇前,(6-2t)-(-10+2t) =2,解得t= 3.5相遇后(-10+2t)-(6-2t) = 2,解得t= 4.5.答当t=3.5或t=4.5时,点M、N之间相距2个单位长度.24.【答案】(1)(50+a)(15+a)(500-10a)(15+a)(500-10a)(2)解方案一当a=25时,(15+25)(500-10×25)=10000(元).方案二当a=15时,(15+15)(500-10×15)=10500(元).方案三当a=8时,(15+8)(500-10×8)=9660(元)<10000元,故舍去该方案.因为要减少库存,所以应采用方案二.。

一元一次方程组练习题

一元一次方程组练习题

一元一次方程组练习题第一篇:一元一次方程组练习题(1-10)1. 某书店销售了3本数学书和5本英语书,共收入65元。

已知数学书的价格是英语书的2倍,求数学书和英语书的价格各是多少元?设数学书的价格为x元,英语书的价格为y元。

根据题意,我们可以得到以下两个方程:1 x + 5y = 65 (1)x = 2y (2)将方程(2)代入方程(1),得到:2 (2y) + 5y = 653 y + 5y = 654 y = 65解得y = 65/11 = 5将y = 5代入方程(2),得到:x = 2(5) = 10因此,数学书的价格为10元,英语书的价格为5元。

2. 一个长方形的长度是宽度的3倍,其周长为28cm,求该长方形的长和宽各是多少厘米?设长方形的宽度为x厘米,则长度为3x厘米。

根据题意,我们可以得到以下两个方程:5 (x + 3x) = 28 (1)x + 3x = 14 (2)解方程(2),得到:6 x = 14x = 14/4 = 3.5将x = 3.5代入方程(1),得到:7 (3.5 + 3(3.5)) = 288 (3.5 + 10.5) = 289 (14) = 28因此,长方形的长为14厘米,宽为3.5厘米。

3. 一架飞机从A地到B地的飞行速度是每小时350公里,返回时的飞行速度是每小时400公里,往返共花费6个小时,求A地到B地的距离是多少公里?设A地到B地的距离为x公里。

根据题意,我们可以得到以下两个方程:x/350 + x/400 = 6 (1)解方程(1),得到:[(x * 400) + (x * 350)] / (350 * 400) = 6(750x) / 140000 = 610 x = 840000x = 840000/750 = 1120因此,A地到B地的距离是1120公里。

4. 一个三位数,百位数数字是个位数和十位数数字之和的两倍,且百位数数字加十位数数字再加个位数数字等于12,求该三位数。

备战中考数学一元一次方程专题综合能力提升练习(含解析)

备战中考数学一元一次方程专题综合能力提升练习(含解析)

2019备战中考数学一元一次方程专题-综合能力提升练习(含解析)一、单选题1.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元.若设x月后他能捐出100元,则下列方程中能正确计算出x的是:()A. 10x+20=100B. 10x-20=100C. 20-10x=100D. 20x+10=1002.如图所示,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上的-3.6和x,则( )A. 9<x<10B. 10<x<11 C. 11<x<12 D. 12<x<133.某商品进价是200元,标价是300元,要使该商品利润为20%,则该商品销售应按()A. 7折B. 8折C. 9折D. 6折4.把方程x=1变形为x=2,其依据是()A. 等式的性质1B. 等式的性质2 C. 分式的基本性质 D. 不等式的性质15.如果x=y,a为有理数,那么下列等式不一定成立的是()A. 4﹣y=4﹣x B. x2=y2C.D. ﹣2ax=﹣2ay6.若a:2=b:3=c:7,且a﹣b+c=12,则2a﹣3b+c等于()A. 2B. 4C.D. 127.某工程甲独做12天完成,乙独做8天完成,现在由甲先做3天,乙再参加合做.设完成此工程一共用了x天,则下列方程正确的是()A. +=1B. +=1 C. +=1 D. +=18.某商店一套服装进价为300元,如果按标价的八折销售可获利80元,那么该服装的标价是()A. 375元B. 380元C. 450元D. 475元9.下列等式中,方程的个数为()①5+3=8;②a=0;③y2﹣2y;④x﹣3=8.A. 1B. 2C. 3D. 410.已知a+ =b﹣= =2019,且a+b+c=2019k,那么k的值为()A.B. 4C. ﹣D. ﹣411.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是()A. 10岁B. 15岁C. 20岁D. 30岁12.已知3是关于x的方程2x-a=1的解,则a的值是()A. -5B. 5C. 7D. 2二、填空题13.方程﹣=1可变形为﹣=________.14.用长12cm的铁丝围成一个长是宽2倍的长方形,则长方形的面积是________15.方程8x=16两边同时________ 得到另一个方程4x=8,8x=16与4x=8的解________ .像这样,两个方程的解相同,我们称这两个方程为________ .16.根据图中提供的信息,可知一个杯子的价格是________元.17.已知x=﹣1是关于x的方程2x﹣3a=﹣4的解,则a为________.18.校用56m长的篱笆围成一个长方形的生物园,要使长为16 m,则宽为________m.19.方程2x﹣3=6的解是________.三、计算题20.解方程:x﹣=1﹣.21.计算题(1)计算:;(2)解方程:.22.定义新运算符号“*”的运算过程为a*b= a﹣b,试解方程2*(2*x)=1*x.23.解方程:﹣3(2+x)=2(5﹣x).四、解答题24.指出下列方程中的未知数是什么,方程的左边是什么.方程的右边是什么?并且判断它否是一元一次方程?(1)3=2x﹣1;(2)x+2y=7;(3)x2+5x﹣1=5;(4)x2=y2+2y;(5)x﹣π=3;(6)3m+5=﹣4;(7)﹣=1.25.已知关于x的方程(k+1)+(k﹣3)x﹣1=0(1)当k取何值时,它是一元一次方程?(2)当k取何值时,它是一元二次方程?五、综合题26.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使=b,点Q为PB的中点,请画出图形并求出线段AQ的长.27.我国某部边防军小分队成一列在野外行军,通讯员在队伍中,数了一下他前后的人数,发现前面人数是后面的两倍,他往前超了6位战士,发现前面的人数和后面的人数一样.(1)这列队伍一共有多少名战士?(2)这列队伍要过一座320米的大桥,为安全起见,相邻两个战士保持相同的一定间距,行军速度为5米/秒,从第一位战士刚上桥到全体通过大桥用了100秒时间,请问相邻两个战士间距离为多少米(不考虑战士身材的大小)?28.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?答案解析部分一、单选题1.【答案】A【考点】一元一次方程的实际应用-和差倍分问题【解析】【解答】根据题意得,月存钱为,则可列方程为故A符合题意.故答案为:A.【分析】根据x个月存的钱+原有的20元=100元列方程.2.【答案】C【考点】一元一次不等式组的应用【解析】【解答】解:根据题意得:x+3.6=15,解得:x=11.4 ;故答案为: C【分析】根据数轴上两点间的距离得出原点右边的线段长度+原点左边的线段长度=15,列出方程,求解得出x的值,从而得出答案。

一元一次方程组题目

一元一次方程组题目

一元一次方程组题目下列哪一组方程构成了一元一次方程组?A. { x + y = 1, x - y = 2 }B. { x2 + x = 1, x - 1 = 0 }C. { x + 1 = 2, 2x - 1 = 3 }D. { x/y = 1, x + y = 2 }对于一元一次方程组 { 2x + y = 5, x - y = 1 },下列哪个选项是其解?A. { x = 2, y = 1 }B. { x = 1, y = 2 }C. { x = 3, y = -1 }D. { x = -1, y = 3 }已知一元一次方程组的解为 { x = 3, y = -2 },则下列哪个方程可能是该方程组中的一个方程?A. x + y = 1B. 2x - y = 5C. x - 2y = 8D. 3x + y = 7对于一元一次方程组,如果其中一个方程的解能使另一个方程的左右两边相等,则称这两个方程为“相容方程”。

下列哪一组方程是相容方程?A. { x + 1 = 2, x - 1 = 3 }B. { 2x = 4, x + 2 = 1 }C. { x/2 = 1, 2x - 1 = 3 }D. { x - 3 = -1, 2x + 1 = 5 }一元一次方程组的解集是满足所有方程的未知数的集合。

下列哪个选项描述了一元一次方程组 { x + y = 3, x - y = 1 } 的解集?A. 所有满足 x + y = 3 的 (x, y) 的集合B. 所有满足 x - y = 1 的 (x, y) 的集合C. 所有同时满足 x + y = 3 和 x - y = 1 的 (x, y) 的集合D. 所有满足 x = 2 和 y = 1 的 (x, y) 的集合已知一元一次方程组的增广矩阵为 \begin{bmatrix} 1 & 1 & 3 \ 1 & -1 & 1 \end{bmatrix},则下列哪个选项是该方程组的解?A. { x = 2, y = 1 }B. { x = 1, y = 2 }C. { x = 3, y = -1 }D. { x = -1, y = 3 }对于一元一次方程组,如果其中一个方程的解不能使另一个方程的左右两边相等,则称这两个方程为“不相容方程”。

一元一次方程组练习题

一元一次方程组练习题

一元一次方程组练习题一元一次方程组练习题一元一次方程组是初中数学中的基础知识点之一,它是解决实际问题的重要工具。

通过练习一元一次方程组的题目,我们可以提高我们的数学思维能力和解决实际问题的能力。

下面,我将给大家提供一些一元一次方程组的练习题,希望能够帮助大家更好地理解和掌握这一知识点。

1. 小明和小红一起去超市买东西,小明买了3个苹果和2个橘子,一共花了15元;小红买了2个苹果和4个橘子,一共花了14元。

问苹果的价格是多少,橘子的价格是多少?解:设苹果的价格为x元,橘子的价格为y元。

根据题目中的信息,我们可以列出如下的方程组:3x + 2y = 152x + 4y = 14接下来,我们可以使用消元法或代入法来解这个方程组。

这里我们使用代入法。

首先,我们可以从第一个方程中解出x的值:3x = 15 - 2yx = (15 - 2y) / 3然后,我们将x的值代入第二个方程中:2((15 - 2y) / 3) + 4y = 14化简得到:10 - 4y + 12y = 428y = 32y = 4将y的值代入第一个方程中,可以解出x的值:3x + 2(4) = 153x + 8 = 153x = 7x = 7 / 3所以,苹果的价格为7/3元,橘子的价格为4元。

2. 一家餐馆的午餐套餐包括一份主菜和两份配菜,共计花费28元。

某天,小明去餐馆吃午餐,他点了一份鱼香肉丝作为主菜,还点了两份土豆丝和一份西红柿炒蛋作为配菜。

已知鱼香肉丝的价格是8元,土豆丝的价格是3元,西红柿炒蛋的价格是5元。

问小明需要支付多少钱?解:设小明需要支付的金额为x元。

根据题目中的信息,我们可以列出如下的方程:8 + 2(3) + 5 = x8 + 6 + 5 = x19 = x所以,小明需要支付19元。

通过这两个练习题,我们可以看到一元一次方程组的解题步骤是相似的。

首先,我们要根据实际问题列出方程组;然后,我们可以使用消元法或代入法来解方程组;最后,我们要对解进行验证,确保解符合实际问题的要求。

一元一次方程练习题20道

一元一次方程练习题20道

一元一次方程练习题20道第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠ ,b≠3 B.a= ,b=-3C.a≠ ,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1% 15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:-9.5.20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员: “我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元 4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x(+ )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.=========================================================== ===========3.2 解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点1 合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程=2去分母,得x-12=10;②由方程x= 两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2- 两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C.D.4.合并下列式子,把结果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________;(3)4y-2.5y-3.5y=__________.5.解下列方程.(1)6x=3x-7 (2)5=7+2x(3)y- = y-2 (4)7y+6=4y-36.根据下列条件求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.知能点2 用一元一次方程分析和解决实际问题9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,•桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?13.已知关于x的方程x=-2的根比关于x的方程5x-2a=0的根大2,求关于x 的方程-15=0的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答案:1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B [点拨:方程x= ,两边同除以,得x= )3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x (2)4y (3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,合并,得y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程:x+8=2,移项,得x=2-8,合并,得x=-6,系数化为1,得x=-10.7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19] 9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.解这个方程,得x=7.答:桶中原有油7千克.[点拨:还有其他列法]10.解:设应该从盘A内拿出盐x克,可列出表格:盘A 盘B原有盐(克)50 45现有盐(克)50-x 45+x设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A内拿出盐2.5克放入到盘B内.11.解:(1)设爸爸追上小明时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有280米.12.(1)x=-[点拨:由题意可列方程2x+8=6-2x,解得x=- ](2)x=-[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]13.解:∵x=-2,∴x=-4.∵方程x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴-15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得1.6+1+x+1=2(3-2×0.5)解得x=0.4,即CE的长为0.4千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),则所用时间为(•1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),则所用时间为(1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A).601. 2(x-2)-3(4x-1)=9(1-x)2. 11x+64-2x=100-9x3. 15-(8-5x)=7x+(4-3x)4. 3(x-7)-2[9-4(2-x)]=225. 3/2[2/3(1/4x-1)-2]-x=26. 2(x-2)+2=x+17. 0.4(x-0.2)+1.5=0.7x-0.388. 30x-10(10-x)=1009. 4(x+2)=5(x-2)10. 120-4(x+5)=2511. 15x+863-65x=5412. 12.3(x-2)+1=x-(2x-1)13. 11x+64-2x=100-9x14. 14.59+x-25.31=015. x-48.32+78.51=8016. 820-16x=45.5×817. (x-6)×7=2x18. 3x+x=1819. 0.8+3.2=7.220. 12.5-3x=6.5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程、一次方程组专题训练
等式还具有对称性和传递性:即⎩
⎨⎧=====C A C B B A A B B A 则若则若,,;,
二、方程和方程解的概念
1.方程:含有未知数的( )叫做方程。

2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解,只含有一个未知数的方程的解也叫做根。

3.解方程:求方程的解的过程,叫做解方程。

三、一次方程及其解法
1.一元一次方程:只含有( )并且未知数的次数为( ),这样的方程叫做一元一次方程。

任何一个元一次方程都可以化成( )(b a ,是常数,且0≠a )的形式。

2.解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化成1.
四、一次方程的应用
1.列方程解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程式;(4)解方程;(5)检验结果得出最终答案。

1.下列各式中,是方程的是( )
A.3524-=-
B.02≤-x x
C.x x 1+
D.23+=x x 2.下列等式变形错误的是( )
A.若4,31==-x x 则
B.若x x x x 21,12
1=-=-则 C.若0,33=--=-y x y x 则 D.若423,243-=-=+x x x x 则
3.一元二次方程082=-x 的解是( )
4.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x 元,则x 满足的方程是( )
5.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两,棵树的间隔相等。

如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完。

设原有树苗x 棵,则根据题意列出方程为:( )
6.小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟。

问他家到学校的路程是多少km ?设他家到学校的路程是x km ,则根据题意列出方程为:( )
7.方程x x =-13的解为( )
8.已知关于x 的方程423=-m x 的解是m x =,则m 的值是( )
9.某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成。

现在由初二、初三学生一起工作x 小时,完成了任务。

根据题意,列方程:( )
10.“五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元。

设该电器的成本价为x 元,根据题意,列方程为:( )
11.如果3
72131
-+a a 与互为相反数,那么=a ( ) 12.小丁在解方程x x a (135=-为未知数)时,误将x -看作x +,解得方程的解是2-=x ,则原方程的解为( )
13.某公路一侧原有路灯106盏,相邻两盏灯的距离为36米,为节约用电,现计划全部更换为新型节能灯,且相邻两盏灯的距离变为54米,则需要更换节能灯( )盏。

14.解方程13
3221=--+x x 15.某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件。

已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件。

求该企业分别捐给甲、乙两所学校的矿泉水各多少件?
16.某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开放商代为租赁5年,5年期满后由开放商以比原商铺标价高20%的价格进行回购。

投资者可以在以下两种购铺方案中做选择:方案一:投资者按商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%;方案二:投资者按商铺标价的八五折一次性付清铺款,2年后,每年可获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用。

(1)请问,投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?
(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元,问:甲、乙两人各投资了多少万元?
五、二元一次方程组及其解法
1.含有( )未知数,并且未知数的次数都是1的方程叫做二元一次方程;使二元一次方程两边的值相等的未知数的值叫做二元一次方程的解。

2.含有两个未知数的两个一次方程所组成的一组方程叫做( ),二元一次方程(组)都是整式方程。

3.解二元一次方程的基本思想是( ),把二元一次方程组转化为( )方程。

4.二元一次方程的解法:(1)代入消元法:主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为( ),这种解方程组的方法称为代入消元法,简称代入法。

(2)加减消元法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法。

5.二元一次方程组的应用:与一元一次方程应用类似,具体步骤:审、设、列、解、检、答。

6.三元一次方程组:如果方程组中含有三个未知数,每个方程组中一共有三个方程,这样的方程组叫做三元一次方程组。

解法主要有加减消元法,若方程难解就用代入消元法。

练习题:
1.下列方程组中是二元一次方程组的是( )
A.⎩⎨⎧=+=21y x xy
B.⎪⎩⎪⎨⎧=+=-31325y x y x
C.⎪⎩⎪⎨⎧=-=+51302y x z x
D.⎪⎩
⎪⎨⎧=+=7325y x x 2.二元一次方程组⎩⎨⎧=-=+1
22y x y x 的解是( )
3.已知⎩⎨⎧==12y x 是二元一次方程组⎩
⎨⎧=-=+17by ax by ax 的解,则b a -的值为( ) 4.在方程723=+y x 中,若y x ,互为相反数,那么()()==y x ,
5.若方程6=+ny mx 的两个解是⎩⎨⎧-==⎩⎨⎧==12,11y x y x ,则()()==n m ,
6.解方程组⎩
⎨⎧=-=+52392y x y x 7.关于y x ,的方程组⎩⎨⎧=++=-m
y x m y x 523的解满足0>>y x ,则m 的取值范围是( )
8.某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%,问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为( )
9.解方程组⎪⎩
⎪⎨⎧=-+-=+-=++5212632z y x z y x z y x
10.童星玩具厂工人的工作时间为:每月22天,每天8小时。

工资待遇为:按件计酬,多劳多得,每月另加福利工资500元,按月结算。

该厂生产A 、B 两种产品,工人每生产一件A 种产品可得报酬1.50.元,每生产一件B 种产品可得报酬2.80元。

该工厂工人可选择A 、B 两种产品中的一种或两种进行生产,工人小李生产一件A 产品和一件B 产品需35分钟;生产3件A 产品和两件B 产品需要85分钟。

(1)小李生产1件A 产品需要( )分钟,生产一件B 产品需要( )分钟。

(2)求小李每月的工资收入范围
11.儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元。

已知书包标价比文具盒标价3倍少6元,那么书包和文具盒的标价各是多少元?
12.小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤。

妈妈:“今天买这两样菜共花了45元,上月买同量的这两种菜只要36元。

”爸爸:“报纸上说了萝卜的单价上涨了50%,排骨的单价上涨了20%。

”小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤)
13.已知:用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运11吨。

某物流公司现有31吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都装满货物。

根据以上信息,解答下列问题:
(1)1辆A 型车和1辆B 型车都装满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案
(3)若A 型车每辆需租金100元/次,B 型车每辆需租金120元/次。

请选出最省钱的租车方案,并求出最少租车费。

相关文档
最新文档