某校初三年级春游

合集下载

北京市北京师范大学第二附属中学西城实验学校2023年4月九年级数学零模试题

北京市北京师范大学第二附属中学西城实验学校2023年4月九年级数学零模试题

北师大二附中西城实验学校初三数学零模试卷2023.04一.选择题1.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.2.北京冬奥村是2022年北京冬季奥运会、冬残奥会最大的非竞赛类场馆之一,总建筑面积约38.66万平方米.其中38.66万用科学记数法可表示为()A .60.386610⨯B .53.910⨯C .53.86610⨯D .438.6610⨯3.如图是一个由5个小正方体和1个圆锥组成的立体图形,这个立体图形的主视图是()A .B .C .D .4.如图,在O 中,AD 是直径,35ABC ∠=︒,则CAD ∠等于()A .75︒B .65︒C .55︒D .45︒5.学校组织春游,安排给九年级三辆车,小明和小慧都可以从这三辆车中任选辆乘坐,小明和小慧乘坐同一辆车的概率是()A .12B .13C .29D .496.如果31a =-,那么代数式21(111aa a +÷--的值为()A .3B 32C .33D 37.如图是30名学生A ,B 两门课程成绩的统计图,若记这30名学生A 课程成绩的方差为21s ,B 课程成绩的方差为22s ,则21s ,22s 的大小关系为()A .21s <22s B .21s =22s C .21s >22s D .不确定8.如图①,底面积为30cm²的空圆柱容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h (cm )与注水时间t (s )之间的关系如图②.若“几何体”的下方圆柱的底面积为15cm²,求“几何体”上方圆柱体的底面积为()cm²A .24B.12C.18D.21二.填空题9.若代数式31x +有意义,则实数x 的取值范围是.10.分解因式:2428a ab -=.11.写出一个函数,满足当x >0时,y 随x 的增大而减小且图象过(1,3),则这个函数的表达式为.12.有一圆柱形木材,埋在墙壁中,其横截面如图所示,测得木材的半径为15cm ,露在墙体外侧的弦长18AB cm =,其中半径OC 垂直平分AB ,则埋在墙体内的弓形高CD =cm .13.中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:九百九十文钱共买一千个苦果和甜果,其中四文钱可买苦果七个,十一文钱可买甜果九个.问苦、甜果各几个?设苦果x 个,甜果y 个,则可列方程为.14.如图,在ABC ∆中,AB AC =,40A ∠=︒,以点C 为圆心,CA 长为半径画弧,交直线BC 于点P ,连结AP ,则BAP ∠的度数是.12题14题15题16题15.如图,在ABC ∆中,90C ∠=︒,6AC =,8BC =,点E ,F 分别是边AC 和AB 上的点,点A 关于EF 的对称点D 恰好落在BC 边上,当BDF ∆是直角三角形时,CD 的长是.16.如图,在Rt △AOB 中,OA =OB =2,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为.三.解答题17.(1)01113(4)2sin 604-°+π---+(;(2)解不等式组:3222(12)410x xx x -<⎧⎨-+⎩.18.已知x 2+2x ﹣1=0,求代数式(x +1)2+x (x +4)+(x ﹣3)(x +3)的值.19.关于x的一元二次方程x2﹣(m+3)x+m+2=0.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m的最小值.20.先阅读下列材料,再解答问题.尺规作图已知:△ABC,D是边AB上一点,如图1,求作:四边形DBCF,使得四边形DBCF是平行四边形.小明的做法如下:设计方案图2设计作图步骤,完成作图图3推理论证请你参考小明的做法,再设计一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.21.在平面直角坐标系xOy中,一次函数y=﹣x+b经过点(0,2).(1)求这个一次函数的解析式;(2)当x<4时,对于x的每一个值,函数y=﹣x+b的值与函数y=kx﹣k的值之和都大于0,直接写出k的取值范围.22.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长.23.为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a.这30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图:b.下表是这30名学生两次知识竞赛的获奖情况相关统计:参与奖优秀奖卓越奖人数101010第一次竞赛平均分828795人数21216第二次竞赛平均分848793c.第二次竞赛获卓越奖的学生成绩如下:90909191919192939394949495959698d.两次竞赛成绩样本数据的平均数、中位数、众数如下表:平均数中位数众数第一次竞赛m87.588第二次竞赛90n91根据以上信息,回答下列问题:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;(2)直接写出m,n的值;(3)可以推断出第次竞赛中初三年级全体学生的成绩水平较高,理由是.24.某公园在人工湖里安装一个喷泉,在湖心处竖直安装一根水管,在水管的顶端安一个喷水头,水柱从喷水头喷出到落于湖面的路径形状可以看作是抛物线的一部分,若记水柱上某一位置与水管的水平距离为d 米,与湖面的垂直高度为h 米,下面的表中记录了d 与h 的五组数据:d (米)01234h (米)0.51.251.51.250.5根据上述信息,解决以下问题:(1)在如下网格中建立适当的平面直角坐标系,并根据表中所给数据画出表示h 与d 函数关系的图象;(2)若水柱最高点距离湖面的高度为m 米,则m =;(3)现公园想通过喷泉设立新的游玩项目,准备通过只调节水管露出湖面的高度,使得游船能从水柱下方通过,如图所示,为避免游船被喷泉淋到,要求游船从水柱下方中间通过时,顶棚上任意一点到水柱的竖直距离均不小于0.5米.已知游船顶棚宽度为3米,顶棚到湖面的高度为1.5米,那么公园应将水管露出湖面的高度(喷水头忽略不计)至少调节到多少米才能符合要求?请通过计算说明理由(结果保留一位小数).25.如图,在Rt △ABC 中,∠BAC =90°,点D 为BC 边的中点,以AD 为直径作⊙O ,分别与AB ,AC 交于点E ,F ,过点E 作EG ⊥BC 于G .(1)求证:EG 是⊙O 的切线;(2)若AF =6,⊙O 的半径为5,求BE 的长.26.在平面直角坐标系xOy 中,已知抛物线y =x 2﹣2ax ﹣3.(1)求该抛物线的对称轴(用含a 的式子表示);(2)A (x 1,y 1),B (x 2,y 2)为该抛物线上的两点,若x 1=1﹣2a ,x 2=a +1,且y 1>y 2,求a 的取值范围.27.已知正方形ABCD,将边AB绕点A顺时针旋转α至线段AE,∠DAE的角平分线所在直线与直线BE 相交于点F.过点C作直线BE的垂线CH,垂足为点H.(1)当α为锐角时,依题意补全图形,并直接写出∠DEB的度数;(2)在(1)的条件下,写出线段BE和FH之间的数量关系,并证明;(3)设直线CH与直线DE相交于点P,若AB=2,直接写出线段AP长的最大值和最小值.28.对于平面内的点M和点N,给出如下定义:点P为平面内的一点,若点P使得△PMN是以∠M为顶角且∠M小于90°的等腰三角形,则称点P是点M关于点N的锐角等腰点.如图,点P是点M关于点N 的锐角等腰点.M在平面直角坐标系xOy中,点O是坐标原点.(1)已知点A(2,0),在点P1(0,2),P2(1,),P3(﹣1,),P4(,﹣)中,是点O关于点A的锐角等腰点的是.(2)已知点B(3,0),点C在直线y=2x+b上,若点C是点O关于点B的锐角等腰点,求实数b的取值范围.(3)点D是x轴上的动点,D(t,0),E(t﹣2,0),点F(m,n)是以D为圆心,2为半径的圆上一个动点,且满足n≥0.直线y=﹣2x+4与x轴和y轴分别交于点H,K,若线段HK上存在点E关于点F的锐角等腰点,请直接写出t的取值范围.。

七年级下数学一元一次不等式组应用题及练习含答案

七年级下数学一元一次不等式组应用题及练习含答案

七年级下数学一元一次不等式组的典型应用题列不等式(组)解应用题类型一例1. (桂林)某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”.理解这句话,有两层不等关系.(1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数.(2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车x辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意x应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲 3 1 12500 乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.2、某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。

2019-2020学年湖北省黄冈市蕲春县八年级第一学期期中数学试卷解析版

2019-2020学年湖北省黄冈市蕲春县八年级第一学期期中数学试卷解析版

2019-2020学年八年级(上)期中数学试卷一、选择题1.以下列各组线段为边,能组成三角形的是()A.1cm,2cm,3cm B.2cm,5 cm,8cmC.4 cm,5 cm,10 cm D.3 cm,4 cm,5 cm2.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个3.若一个正多边形的每一个外角都等于40°,则这个正多边形的边数是()A.7 B.8 C.9 D.104.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2 B.3 C.6 D.不能确定5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm6.如图,已知AF=AB,∠FAB=60°,AE=AC,∠EAC=60°,CF和BE交于O点,则下列结论:①CF=BE;②∠AMO=∠ANO;③OA平分∠FOE;④∠COB=120°,其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共8个小题)7.16的算术平方根是.8.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n=.9.已知BD为四边ABCD的对角线,AB∥CD,要使△ABD≌△CDB,利用“SAS”可加条件.10.如图,在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,若△ABC的周长为22,BC=6,则△BCD的周长为.11.如图B点在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B北偏东80°方向,则∠ACB=.12.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=.13.当2020+(﹣2a+1)2有最小值时,4040a﹣1=.14.若关于x、y的二元一次方程组的解满足x+y>1,则k的取值范围为.三、解答题(共10个大题)15.解方程组或不等式组.(1)(2)16.如图,点A,F,C,D在同一直线上,点B与点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC,求证:BC=EF.17.△ABC在平面直角坐标系中的位置如图所示,点A(﹣2,2),点B(﹣3,﹣1),点C(﹣1,1).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标.(2)求出△A1B1C1的面积.18.如图,AB=AE,∠1=∠2,AC=AD,求证:BC=DE.19.如图,在△ABC中,CA=CB,点D在BC上,且AB=AD=DC,求∠C的度数.20.如图,△ABC中,∠ABC与∠ACB的角平分线交于点F,过点F作DE∥BC,交AB于点D,交AC于点E.请猜想线段:DB、DE、EC之间的数量关系,并说明理由.21.如图,四边形ABCD中,∠A=∠B=90°,E是AB上一点,且AE=BC,∠1=∠2.(1)证明:AB=AD+BC;(2)判断△CDE的形状?并说明理由.22.如图是两位小朋友在探究某多边形的内角和时的一段对话,请根据他们的对话内容判断他们是在求几边形?少加的内角为多少度?23.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案?24.如图,△ABC和△ADC都是每边长相等的等边三角形,点E,F同时分别从点B,A出发,各自沿BA,AD方向运动到点A,D停止,运动的速度相同,连接EC,FC.(1)在点E,F运动过程中∠ECF的大小是否随之变化?请说明理由;(2)在点E,F运动过程中,以点A,E,C,F为顶点的四边形的面积变化了吗?请说明理由;(3)连接EF,在图中找出和∠ACE相等的所有角,并说明理由;(4)若点E,F在射线BA,射线AD上继续运动下去;(1)小题中的结论还成立吗?(直接写出结论,不必说明理由)参考答案一、选择题1.以下列各组线段为边,能组成三角形的是()A.1cm,2cm,3cm B.2cm,5 cm,8cmC.4 cm,5 cm,10 cm D.3 cm,4 cm,5 cm解:根据三角形的三边关系,知A、1+2=3,不能组成三角形;B、2+5<8,不能够组成三角形;C、4+5<10,不能组成三角形;D、3+4>5,能组成三角形.故选:D.2.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.3.若一个正多边形的每一个外角都等于40°,则这个正多边形的边数是()A.7 B.8 C.9 D.10解:∵360÷40=9,∴这个多边形的边数是9.故选:C.4.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2 B.3 C.6 D.不能确定解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=5﹣3=2.故选:A.5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm解:∵∠ACB=90°,BE平分∠ABC,DE⊥AB,∴DE=EC,∴AE+DE=AE+EC=AC=3cm,故选:B.6.如图,已知AF=AB,∠FAB=60°,AE=AC,∠EAC=60°,CF和BE交于O点,则下列结论:①CF=BE;②∠AMO=∠ANO;③OA平分∠FOE;④∠COB=120°,其中正确的有()A.1个B.2个C.3个D.4个解:∵△ABF和△ACE是等边三角形,∴AB=AF,AC=AE,∠FAB=∠EAC=60°,∴∠FAB+∠BAC=∠EAC+∠BAC,即∠FAC=∠BAE,在△ABE与△AFC中,,∴△ABE≌△AFC(SAS),∴BE=FC,故①正确,∠AEB=∠ACF,∵∠EAN+∠ANE+∠AEB=180°,∠CON+∠CNO+∠ACF=180°,∠ANE=∠CNO ∴∠CON=∠CAE=60°=∠MOB,∴∠BOC=180°﹣∠CON=120°,故④正确,连AO,过A分别作AP⊥CF与P,AM⊥BE于Q,如图,∵△ABE≌△AFC,∴S△ABE=S△AFC,∴•CF•AP=•BE•AQ,而CF=BE,∴AP=AQ,∴OA平分∠FOE,所以③正确,∵∠AMO=∠MOB+∠ABE=60°+∠ABE,∠ANO=∠CON+∠ACF=60°+∠ACF,显然∠ABE与∠ACF不一定相等,∴∠AMO与∠ANO不一定相等,故②错误,综上所述正确的有:①③④.故选:C.二、填空题(本题有8个小题.每题3分,共24分)7.16的算术平方根是 4 .解:∵42=16,∴=4.故答案为:4.8.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n=﹣1 .解:∵点A(m﹣1,3)与点B(2,n+1)关于x轴对称,∴m﹣1=2,n+1=﹣3,解得:m=3,n=﹣4,则m+n=﹣1.故答案为:﹣1.9.已知BD为四边ABCD的对角线,AB∥CD,要使△ABD≌△CDB,利用“SAS”可加条件AB =CD.解:∵AB∥CD,∴∠ABD=∠CDB,在△ABD与△CDB中,,∴△ABD≌△CDB,故答案为:AB=CD10.如图,在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,若△ABC的周长为22,BC=6,则△BCD的周长为14 .解:∵DE是AB的垂直平分线,∴BD=AD,∴CD=AC﹣AD=AC﹣BD,∴△BDC的周长=BC+BD+AC﹣BD=BC+AC,∵BC=6,AC=AB=(22﹣6)÷2=8,∴△BDC的周长=CB+AC=6+8=14.故答案为:14.11.如图B点在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B北偏东80°方向,则∠ACB=85°.解:如图,∵AE,DB是正南正北方向,∴BD∥AE,∵∠DBA=45°,∴∠BAE=∠DBA=45°,∵∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°,又∵∠DBC=80°,∴∠ABC=80°﹣45°=35°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣60°﹣35°=85°.故答案是:85°.12.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=115°.【解答】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=×(∠ABC+∠ACB)=×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.13.当2020+(﹣2a+1)2有最小值时,4040a﹣1=2019 .解:∵2020+(﹣2a+1)2有最小值,∴(﹣2a+1)2=0,∴a=,∴4040a﹣1=14040×﹣1=2019,故答案为:2019.14.若关于x、y的二元一次方程组的解满足x+y>1,则k的取值范围为k >2019 .解:将两个方程相加得2020x+2020y=k+1,则x+y=,∵x+y>1,∴>1,解得k>2019,故答案为:k>2019.三、解答题(本题有10个大题,共78分.)15.解方程组或不等式组.(1)(2)解:(1)①×3+②,得:5m=20,解得m=4,将m=4代入①,得:4﹣n=2,解得n=6,则方程组的解为;(2)解不等式①,得:x≤1,解不等式②,得:x>﹣2,则不等式组的解集为﹣2<x≤1.16.如图,点A,F,C,D在同一直线上,点B与点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC,求证:BC=EF.【解答】证明:∵AF=DC,∴AF+CF=DC+CF,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.17.△ABC在平面直角坐标系中的位置如图所示,点A(﹣2,2),点B(﹣3,﹣1),点C(﹣1,1).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标.(2)求出△A1B1C1的面积.解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(2,2);(2)△A1B1C1的面积为:2×3﹣×1×1﹣×2×2﹣×1×3=2.18.如图,AB=AE,∠1=∠2,AC=AD,求证:BC=DE.【解答】证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即:∠CAB=∠EAD,在△ACB和△ADE中:,∴△ACB≌△ADE(SAS),∴BC=DE.19.如图,在△ABC中,CA=CB,点D在BC上,且AB=AD=DC,求∠C的度数.解:设∠B=x°.∵CA=CB,∴∠A=∠CAB=x°,∵AB=AD=DC,∴∠B=∠ABD=x°,∠C=x°,在△ABC中,x+x+x=180,解得:x=72,∴∠C=×72°=36°.故∠C的度数是36°.20.如图,△ABC中,∠ABC与∠ACB的角平分线交于点F,过点F作DE∥BC,交AB于点D,交AC于点E.请猜想线段:DB、DE、EC之间的数量关系,并说明理由.解:结论:DE=BD+EC.理由:∵BF平分∠ABC,∴∠DBF=∠CBF,∵DE∥BC,∴∠CBF=∠DFB,∴∠DBF=∠DFB,∴BD=DF,同理FE=EC,∴DE=DF+EF=DB+EC.21.如图,四边形ABCD中,∠A=∠B=90°,E是AB上一点,且AE=BC,∠1=∠2.(1)证明:AB=AD+BC;(2)判断△CDE的形状?并说明理由.【解答】证明:(1)∵∠1=∠2,∴DE=CE,∵在RT△ADE和RT△BEC中,,∴RT△ADE≌RT△BEC,(HL)∴AD=BE,∵AB=AE+BE,∴AB=AD+BC;(2)∵RT△ADE≌RT△BEC,∴∠AED=∠BCE,∵∠BCE+∠CEB=90°,∴∠CEB+∠AED=90°,∴∠DEC=90°,∴△CDE为等腰直角三角形.22.如图是两位小朋友在探究某多边形的内角和时的一段对话,请根据他们的对话内容判断他们是在求几边形?少加的内角为多少度?解:1140°÷180°=6…60°,则边数是:6+1+2=9;他们在求九边形的内角和;180°﹣60°=120°,少加的那个内角为120度.23.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案?解:(1)设租36座的车x辆.据题意得:,解得:.∴7<x<9.∵x是整数,∴x=8.则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200元;方案②:租42座车7辆的费用:7×440=3080元;方案③:∵<,∴42座车越多越省钱,又∵=6…36,余下人数正好36座,可以得出:租42座车6辆和36座车1辆的总费用:6×440+1×400=3040元.∵3040<3080<3200,∴方案③:租42座车6辆和36座车1辆最省钱.24.如图,△ABC和△ADC都是每边长相等的等边三角形,点E,F同时分别从点B,A出发,各自沿BA,AD方向运动到点A,D停止,运动的速度相同,连接EC,FC.(1)在点E,F运动过程中∠ECF的大小是否随之变化?请说明理由;(2)在点E,F运动过程中,以点A,E,C,F为顶点的四边形的面积变化了吗?请说明理由;(3)连接EF,在图中找出和∠ACE相等的所有角,并说明理由;(4)若点E,F在射线BA,射线AD上继续运动下去;(1)小题中的结论还成立吗?(直接写出结论,不必说明理由)解:(1)∵E、F的速度相同,且同时运动,∴BE=AF,又∵BC=AC,∠B=∠CAF=60°,在△BCE和△ACF中,∴△BCE≌△ACF(SAS),∴∠BCE=∠ACF,因此∠ECF=∠ACF+∠ACE=∠BCE+∠ACE=60°,所以∠ECF=∠BCA=60°.(2)答:没有变化.证明:由(1)知:△BCE、△ACF的面积相等;故:S四边形AECF=S△AFC+S△AEC=S△AEC+S△BEC=S△ABC;因此四边形AECF的面积没有变化.(3)答:∠AFE=∠FCD=∠ACE;证明:由(1)可得:∠EAC=∠FDC=60°,AE=FD,AC=CD,∴△ACE≌△DCF,得∠ACE=∠FCD;由(1)知:EC=FC,∠ECF=60°,∴△ECF是等边三角形,即∠EFC=60°;∴∠FCD+∠DFC=120°,又∵∠AFE+∠DFC=120°,∴∠AFE=∠FCD=∠ACE.(4)回答(1)中结论成立.由于当E、F分别在BA、AD的延长线上时,(1)的全等三角形仍然成立,故(1)的结论也成立.。

初三数学升中考最后冲刺应用题训练(含答案)

初三数学升中考最后冲刺应用题训练(含答案)

初三数学升中考最后冲刺应用题训练(含答案)应用题训练1.(2022山西省太原市)某公司计划生产甲、乙两种产品共20件,其总产值w(万元)满足:1150<w<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案.产品名称每件产品的产值(万元)甲45乙752.(2022新疆乌鲁木齐)有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?(2)若此单位恰好花费7500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?3.(2022福建省福州市)郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用1000元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品.共有哪几种购买书包和词典的方案?4.(2022云南省楚雄州市)今年四月份,李大叔收获洋葱30吨,黄瓜13吨,现计划租用甲、乙两种货车共10辆将这两种蔬菜全部运往外地销售,已知一辆甲种货车可装洋葱4吨和黄瓜1吨;一辆乙种货车可装洋葱和黄瓜各2吨.(1)李大叔安排甲、乙两种货车时有几种方案?请你帮助设计出来;(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,请帮李大叔算一算应选择哪种方案,才能使运费最少?最少运费是多少元?5.(2022广东省茂名市)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.3.(1)试求出纸箱中蓝色球的个数;(3分)(2)假设向纸箱中再放进红色球某个,这时从纸箱中任意取出一个球是红色球的概率为0.5,试求某的值.(4分)6.(2022山东省济南市)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.16米AD草坪BC7.(2022河南省)为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和∶2,单价和为80元.排球的单价比为3(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?8.(2022山东省莱芜市)为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?9.(2022江苏省南京市)某批发商以每件50元的价格购进800件T 恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低某元.(1)填表(不需化简):(2)如果批发商希望通过销售这批T恤获利9000元,那时间第一个月第二个月清仓时么第二个月的单价应是多少元?单价(元)8040销售量(件)20010.(2022山东省临沂市)为落实素质教育要求,促进学生全面发展,我市某中学2022年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2022年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2022年到2022年,该中学三年为新增电脑共投资多少万元?11.(2022山东省青岛市)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.12.(2022山东省泰安市)某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?13.(2022山东省威海市)某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m3,5月份的燃气费是90元.求该市今年居民用气的价格.14.(2022广西贺州市)“玉树”地震后,某工厂一号车间接到紧急任务,急需为地震灾区生产15000顶帐篷,如果按照一号车间现有的人数和每个工人的生产速度(每个工人的生产速度一样),15天才能完成任务.生产两天后,由于情况紧急,厂领导决定从二号车间调来60名工人一起加入生产,调整后每个工人的生产工作效率都提高了40%.结果提前8天完成任务.求原来一号车间有多少名工人?15.(2022江苏省宿迁市)某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两和种花木每株成本分别为多少元;(2)据市场调研,1株甲种花木的售价为760元,1株乙种花木的售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?16.(2022广西梧州市)2022年的世界杯足球赛在南非举行.为了满足球迷的需要,某体育服装店老板计划到服装批发市场选购A、B两种品牌的服装.据市场调查得知,销售一件A品牌服装可获利润25元,销售一件B品牌服装可获利润32元.根据市场需要,该店老板购进A种品牌服装的数量比购进B种品牌服装的数量的2倍还多4件,且A种品牌服装最多可购进48件.若服装全部售出后,老板可获得的利润不少于1740元.请你分析这位老板可能有哪些选购方案?17.(2022广西桂林市)某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案....18.(2022浙江省绍兴市)某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?19.(2022湖北省咸宁市)随着人们节能意识的增强,节能产品的销售量逐年增加.某商场高效节能灯的年销售量2022年为5万只,预计2022年将达到7.2万只.求该商场2022年到2022年高效节能灯年销售量的平均增长率.20.(2022湖北省襄樊市)如图,是上海世博园内一个矩形花园,花园的长为100米,宽为50米,在它的四角各建有一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图中阴影部分)种植的是不同花草.已知种植花草部分的面积为3600米2,那么矩形花园各角处的正方形观光休息亭的边长为多少米?第1题答案.解:设计划生产甲产品某件,则生产乙产品20某件,根据题意,得解得10某45某7520某1150,45某7520某1200.35.3此时,20某9(件).某为整数,∴某11.答:公司应安排生产甲产品11件,乙产品9件.第2题答案.解:(1)在甲公司购买6台图形计算器需要用6(800206)4080(元);在乙公司购买需要用.应去乙公司购买;75%80063600(元)4080(元)(2)设该单位买某台,若在甲公司购买则需要花费某(80020某)元;若在乙公司购买则需要花费75%800某600某元;①若该单位是在甲公司花费7500元购买的图形计算器,则有某(80020某)7500,解之得某15,某25.当某15时,每台单价为8002015500440,符合题意,当某25时,每台单价为8002025300440,不符合题意,舍去.②若该单位是在乙公司花费7500元购买的图形计算器,则有600某7500,解之得某12.5,不符合题意,舍去.故该单位是在甲公司购买的图形计算器,买了15台.第3题答案.(1)解:设每个书包的价格为某元,则每本词典的价格为(某8)元.根据题意得:3某2(某8)124解得:某280∴某82.答:每个书包的价格为28元,每本词典的价格为20元.(2)解:设购买书包y个,则购买词典(40y)本.根据题意得:100028y20(40y)≥100,100028y20(40y)≤120.解得10≤y≤12.5.因为y取整数,所以y的值为10或11或12.所以有三种购买方案分别是:①书包10个,词典30本;②书包11个,词典29本;③书包12个,词典28本.第4题答案.解:(1)设李大叔安排某辆甲种货车,乙种货车有(10-某)辆,则有4某2(10某)30某2(10某)13解之得:5≤某≤7因为某应取正整数.所以某取5,6,7方案如下:①安排5辆甲种货车,5辆乙种货车;②安排6辆甲种货车,4辆乙种货车;③安排7辆甲种货车,3辆乙种货车.(2)方案①:5某2000+5某1300=16500(元)方案②:6某2000+4某1300=17200(元)方案③:7某2000+3某1300=17900(元)所以,李大叔应选择方案①才能使运费最少,最少运费是16500元.第5题答案.解:(1)由已知得纸箱中蓝色球的个数为:100(10.20.3)50(个)(2)方法一:根据题意得:20某0.5,100某解得:某60.检验某60,100某0,∴某60为原方程的解.答略.方法二:由已知得红色球20个、黄色球30个,蓝色球50个,为使任意取出一个球是红色球的概率为0.5,所以纸箱中红色球的个数等于黄色球与蓝色球个数之和,得:某+20=30+50,解得:某60.答略.第6题答案.解:设BC边的长为某米,根据题意得某32某120,2解得:某112,某220,∵20>16,∴某220不合题意,舍去,答:该矩形草坪BC边的长为12米.第7题答案.(1)设篮球的单价为某元,则排球的单价为8分2某元.依题意得3某2某80.32某32.3解得某48.即篮球和排球的单价分别是48元、32元.(2)设购买的篮球数量为n个,则购买的排球数量为(36n)个.n25,(36n)≤1600.48n32解得25n≤28.9,8.所以共有三种购买方案.而n为整数,所以其取值为26,27,28,对应的36n的值为10,方案一:购买篮球26个,排球10个;方案二:购买篮球27个,排球9个;方案三:购买篮球28个,排球8个.第8题答案.解:(1)设组建中型图书角某个,则组建小型图书角为(30-某)个.由题意得(30某)190080某30(30某)162050某60解这个不等式组得18≤某≤20.由于某只能取整数,∴某的取值是18,19,20.当某=18时,30-某=12;当某=19时,30-某=11;当某=20时,30-某=10.故有三种组建方案:方案一,组建中型图书角18个,小型图书角12个;方案二,组建中型图书角19个,小型图书角11个;方案三,组建中型图书角20个,小型图书角10个.(2)方法一:由于组建一个中型图书角的费用大于组建一个小型图书角的费用,因此组建中型图书角的数量越少,费用就越低,故方案一费用最低,最低费用是860某18+570某12=22320(元).方法二:①方案一的费用是:860某18+570某12=22320(元);②方案二的费用是:860某19+570某11=22610(元);③方案三的费用是:860某20+570某10=22900(元).故方案一费用最低,最低费用是22320元.第9题答案.解:(1)80-某200+10某800-200-(200+10某)(2)根据题意,得80某200+(80-某)(200+10某)+40[800-200-(200+10某)]-50某800=9000.整理,得某2-20某+100=0.解这个方程,得某1=某2=10.当某=10时,80-某=70>50.答:第二个月的单价应是70元.第10题答案.解:(1)设该校为新增电脑投资的年平均增长率为某根据题意,得一元二次方程111某18.59.解这个方程,得某10.3,某22.3(不合题意,舍去).答:该学校为新增电脑投资的年平均增长率为30%.(2)111110.318.5943.89(万元).答:从2022年到2022年,该中学三年为新增电脑共投资43.89万元.第11题答案.解:(1)设单独租用35座客车需某辆,由题意得:35某55(某1)45,解得:某5.∴35某355175(人).答:该校八年级参加社会实践活动的人数为175人.(2)设租35座客车y辆,则租55座客车(4y)辆,由题意得:35y55(4y)≥175,320y400(4y)≤1500211解这个不等式组,得1≤y≤2.44∵y取正整数,∴y=2.∴4-y=4-2=2.∴320某2+400某2=1440(元).所以本次社会实践活动所需车辆的租金为1440元.第12题答案.解:(1)设该种纪念品4月份的销售价格为某元,根据题意得2000200070020某0.9某解之得某50.经检验某50是所得方程的解.∴该种纪念品4月份的销售价格是50元.(2)由(1)知4月份销售件数为∴4月份每件盈利200040件,5080020元.405月份销售件数为402060件,且每件售价为500.945,每件比4月份少盈利5元,为15元,所以5月份销售这种纪念品获利6015900元.第13题答案.解:设该市去年居民用气的价格为某元/m3,则今年的价格为(1+25%)某元/m3.969010.根据题意,得某(125%)某解这个方程,得某=2.4.经检验,某=2.4是所列方程的根.2.4某(1+25%)=3(元).所以,该市今年居民用气的价格为3元/m3.第14题答案.解:设原来一号车间有某名工人,依题意得:1500021500015(140%)15某(1528)(某60)15000化简得150001.41300015某5(某60)解之得:某=70经检验:某=70是原方程的根.答:原来一号车间有70名工人.(注:用其它方法解答正确的均给予相应的分值.)第15题答案.(1)解:(1)设甲、乙两种花木的成本价分别为某元和y元.由题意得:2某3y17003某y1500某400解得:y300(2)设种植甲种花木为a株,则种植乙种花木为(3a+10)株.则有:解得:400a300(3a10)30000(760400)a(540300)(3a10)21600160270a913由于a为整数,∴a可取18或19或20,所以有三种具体方案:①种植甲种花木18株,种植乙种花木3a+10=64株;②种植甲种花木19株,种植乙种花木3a+10=67株;③种植甲种花木20株,种植乙种花木3a+10=70株.第16题答案.解:设选购B种服装某件,则选购A种服装为(2某+4)件,由题意得25(2某4)32某17402某448某22某20解之得∴20≤某≤22∵某为正整数∴某1=20,某2=21,某3=22.∴当某1=20时,2某4=2某20+4=44,当某2=21时,2某4=2某21+4=46,当某3=22时,2某4=2某22+4=48.∴老板有三种选购方案:购进B种品牌服装20件,购进A种品牌服装44件;购进B种品牌服装21件,购进A种品牌服装46件;购进B种品牌服装22件,购进A种品牌服装48件…10分第17题答案.解:(1)设租36座的车某辆.据题意得:36某42(某1)36某42(某2)30解得:某7某9由题意某应取8则春游人数为:368=288(人).(2)方案①:租36座车8辆的费用:8400=3200元,方案②:租42座车7辆的费用:74403080元方案③:因为426361288,租42座车6辆和36座车1辆的总费用:644014003040元所以方案③:租42座车6辆和36座车1辆最省钱.(说明:只要给出方案③就可得满分2分)第18题答案.解:(1)∵30000÷5000=6,∴能租出24间.(2)设每间商铺的年租金增加某万元,则(30-某某某)某(10+某)-(30-)某1-某0.5=275,0.50.50.52某2-11某+5=0,∴某=5或0.5,∴每间商铺的年租金定为10.5万元或15万元.第19题答案.解:设年销售量的平均增长率为某,依题意得:5(1某)27.2.解这个方程,得某10.2,某22.2.因为某为正数,所以某0.220%.答:该商场2022年到2022年高效节能灯年销售量的平均增长率为20%.第20题答案.解:设正方形观光休息亭的边长为某米.依题意,有(1002某)(502某)3600.整理,得某75某3500.解得某15,某270.2某7050,不合题意,舍去,某5.答:矩形花园各角处的正方形观点休息亭的边长为5米.7分∴老板有三种选购方案:购进B种品牌服装20件,购进A种品牌服装44件;购进B种品牌服装21件,购进A种品牌服装46件;购进B种品牌服装22件,购进A种品牌服装48件…10分第17题答案.解:(1)设租36座的车某辆.据题意得:36某42(某1)36某42(某2)30解得:某7某9由题意某应取8则春游人数为:368=288(人).(2)方案①:租36座车8辆的费用:8400=3200元,方案②:租42座车7辆的费用:74403080元方案③:因为426361288,租42座车6辆和36座车1辆的总费用:644014003040元所以方案③:租42座车6辆和36座车1辆最省钱.(说明:只要给出方案③就可得满分2分)第18题答案.解:(1)∵30000÷5000=6,∴能租出24间.(2)设每间商铺的年租金增加某万元,则(30-某某某)某(10+某)-(30-)某1-某0.5=275,0.50.50.52某2-11某+5=0,∴某=5或0.5,∴每间商铺的年租金定为10.5万元或15万元.第19题答案.解:设年销售量的平均增长率为某,依题意得:5(1某)27.2.解这个方程,得某10.2,某22.2.因为某为正数,所以某0.220%.答:该商场2022年到2022年高效节能灯年销售量的平均增长率为20%.第20题答案.解:设正方形观光休息亭的边长为某米.依题意,有(1002某)(502某)3600.整理,得某75某3500.解得某15,某270.2某7050,不合题意,舍去,某5.答:矩形花园各角处的正方形观点休息亭的边长为5米.7分。

2024年重庆一中九年级上学期开学考数学试题及答案

2024年重庆一中九年级上学期开学考数学试题及答案

重庆市第一中学2024-2025学年九年级上学期数学开学自测模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)在四个实数,0,﹣1,中,最小的数是()A.B.0C.﹣1D.2.(4分)我国传统文化中的“福禄寿喜”图(如图)由四个图案构成,这四个图案中是中心对称图形的是()A.B.C.D.3.(4分)为了解江北区2024年初中毕业年级体育考试成绩情况,从全区20000名初三参考学生中随机抽取1500名学生的体育考试成绩进行分析,下列说法正确的是()A.该调查方式是普查B.该调查中的总体是全区初三学生C.该调查中个体是江北区每位初三学生的体考成绩D.该调查中的样本是抽取的1500名学生4.(4分)估计的值应在()A.2和3之间B.3和4之间C.﹣3和﹣4之间D.﹣3和﹣2之间5.(4分)如图,△ABC与△DEF是位似图形,点O为位似中心,已知BO:OE=2:1,则△ABC与△DEF的面积比是()A.2:1B.3:1C.4:1D.5:16.(4分)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.(4分)已知如图,在▱ABCD中,点E为AD上一点,DE:AE=1:2,CE交对角线BD于点F,若△CDF的面积为3,则△BCF的面积为()A.18B.12C.9D.68.(4分)用字母“C“,“H”按如图所示的规律拼图案,则第⑧个图案中字母“H”的个数为()A.16B.17C.18D.199.(4分)如图,正方形ABCD中,E为BC边上一点,连接DE,将DE绕点E逆时针旋转90°得到EF,连接DF、BF,若∠ADF=α,则∠EFB一定等于()A.αB.45°﹣αC.90°﹣3αD.10.(4分)将x﹣y÷z×m+n(所有字母均不为0)中的任意两个字母对调位置,称为“对调操作”.例如:“x、y 对调操作”的结果为y﹣x÷z×m+n,且“x、y对调操作”和“y、x对调操作”是同一种“对调操作”.下列说法:①只有“x、n对调操作”的结果与原式相等;②若“x、y对调操作”与“n、y对调操作”的结果相等,则x=n或m+z=0;③若y=m=z,则所有的“对调操作”共有5种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:||+30=.12.(4分)在同一平面内,等边△ABC和正五边形BCDEF如图所示,则∠ABF的度数为.13.(4分)已知三角形的两边长为3和5,第三边的长为方程x2﹣5x+4=0的根,则该三角形的周长为.14.(4分)有四张背面完全相同,正面分别是“诚”、“勤”、“立”、“达”的卡牌,洗匀后背面朝上,小明随机抽取一张卡牌后记录卡牌上的汉字并放回,洗匀后再随机抽取一张卡牌,小明第二次抽取的卡牌上的汉字和第一次相同的概率是.15.(4分)如图,△ABC中,AD是∠BAC的角平分线,BD⊥AD,垂足为D,过D作DE∥AC交AB于点E,过D作DF⊥DE交AC于点F,连接EF,已知AB=4,BD=3,则EF=.16.(4分)如图,在正方形ABCD中,AE平分∠BAC,F为CD上一点,连接BF,交AC于点G,连接DG,若DF=CE,则∠DGF=.17.(4分)若关于x的不等式组有解且至多有2个偶数解且关于y的分式方程=3 的解为非负整数,则所有满足条件的整数a的值之和为.18.(4分)一个四位自然数N,各个数位上的数字均不等于0且互不相等,当N的十位数字减去个位数字的差等于N的千位数字减去百位数字的差的2倍时,我们称自然数N为“倍差数”;当N的十位数字与个位数字的和等于N的千位数字与百位数字的和的2倍时,我们称自然数N为“倍和数”;则最小的“倍差数”与最大的“倍和数”的和是;将“倍差数”N的千位数字与百位数字交换位置,十位数字与个位数字交换位置后得到的新“倍差数”为N′,且规定F(N)=,G(N)=,自然数M既是“倍差数”又是“倍和数”,且F(M)和G(M)均为正整数,则满足条件的数M为.三.解答题(共8小题,满分78分)19.(8分)计算:(1)﹣b(2a﹣b)+(a+b)2;(2).20.(10分)学习了菱形后,小莉进行了拓展性研究:过菱形的一个顶点分别向两条对边作垂线,则这两条垂线与对角线产生两个交点,那么这两交点到此顶点的距离关系如何?她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,过点A作CD的垂线,垂足为点M,交BD于点N.(只保留作图痕迹)已知:如图,四边形ABCD是菱形,过A作AE⊥BC于点E,并交对角线BD于点F,作AM⊥CD于点M,交对角线BD于点N.求证:AF=AN.证明:∵四边形ABCD是菱形∴AB=∠ABC=∠ADC∵AE⊥BC,AM⊥CD∴∠AEB=∠AMD=90°∵∠AEB+∠ABC+∠BAE=180°∠AMD+∠ADC+∠DAM=180°∴∴△ABF≌∴AF=AN请你依照题意完成下面命题:过菱形的一个顶点向两条对边作垂线,与对角线产生两个交点,则.21.(10分)近年来,诈骗分子较为猖狂,诈骗手段不断更新,据有关部门统计,2022年全年全国电信诈骗共计达到2万亿元.为有效提高学生防诈反诈能力,学校开展了“防诈反诈”讲座后进行了“防诈反诈”知识竞赛,并从七、八年级各随机选取了20名同学的竞赛成绩进行了整理、描述和分析(成绩得分用x表示,其中A:0≤x <85,B:85≤x<90,C:90≤x<95,D:95≤x≤100,得分在90分及以上为优秀).下面给出了部分信息:七年级C组同学的分数分别为:94,92,93,91;八年级C组同学的分数分别为:91,92,93,93,94,94,94,94,94.七、八年级选取的学生竞赛成绩统计表:(1)填空:a=,b=,m=;(2)根据以上数据,你认为该校七、八年级学生在“防诈反诈”知识竞赛中,哪个年级学生对“防诈反诈”的了解情况更好?请说明理由;(写出一条理由即可)(3)该校现有学生七年级780名,八年级800名,请估计这两个年级竞赛成绩为优秀的学生总人数.22.(10分)如图,平行四边形ABCD中,AD=6,CD=4,∠ADC=30°,动点P从点A出发沿折线A→B→C运动,到达点C停止运动.在运动过程中,过点P作PH⊥CD于点H,设点P的运动路程为x,BP+PH记为y1.(1)请直接写出y1关于x的函数表达式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出y1的图象与的图象有1个公共点时m的取值范围.23.(10分)4月,正是春暖花开,踏青徒步的好时节,某校初三年级开展了“踏青觅春,走进自然”的春游活动.甲、乙两班都从学校出发沿相同路线去距学校7.5千米的徒步终点,已知甲班的步行速度是乙班的1.5倍.(步行过程为匀速运动)(1)若乙班比甲班先走750米,甲班才开始从学校出发,半小时后两班相遇,则两班的速度分别为多少千米/小时?(2)若乙班在出发后第一小时内按原计划的速度匀速前进,一小时后将速度提高到与甲班一致,并比原计划提前10分钟到达徒步终点,求乙班到达终点用了多少小时?24.(10分)如图,车站A在车站B的正西方向,它们之间的距离为100千米,修理厂C在车站B的正东方向.现有一辆客车从车站B出发,沿北偏东45°方向行驶到达D处,已知D在A的北偏东60°方向,D在C的北偏西30°方向.(1)求车站B到目的地D的距离(结果保留根号);(2)客车在D处准备返回时发生了故障,司机在D处拨打了救援电话并在原地等待,一辆救援车从修理厂C 出发以35千米每小时的速度沿CD方向前往救援,同时一辆应急车从车站A以60千米每小时的速度沿AD方向前往接送滞留乘客,请通过计算说明救援车能否在应急车到达之前赶到D处.(参考数据:≈1.41,≈1.73,≈2.45)25.(10分)如图,在平面直角坐标系中,直线y=kx+2与y轴交于点A,与x轴负半轴交于点B,OB=2,直线y =2x与直线AB交于点C.(1)求直线AB的表达式;(2)如图1,点P为直线OC上一动点,连接P A,PB,求P A+PB的最小值及此时点P的坐标;(3)将直线OC沿射线BA方向平移个单位长度得到新直线y',在新直线y'上是否存在点M,使得AM与新直线y的夹角为45°,若存在,请写出点M的横坐标,选一种情况写出求解过程,若不存在,说明理由.26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.重庆市第一中学2024-2025学年九年级上学期数学开学自测模拟试卷(答案)参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)在四个实数,0,﹣1,中,最小的数是()A.B.0C.﹣1D.【答案】C2.(4分)我国传统文化中的“福禄寿喜”图(如图)由四个图案构成,这四个图案中是中心对称图形的是()A.B.C.D.【答案】B3.(4分)为了解江北区2024年初中毕业年级体育考试成绩情况,从全区20000名初三参考学生中随机抽取1500名学生的体育考试成绩进行分析,下列说法正确的是()A.该调查方式是普查B.该调查中的总体是全区初三学生C.该调查中个体是江北区每位初三学生的体考成绩D.该调查中的样本是抽取的1500名学生【答案】C4.(4分)估计的值应在()A.2和3之间B.3和4之间C.﹣3和﹣4之间D.﹣3和﹣2之间【答案】D5.(4分)如图,△ABC与△DEF是位似图形,点O为位似中心,已知BO:OE=2:1,则△ABC与△DEF的面积比是()A.2:1B.3:1C.4:1D.5:16.(4分)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A7.(4分)已知如图,在▱ABCD中,点E为AD上一点,DE:AE=1:2,CE交对角线BD于点F,若△CDF的面积为3,则△BCF的面积为()A.18B.12C.9D.6【答案】C8.(4分)用字母“C“,“H”按如图所示的规律拼图案,则第⑧个图案中字母“H”的个数为()A.16B.17C.18D.19【答案】C9.(4分)如图,正方形ABCD中,E为BC边上一点,连接DE,将DE绕点E逆时针旋转90°得到EF,连接DF、BF,若∠ADF=α,则∠EFB一定等于()A.αB.45°﹣αC.90°﹣3αD.10.(4分)将x﹣y÷z×m+n(所有字母均不为0)中的任意两个字母对调位置,称为“对调操作”.例如:“x、y 对调操作”的结果为y﹣x÷z×m+n,且“x、y对调操作”和“y、x对调操作”是同一种“对调操作”.下列说法:①只有“x、n对调操作”的结果与原式相等;②若“x、y对调操作”与“n、y对调操作”的结果相等,则x=n或m+z=0;③若y=m=z,则所有的“对调操作”共有5种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【答案】C二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:||+30=.【答案】.12.(4分)在同一平面内,等边△ABC和正五边形BCDEF如图所示,则∠ABF的度数为48° .【答案】48°.13.(4分)已知三角形的两边长为3和5,第三边的长为方程x2﹣5x+4=0的根,则该三角形的周长为12.【答案】12.14.(4分)有四张背面完全相同,正面分别是“诚”、“勤”、“立”、“达”的卡牌,洗匀后背面朝上,小明随机抽取一张卡牌后记录卡牌上的汉字并放回,洗匀后再随机抽取一张卡牌,小明第二次抽取的卡牌上的汉字和第一次相同的概率是.【答案】.15.(4分)如图,△ABC中,AD是∠BAC的角平分线,BD⊥AD,垂足为D,过D作DE∥AC交AB于点E,过D作DF⊥DE交AC于点F,连接EF,已知AB=4,BD=3,则EF=.【答案】.16.(4分)如图,在正方形ABCD中,AE平分∠BAC,F为CD上一点,连接BF,交AC于点G,连接DG,若DF=CE,则∠DGF=45° .【答案】45°.17.(4分)若关于x的不等式组有解且至多有2个偶数解且关于y的分式方程=3 的解为非负整数,则所有满足条件的整数a的值之和为7.【答案】7.18.(4分)一个四位自然数N,各个数位上的数字均不等于0且互不相等,当N的十位数字减去个位数字的差等于N的千位数字减去百位数字的差的2倍时,我们称自然数N为“倍差数”;当N的十位数字与个位数字的和等于N的千位数字与百位数字的和的2倍时,我们称自然数N为“倍和数”;则最小的“倍差数”与最大的“倍和数”的和是7532;将“倍差数”N的千位数字与百位数字交换位置,十位数字与个位数字交换位置后得到的新“倍差数”为N′,且规定F(N)=,G(N)=,自然数M既是“倍差数”又是“倍和数”,且F(M)和G(M)均为正整数,则满足条件的数M为3162.【答案】7532;3162.三.解答题(共8小题,满分78分)19.(8分)计算:(1)﹣b(2a﹣b)+(a+b)2;(2).【答案】(1)a2+2b2;(2).20.(10分)学习了菱形后,小莉进行了拓展性研究:过菱形的一个顶点分别向两条对边作垂线,则这两条垂线与对角线产生两个交点,那么这两交点到此顶点的距离关系如何?她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,过点A作CD的垂线,垂足为点M,交BD于点N.(只保留作图痕迹)已知:如图,四边形ABCD是菱形,过A作AE⊥BC于点E,并交对角线BD于点F,作AM⊥CD于点M,交对角线BD于点N.求证:AF=AN.证明:∵四边形ABCD是菱形∴AB=AD∠ABC=∠ADC∵AE⊥BC,AM⊥CD∴∠AEB=∠AMD=90°∵∠AEB+∠ABC+∠BAE=180°∠AMD+∠ADC+∠DAM=180°∴∠BAE=∠DAN∴△ABF≌△ADN∴AF=AN请你依照题意完成下面命题:过菱形的一个顶点向两条对边作垂线,与对角线产生两个交点,则两交点到顶点的距离相等.【答案】作图见解析,①AD;②∠BAE=∠DAN;③△ADN;④两交点到顶点的距离相等.21.(10分)近年来,诈骗分子较为猖狂,诈骗手段不断更新,据有关部门统计,2022年全年全国电信诈骗共计达到2万亿元.为有效提高学生防诈反诈能力,学校开展了“防诈反诈”讲座后进行了“防诈反诈”知识竞赛,并从七、八年级各随机选取了20名同学的竞赛成绩进行了整理、描述和分析(成绩得分用x表示,其中A:0≤x<85,B:85≤x<90,C:90≤x<95,D:95≤x≤100,得分在90分及以上为优秀).下面给出了部分信息:七年级C组同学的分数分别为:94,92,93,91;八年级C组同学的分数分别为:91,92,93,93,94,94,94,94,94.七、八年级选取的学生竞赛成绩统计表:年级平均数中位数众数优秀率七91a95m八9193b65%(1)填空:a=92.5,b=94,m=60%;(2)根据以上数据,你认为该校七、八年级学生在“防诈反诈”知识竞赛中,哪个年级学生对“防诈反诈”的了解情况更好?请说明理由;(3)该校现有学生七年级780名,八年级800名,请估计这两个年级竞赛成绩为优秀的学生总人数.【答案】(1)92.5,94,60%;(2)八年级学生对“防诈反诈”的了解情况更好;(3)这两个年级竞赛成绩为优秀的学生总人数为988人.22.(10分)如图,平行四边形ABCD中,AD=6,CD=4,∠ADC=30°,动点P从点A出发沿折线A→B→C运动,到达点C停止运动.在运动过程中,过点P作PH⊥CD于点H,设点P的运动路程为x,BP+PH记为y1.(1)请直接写出y1关于x的函数表达式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出y1的图象与的图象有1个公共点时m的取值范围.【答案】(1)y1=;(2)函数图象见解答,函数的最小值为3(答案不唯一);(3)7≤m≤11.23.(10分)4月,正是春暖花开,踏青徒步的好时节,某校初三年级开展了“踏青觅春,走进自然”的春游活动.甲、乙两班都从学校出发沿相同路线去距学校7.5千米的徒步终点,已知甲班的步行速度是乙班的1.5倍.(步行过程为匀速运动)(1)若乙班比甲班先走750米,甲班才开始从学校出发,半小时后两班相遇,则两班的速度分别为多少千米/小时?(2)若乙班在出发后第一小时内按原计划的速度匀速前进,一小时后将速度提高到与甲班一致,并比原计划提前10分钟到达徒步终点,求乙班到达终点用了多少小时?【答案】(1)甲班的步行速度为4.5km/h,乙班的步行速度为3km/h;(2)乙班到达终点用了小时.24.(10分)如图,车站A在车站B的正西方向,它们之间的距离为100千米,修理厂C在车站B的正东方向.现有一辆客车从车站B出发,沿北偏东45°方向行驶到达D处,已知D在A的北偏东60°方向,D在C的北偏西30°方向.(1)求车站B到目的地D的距离(结果保留根号);(2)客车在D处准备返回时发生了故障,司机在D处拨打了救援电话并在原地等待,一辆救援车从修理厂C 出发以35千米每小时的速度沿CD方向前往救援,同时一辆应急车从车站A以60千米每小时的速度沿AD方向前往接送滞留乘客,请通过计算说明救援车能否在应急车到达之前赶到D处.(参考数据:≈1.41,≈1.73,≈2.45)【答案】(1)车站B到目的地D的距离为(50+50)千米;(2)救援车能在应急车到达之前赶到D处.25.(10分)如图,在平面直角坐标系中,直线y=kx+2与y轴交于点A,与x轴负半轴交于点B,OB=2,直线y =2x与直线AB交于点C.(1)求直线AB的表达式;(2)如图1,点P为直线OC上一动点,连接P A,PB,求P A+PB的最小值及此时点P的坐标;(3)将直线OC沿射线BA方向平移个单位长度得到新直线y',在新直线y'上是否存在点M,使得AM与新直线y的夹角为45°,若存在,请写出点M的横坐标,选一种情况写出求解过程,若不存在,说明理由.【答案】(1)y=x+2;(2)P(,)、P A+PB的最小值为:;(3)存在,点M的坐标为:(,)或(,﹣).26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.【答案】。

最美的时光作文初三700字

最美的时光作文初三700字

最美的时光作文初三700字最美的时光作文1生命是一条奔腾不息的河,我们都是那个过河人。

我们行走在消逝中,渐渐淡忘了某些记忆。

记忆中最美好的时光,定格在那所学校,那个班级,那群最美的伙伴,那最耀眼的童年。

我们总会在怡心园水池边,看微风拂过,水泛起涟漪,触动我的情思。

我们总会在大树下,你追我赶,玩我们最爱玩的游戏。

我们总会在石椅上,谈天说地,你说一句,我插一句,没完没了。

怡心园是我们的天堂,那里洋溢着我们快乐的笑容,冲刺着我们最纯真的幻想,寄托着我们的喜怒哀乐。

下课铃响了,教室里顿时热闹起来。

每一种游戏都有各自的玩耍区域。

一群女生带着皮筋冲出教室,在走廊上跳起皮筋;几个男生在后黑板前排成一排,乒乓球在球拍和黑板撞击出来的声音有节奏的响了起来;一群学生围在一块讨论奥数题,这个不对,那个不对,一个久违的声音响起:“我知道了!”便听到一片欢呼声。

下课时,是我们众乐天堂,教室中,我们的欢呼久久回荡,这是我们孩子的天性,是用永生都难以磨灭的。

结束了一天的课程和游玩,寝室是我们最温暖的用来休息的港湾。

一天下来,我们或多或少有些不开心、不顺心的事。

在这里我们三五成群,把不开心的事说给朋友,和朋友倾诉,把悲伤分成多份,减轻自己的痛苦。

如有开心的事,跟朋友聊聊,把快乐分享给朋友。

夜深了,不知不觉中我们都睡着了。

后来,我升初中了,那最美的时光,最美的童年,久久留在过去……行人走在人生之路上,我们笑看窗外花开花落,叶枯叶落,静观天外云卷云舒,风停风起,美好的时光在那云中映出最清晰的影子,永久烙印在脑海中。

最美的时光作文2有的人最美好的时光就是去旅游,有的人最美好的时光就是跟家人一起吃团圆饭,有的人最美好的时光就是在某一次考试考到好成绩。

我最美好的时光在小学四年级的那两个月。

那时候,跑步特别快,老师就叫我加入田径队。

当时,我不知道田径队其实是个“地狱”。

老师要求我们早上七点三十分要回到学校操场集中,平时这个时间,我还慢慢吞吞的吃吃早餐。

西安高新逸翠园学校语文初三中考诗歌鉴赏试卷

西安高新逸翠园学校语文初三中考诗歌鉴赏试卷

西安高新逸翠园学校语文初三中考诗歌鉴赏试卷一、九年级下册诗歌鉴赏1.阅读下面这首清诗,回答问题。

铜仁江舟中杂诗六首(其二)郑珍渐见寒流阔,居人两岸分。

潭光清漏石,山影绿摇云。

渔得沙头汛,炊香柁尾闻。

向来风味熟,惆怅但离群。

(注)①柁:同“舵”。

②向来:方才,刚才。

(1)赏析颔联中的“摇”字。

(2)从后两联来看,诗人在船上的旅途生活有什么特点?2.阅读下面这首唐诗,完成下题。

潭上作张乔竹岛残阳映翠微①,雪翎禽过碧潭飞。

人间未有关身事,每到渔家不欲归。

【注】①翠微:青山。

(1)联系全诗,说说前两句的作用。

(2)后两句抒发了诗人怎样的思想感情?3.诗歌鉴赏题李凝幽居贾岛闲居少邻并,草径入荒园。

鸟宿池边树,僧敲月下门。

过桥分野色,移石动云根。

暂去还来此,幽期不负言。

注释:(1)池边:一作“池中”。

(2)分野色:山野景色被桥分开。

(1)下列对诗句的理解,不恰当的一项是()A.“题李凝幽居”中“题”字的意思是:“写”,“幽居”的意思是僻静的居处。

B.“闲居”句中“少邻并”的意思是说李凝自小就有邻居紧挨着做伴。

C.“僧敲”句中的“敲”,传说也曾想作“推”,“推敲”一词即来源于此。

D.“幽期”句中的“幽期”指归隐的约定,“不负言”表示不违背诺言。

(2)“僧敲月下门”句与名句“鸟鸣山更幽”有异曲同工之妙,它们在表现手法上有什么共同特点?这首诗表现了诗人怎样的生活情趣?4.阅读下面古诗,完成下列小题。

初晴游沧浪亭①苏舜钦(宋)夜雨连明②春水生,娇云浓暖弄阴晴。

帘虚日薄花竹静,时有鸠相对鸣。

(注释)①沧浪亭:苏州园林之一。

②连明:直至天明。

(1)请用自己的语言描绘诗歌前两句的画面,合理想象,30字左右。

(2)三、四两句诗主要运用了什么表现手法?试分析其作用。

5.阅读下面这首诗,完成下面小题。

满江红秋瑾小住京华,早又是,中秋佳节。

为篱下,黄花开遍,秋容如拭。

四面歌残终破楚,八年风味徒思浙。

苦将侬,强派作娥眉,殊未屑!(身不得,男儿列。

2020年九年级数学中考复习专题训练:《二元一次方程组实际应用》(含答案)

2020年九年级数学中考复习专题训练:《二元一次方程组实际应用》(含答案)

中考复习专题训练:《二元一次方程组实际应用》1.如表是小丽在某路口统计20分钟各种车辆通过情况的记录表,其中空格处的字迹已模糊.电瓶车公交车货车小轿车合计(车流总量)m 86 161 (第一时段)8:50~9:007n m n99(第二时段)9:00~9:10合计30 185(1)根据表格信息,在表格中填写第一时段电瓶车和货车的数量.(2)在第二时段内,电瓶车和公交车的车辆数之和恰好是第二时段车流总量的一半,且两个时段的电瓶车总数为170辆.①求m,n的值.②因为第二时段内车流总量较多,造成了交通拥堵现象,据估计,该时段内,每增加1辆公交车,可减少8辆小轿车和5辆电瓶年,若要使得第二时段和第一时段的车流总量最接近,则应增加几辆公交车?2.5G网络,是最新一代蜂窝移动通信技术,其数据传输速率远高于以前的蜂窝网络,最高可达10Gbit/s,比4G快100倍.5G手机也成为生活、工作不可缺少的移动设备,某电商公司销售两种5G手机,已知售出5部A型手机,3部B型手机的销售额为51000元;售出3部A型手机,2部B型手机的销售额为31500元.(1)求A型手机和B型手机的售价分别是多少元;(2)该电商公司在3月实行“满减促销”活动,活动方案为:单部手机满3000元减500元,满5000元减1500元(每部手机只能参加最高满减活动),结果3月A型手机的销量是B型手机的,4月该电商公司加大促销活动力度,每部A型手机按照3月满减后的售价再降a%,销量比3月增加2a%;每部B型手机按照满减后的售价再降a%,销量比3月销量增加a%,结果4月的销售总额比3月的销售总额多a%,求a的值.3.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价5万元/件,乙种产品售价3万元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,要求甲种产品比乙种产品多生产15件,如何安排甲、乙两种产品,使总产值是131.7万元.4.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐满滴快车,在同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里,两人付给滴滴快车的乘车费相同.(1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算俩人各自的实际乘车时间.5.某校准备组织七年级400名学生参观公园,已知用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人;(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若学校计划租用小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满;①请你设计出所有的租车方案;②若小客车每辆需租金400元,大客车每辆需租金760元,选出最省钱的方案,并求出最少租金.6.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:租金(单位:元/台•时)挖掘土石方量(单位:m3/台•时)甲型挖掘机100 60乙型挖掘机120 80(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?7.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有34吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.8.某公司需要粉刷一些相同的房间,经调查3名师傅一天粉刷8个房间,还剩40m2刷不完;5名徒弟一天可以粉刷9个房间;每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的面积;(2)该公司现有36个这样的房间需要粉刷,若只聘请1名师傅和2名徒弟一起粉刷,需要几天完成?(3)若来该公司应聘的有3名师傅和10名徒弟,每名师傅和每名徒弟每天的工资分别是240元和200元,该公司要求这36个房间要在2天内粉刷完成,问人工费最低是多少?9.某校七、八年级师生开展“一日游”活动,已知七年级师生共300人,八年级师生共220人.(1)已知七年级教师比八年级教师多6人,七年级学生比八年级学生多37%,求七年级教师与学生各有多少人;(2)参现某景点时、需要乘船游玩,现有A、B两种型号的游船,A型船的座位数是B 型船的1.5倍,若七年级师生全部乘坐A型船若干艘,刚好坐满,八年级全部乘坐B型船,要比七年级乘坐的A型船多一艘且空20个座位,问:①A、B两种游船每艘分别有多少个座位;②若两个年级的师生联合租船,且每艘游船恰好全部坐满,请写出所有的租船方案.10.某物流公司现有114吨货物,计划同时租用A,B两种车,经理发现一个运货货单上的一个信息是:A型车(满载)B型车(满载)运货总量3辆2辆38吨1辆3辆36吨根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)若物流公司打算一次运完,且恰好每辆车都装满货物,请你帮该物流公司设计租车方案;(3)若A型车每辆需租金800元/次,B型车每辆需租金1000元/次,那么最少租车费是多少元?此时的租车方案是什么?11.(1)某校组织初一年级师生共720人出去春游,学校打算租用旅游公司的大巴车接送,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车满载)车型甲乙丙汽车运载量(人/辆)30 48 60汽车运费(元/辆)400 500 600(1)若只租用甲、乙两种车型来接送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,学校打算用甲、乙、丙三种车型同时参与接送,已知它们的总辆为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?12.滨江区各学校积极参加“给贫困山区献爱心”活动,教育局筹集了120吨的衣物书籍等物品运往山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)200 250 300(1)全部物资可用甲型车8辆,乙型车5量,丙型车辆来运送.(2)若全部物资都用甲、乙两种车型来运送,需运费4100元,问分别需甲、乙两种车型各几辆?(3)为了节省运费,教育局打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?13.下表为某主题公园的几种门票价格,李三同学用1600元作为购买门票的资金.门票种类指定日普通票平日普通票夜票票价(元/张)200 160 100 (1)李三若用全部资金购买“指定日普通票”和“夜票”共10张,则“指定日普通票”和“夜票”各买多少张?(2)李三若想用全部资金购买“指定日普通票”“平日普通票”和“夜票”共10张(每种至少一张),请你帮他设计应如何购买?14.“脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.现欲将一批脐橙运往外地销售,若用2辆A型车和1辆B型车载满脐橙一次可运走10吨;用1辆A型车和2辆B型车载满脐橙一次可运走11吨.现有脐橙31吨,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.15.某体育文化用品商店购进篮球和排球共200个,进价和售价如下表全部销售完后共获利润2600元.篮球排球类别价格进价(元/个)80 50售价(元/个)95 60(1)求商店购进篮球和排球各多少个?(2)王老师在元旦节这天到该体育文化用品商店为学校买篮球和排球各若干个(两种球都买了),商店在他的这笔交易中获利100元王老师有哪几种购买方案.16.某建设工程队计划每小时挖掘土540方,现决定租用甲、乙两种型号的挖掘机来完成这项工作,已知一台甲型挖掘机与一台乙型挖掘机每小时共挖土140方,5台甲型挖掘机与3台乙型挖掘机恰好能完成每小时的挖掘量.(1)求甲、乙两种型号的挖掘机每小时各挖土多少方?(2)若租用一台甲型挖掘机每小时100元,租用一台乙型挖掘机每小时120元,且每小时支付的总租金不超过850元,又恰好完成每小时的挖掘量,请设计该工程队的租用方案.17.某商场销售A、B两种品牌的洗衣机,进价及售价如下表:(1)该商场9月份用45000元购进A、B两种品牌的洗衣机,全部售完后获利9600元,求商场9月份购进A、B两种洗衣机的数量;品牌A B进价(元/台)1500 1800售价(元/台)1800 2200 (2)该商场10月份又购进A、B两种品牌的洗衣机共用去36000元①问该商场共有几种进货方案?请你把所有方案列出来;②通过计算说明洗衣机全部销售完后哪种进货方案所获得的利润最大.18.在庆祝中华人民共和国成立70周年大阅兵活动期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?19.“两果问价”问题出自我国古代算书《四元玉鉴》,原题如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?又问各该几个钱?将题目译成白话文,内容如下:九百九十九文钱买了甜果和苦果共一千个,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?20.为支援武汉抗击新冠肺炎,甲地捐赠了600吨的救援物质并联系了一家快递公司进行运送.快递公司准备安排A、B两种车型把这批物资从甲地快速送到武汉.其中,从甲地到武汉,A型货车5辆、B型货车6辆,一共需补贴油费3800元;A型货车3辆、B型货车2辆,一共需补贴油费1800元.(1)从甲地到武汉,A、B两种型号的货车,每辆车需补贴的油费分别是多少元?(2)A型货车每辆可装15吨物资,B型货车每辆可装12吨物资,安排的B型货车的数量是A型货车的2倍还多4辆,且A型车最多可安排18辆.运送这批物资,不同安排中,补贴的总的油费最少是多少?参考答案1.解:(1)根据表格信息得,第一时段电瓶车和货车的数量分别为:(45+n﹣m)辆,(30﹣n)辆;故答案为:45+n﹣m,30﹣n;(2)①根据题意得,,解得:;②设应增加x辆公交车,根据题意得,7×16﹣5x+3+x+16+99﹣8x=161,解得:x=5,答:要使得第二时段和第一时段的车流总量最接近,则应增加6辆公交车.2.解:(1)设每部A型号手机的售价为x元,每部B型号手机的售价为y元.由题意,得,解得:,答:A型手机和B型手机的售价分别是7500元和4500元;(2)设3月B型手机的销量是m部,则A型手机的销量是m部,根据题意得,[(7500﹣1500)×(1﹣a%)][m(1+2a%)]+[(4500﹣500)×(1﹣a%)][m•(1+a%)]=[m(7500﹣1500)+m(4500﹣500)](1+a%),解得:a=30或a=0(不合题意舍去),答:a的值为30.3.解:(1)设应安排生产x件甲种产品,y件乙种产品,依题意,得:,解得:,所以5x+3y=135.答:应安排生产15件甲种产品,20件乙种产品,才能恰好使两种原料全部用完,此时总产值是135万元.(2)设生产乙种产品m件,则生产甲种产品(m+15)件,依题意,得:5×(1+10%)(m+15)+3×(1﹣10%)m=131.7,解得:m=6,∴m+15=21(件).答:生产乙种产品6件,则生产甲种产品21件,使总产值是131.7万元.4.解:(1)设小王的实际行车时间为x分钟,小张的实际行车时间为y分钟,由题意得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5﹣7)∴10.8+0.3x=16.5+0.3y0.3(x﹣y)=5.7∴x﹣y=19∴这两辆滴滴快车的实际行车时间相差19分钟.(2)由(1)及题意得:化简得①+②得2y=36∴y=18 ③将③代入①得x=37∴小王的实际乘车时间为37分钟,小张的实际乘车时间为18分钟.5.解:(1)设每辆小客车能坐x名学生,每辆大客车能坐y名学生根据题意,得解得答:每辆小客车能坐20名学生,每辆大客车能坐45名学生.(2)①根据题意,得20m+45n=400,∴n=,∵m、n均为非负数,∴或或.∴租车方案有3种.方案1:小客车20辆,大客车0辆;方案2:小客车11辆,大客车4辆;方案3:小客车2辆,大客车8辆.②方案1租金:400×20=8000(元)方案2租金:400×11+760×4=7440(元)方案3租金:400×2+760×8=6880(元)∵8000>7440>6880∴方案3租金最少,最少租金为6880元.6.解:(1)设甲、乙两种型号的挖掘机各需x台、y台.依题意得:,解得.答:甲、乙两种型号的挖掘机各需5台、3台;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.依题意得:60m+80n=540,化简得:3m+4n=27.∴m=9﹣n,∴解得方程的解为当时,每小时支付9×100=900(元);当时,每小时支付5×100+3×120=860(元);当时,每小时支付1×100+6×120=820(元),∴820<860<900.答:应选择1辆甲型挖掘机和6辆乙型挖掘机,支付最少为820元.7.解:(1)设1辆A型车载满货物一次可运货x吨,1辆B型车载满货物一次可运货y吨,依题意,得:,解得:.答:1辆A型车载满货物一次可运货3吨,1辆B型车载满货物一次可运货4吨.(2)依题意,得:3a+4b=34,∴a=.∵a,b均为非负整数,∴,,,∴该物流公司共有三种租车方案,方案1:租用A型车10辆,B型车1辆;方案2:租用A型车6辆,B型车4辆;方案3:租用A型车2辆,B型车7辆.(3)方案1所需租金:100×10+120×1=1120(元),方案2所需租金:100×6+120×4=1080(元),方案3所需租金:100×2+120×7=1040(元).∵1120>1080>1040,∴方案3租用A型车2辆、B型车7辆最省钱,最少租车费为1040元.8.解:(1)设每个房间需要粉刷的面积为xm2,每名徒弟一天粉刷ym2的墙面,则每名师傅一天粉刷(y+30)m2的墙面,依题意,得:,解得:.答:每个房间需要粉刷的面积为50m2.(2)由(1)可知:每名徒弟一天粉刷90m2的墙面,每名师傅一天粉刷120m2的墙面,∴50×36÷(120+90×2)=6(天).答:需要6天完成.(3)设聘请m名师傅和n名徒弟完成粉刷任务,依题意,得:120m+90n=36×50÷2,∴n=10﹣m.∵m,n均为非负整数,且0≤m≤3,0≤n≤10,∴,,∴该公司共有两种聘请方案,方案1:聘请10名徒弟完成粉刷任务;方案2:聘请3名师傅和6名徒弟完成粉刷任务.方案1所需人工费为200×10×2=4000(元),方案2所需人工费为(200×6+240×3)×2=3840(元).∵4000>3840,∴方案2聘请3名师傅和6名徒弟完成粉刷任务所需人工费最低,最低人工费为3840元.9.解:(1)设八年级教师有x人,学生有y人,依题意,得:,解得:,∴x+6=26,(1+37%)y=274.答:七年级教师有26人,学生有274人.(2)①设B型船每艘有m个座位,则A型船每艘有1.5m个座位,依题意,得:﹣=1,解得:m=40,经检验,m=40是原分式方程的解,且符合题意,∴1.5m=60.答:A型船每艘有60个座位,B型船每艘有40个座位.②设需租用A型船a艘,租用B型船b艘,依题意,得:60a+40b=300+220,∴b=13﹣a.又∵a,b均为非负整数,∴,,,,,∴共有5种租船方案,方案1:租用13艘B型船;方案2:租用2艘A型船,10艘B型船;方案3:租用4艘A型船,7艘B型船;方案4:租用6艘A型船,4艘B型船;方案5:租用8艘A型船,1艘B型船.10.解:(1)设1辆A型车和1辆B型车一次分别可以运货x吨,y吨,根据题意得:,解得:,则1辆A型车和1辆B型车一次分别可以运货6吨,10吨;(2)∵某物流公司现有114吨货物,计划同时租用A型车a辆,B型车b辆,∴6a+10b=114,则有,解得:0≤a≤19,∵a为正整数,∴a=1,2,…,10,11,12,13,14,15,16,17,18,19.∵b=为正整数,∴a=4,9,14,∴a=4,b=9;a=9,b=6;a=14,b=3.∴满足条件的租车方案一共有3种,a=4,b=9;a=9,b=6;a=14,b=3.(3)∵A型车每辆需租金800元/次,B型车每辆需租金1000元/次,当a=4,b=9,租车费用为:W=800×4+9×1000=12200元;当a=9,b=6,租车费用为:W=800×9+6×1000=13200元;当a=14,b=3,租车费用为:W=800×14+3×1000=14200元.∴当租用A型车4辆,B型车9辆时,租车费最少.11.解:(1)设需要甲种车型x辆,乙种车型y辆,根据题意得:,解得:.答:需要甲种车型8辆,乙种车型10辆.(2)设需要甲种车型m辆,乙种车型n辆,则需要丙种车型(14﹣m﹣n)辆,根据题意得:30m+48n+60(14﹣m﹣n)=720,∴m=4﹣n.∵m、n为正整数,∴当n=5时,m=2,14﹣m﹣n=7,此时运费为400×2+500×5+600×7=7500(元);当n=10时,m=0,不合题意舍去.答:安排的三种车型的辆数为甲种车型2辆,乙种车型5辆,丙种车型7辆,此时的运费是7500元.12.解:(1)根据题意得:(120﹣5×8﹣5×8)÷10=4(辆),答:丙型车需4辆来运送.故答案为:4.(2)设需要甲x辆,乙y辆,根据题意得:,解得:,答:分别需甲、乙两种车型为8辆和10辆.(3)设甲车有a辆,乙车有b辆,则丙车有(14﹣a﹣b)辆,由题意得5a+8b+10(14﹣a﹣b)=120,即a=4﹣b,∵a、b、14﹣a﹣b均为正整数,∴b只能等于5,从而a=2,14﹣a﹣b=7,∴甲车2辆,乙车5辆,丙车7辆,则需运费200×2+250×5+300×7=3750(元),答:甲车2辆,乙车5辆,丙车7辆,需运费3750元.13.解:(1)设购买“指定日普通票”x张,“夜票”y张,依题意,得:,解得:.答:购买“指定日普通票”6张,“夜票”4张.(2)设李三购买“指定日普通票”a张,“平日普通票”b张,则购买“夜票”(10﹣a﹣b)张,依题意,得:200a+160b+100(10﹣a﹣b)=1600,∴b=.∵a,b,(10﹣a﹣b)均为正整数,且每种至少一张,∴.答:李三购买“指定日普通票”3张,“平日普通票”5张,“夜票”2张.14.解:(1)设1辆A型车载满脐橙一次可运送x吨,1辆B型车载满脐橙一次可运送y 吨,依题意,得:,解得:.答:1辆A型车载满脐橙一次可运送3吨,1辆B型车载满脐橙一次可运送4吨.(2)依题意,得:3a+4b=31,∵a,b均为正整数,∴或或.∴一共有3种租车方案,方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆.(3)方案一所需租金为100×1+120×7=940(元);方案二所需租金为100×5+120×4=980(元);方案三所需租金为100×9+120×1=1020(元).∵940<980<1020,∴最省钱的租车方案是方案一,即租A型车1辆,B型车7辆,最少租车费为940元.15.解:(1)设商店购进篮球x个,排球y个,依题意,得:,解得:.答:商店购进篮球120个,排球80个.(2)设王老师购买篮球m个,排球n个,依题意,得:(95﹣80)m+(60﹣50)n=100,∴n=10﹣m.∵m,n均为正整数,∴m为偶数,∴当m=2时,n=7;当m=4时,n=4;当m=6时,n=1.答:王老师共有3种购买方案,方案1:购进篮球2个,排球7个;方案2:购进篮球4个,排球4个;方案3:购进篮球6个,排球1个.16.解:(1)设甲型挖掘机每小时挖土x方,乙型挖掘机每小时挖土y方,依题意,得:,解得:.答:甲型挖掘机每小时挖土60方,乙型挖掘机每小时挖土80方.(2)设租用m台甲型挖掘机、n台乙型挖掘机,依题意得:60m+80n=540,化简得:3m+4n=27,∴m=9﹣n.∵m、n均为正整数,∴或.当m=5、n=3时,支付租金:100×5+120×3=860(元),∵860>850,∴此租车方案不符合题意;当m=1、n=6时,支付租金:100×1+120×6=820(元),∵820<850,∴此租车方案符合题意.答:该工程队的租用方案为租1台甲型挖掘机和6台乙型挖掘机.17.解:(1)设A品牌的洗衣机购进x台,B品牌的洗衣机购进y台,依题意,得:,解得:.答:A品牌的洗衣机购进12台,B品牌的洗衣机购进15台.(2)解:①设A品牌的洗衣机购进a台,B品牌的洗衣机购进b台,依题意,得:1500a+1800b=36000,∴b=20﹣a.∵a,b为正整数,∴a为6的倍数,∴当a=6时,b=15;当a=12时,b=10;当a=18时,b=5.∴购买方案有三种,方案一:购进A品牌的洗衣机6台,B品牌的洗衣机15台;方案二:购进A品牌的洗衣机12台,B品牌的洗衣机10台;方案三:购进A品牌的洗衣机18台,B品牌的洗衣机5台.②方案一的利润:(1800﹣1500)×6+(2200﹣1800)×15=7800(元),方案二的利润:(1800﹣1500)×12+(2200﹣1800)×10=7600(元),方案三的利润:(1800﹣1500)×18+(2200﹣1800)×5=7400(元).∵7800>7600>7400,∴方案一购进A品牌的洗衣机6台、B品牌的洗衣机15台的利润最大.18.解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为非负整数,∴.答:需调配36座客车3辆,22座客车5辆.19.解:设甜果买了x个,苦果买了y个,依题意,得:,解得:,∴x=803,y=196.答:甜果买了657个,需要803文钱;苦果买了343个,需要196文钱.20.解:(1)设从甲地到武汉,每辆A型货车补贴油费x元,每辆B型货车补贴油费y元,依题意,得:,解得:.答:从甲地到武汉,每辆A型货车补贴油费400元,每辆B型货车补贴油费300元.(2)设安排A型货车m辆,则安排B型货车(2m+4)辆,依题意,得:,解得:14≤m≤18.∵m为正整数,∴m=15,16,17,18当m=15时,补贴的总的油费为400×15+300×(15×2+4)=16200(元);当m=16时,补贴的总的油费为400×16+300×(16×2+4)=17200(元);当m=17时,补贴的总的油费为400×17+300×(17×2+4)=18200(元);当m=18时,补贴的总的油费为400×18+300×(18×2+4)=19200(元).∵16200<17200<18200<19200,∴运送这批物资,不同安排中,补贴的总的油费最少是16200元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年桂林市初中毕业升学考试试卷数 学(考试用时:120分钟 满分: 120分)注意事项:1.本试卷分选择题和非选择题两部分.在本试卷上作答无效........... 2.考试结束后,将本试卷和答题卡一并交回. 3.答题前,请认真阅读答题.......卡.上的注意事项....... 一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题..卡.上对应题目的答案标号涂黑). 1.2-的绝对值是( ).A .2-B .2C .12- D .212.在实数5、37).A .5B .37CD3.如图,直线AB 、CD 被直线EF 所截,则∠3的同旁内角是( ). A .∠1 B .∠2 C .∠4 D .∠54. 如图所示几何体的左视图是( ).5.下列运算正确的是( ).A .6a ÷2a =3a B .22532a a a -= C .235()a a a -⋅= D .527ab ab +=6.如图,已知△ADE 与△ABC 的相似比为1:2,则△ADE 与△ABC 的面积比为( ). A . 1:2 B . 1:4C . 2:1D . 4:1A .B .C .D .12345A CDEFA D EBC7.若反比例函数k y x=的图象经过点(-3,2),则k 的值为 ( ).A .-6B .6C .-5D .5 8.一元二次方程2340x x +-=的解是 ( ).A .11x =,24x =-B .11x =-,24x =C .11x =-,24x =-D .11x =,24x = 9.下列说法正确的是( ).A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13.D .一组数据:1,7,3,5,3的众数是3.10.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 ( ).A .1B .34C .12D .1311.将抛物线221216y x x =-+绕它的顶点旋转180°,所得抛物线的解析式是( ).A .221216y x x =--+B .221216y x x =-+-C .221219y x x =-+- D .221220y x x =-+- 12.如图,已知正方形ABCD 的边长为4 ,E 是BC 边上的一个动点,AE ⊥EF , EF 交DC 于F , 设BE =x ,FC =y ,则当点E 从点B 运动到点C 时,y 关于x 的函数图象是( ).A .B .C .D .二、填空题(共6小题,每小题3分,共18分,请将答案填在答题..卡.上). 13.因式分解:2()1xy -= .ADBEF14.情系玉树大爱无疆,截至5月21日12时,青海玉树共接收国内外地震救灾捐赠款物551300万元,将551300万元用科学记数法表示为__________万元. 15.函数1y =x 的取值范围是 .16.正五边形的内角和等于______度. 17.已知13x x+=,则代数式221x x+的值为_________.18.如图:已知AB =10,点C 、D 在线段AB 上且AC =DB =2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.三、解答题(本大题共8题,共66分,请将答案写在答题..卡.上). 19.(本题满分6分)计算:11()2)3---4cos30°+20.(本题满分6分)先化简,再求值:22211()x y x yx yx y+÷-+-,其中1,1x y ==21.(本题满分8分) 求证:矩形的对角线相等.22.(本题满分8分)如图是某地6月1日至6月7日每天最高、最低气温的折线统计图.请你根据折线统计图,回答下列问题:(1)在这7天中,日温差最大的一天是6月_____日; (2)这7天的日最高气温的平均数是______℃;(3)这7天日最高气温的方差是 _______ .(℃) 223.(本题满分8分)某蔬菜公司收购到某种蔬菜104吨,准备加工后上市销售. 该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨. 现计划用16天正好完成加工任务,则该公司应安排几天精加工,几天粗加工?24.(本题满分8分)某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱...的租车方案.25.(本题满分10分)如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.26.(本题满分12分)如图,过A(8,0)、B(0,xy3交于点C.平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;l分别交线段BC、OC于点D、E,以DE为边向左侧作等边△DEF,设△DEF与△BCO重叠部分的面积为S(平方单位),直线l的运动时间为t(秒).(1)直接写出C 点坐标和t 的取值范围; (2)求S 与t 的函数关系式;(3)设直线l 与x 轴交于点P ,是否存在这样的点P ,使得以P 、O 、F 为顶点的三角形为等腰三角形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.2010年桂林市初中毕业升学考试数学参考答案及评分标准一、选择题:二、填空题:13.(1)(1)xy xy +- 14.5.513×105 15.x >1 16.540 17.7 18.3 三、解答题:19.(本题 6分)解:原式=3142--⨯+……………………3分=31--………………………………………………5分=2 ………………………………………… 6分备用图12222222:=()x y x y x y x yx y x y+-+÷---20.(本题 6分)解原式 ……………… 1分=22222x y x y x y x yx y++--⨯- ………………………3分=22x x y=2xy…………………………………4分=2131=- ……………………………………6分21.(本题8 分)已知:四边形ABCD 是矩形, AC 与BD 是对角线 ……………2分求证:AC =BD ………………………………………3分证明: ∵四边形ABCD 是矩形∴AB=DC ,∠ABC =∠DCB =90°…………4分 又∵BC=CB …………………………5分 ∴△ABC ≌△DCB …………6分 ∴AC=BD ……………………7分 所以矩形的对角线相等. …………8分22. (本题 8分) (1)6, (2)26, (3)107[说明:(1)2分,(2)3分,(3)3分]23. (本题8 分)设该公司安排x 天粗加工, 安排y 天精加工.……………1分据题意得:1684104x y x y +=⎧⎨+=⎩……………………………………4分解得:106x y =⎧⎨=⎩………………………………………………7分答: 该公司安排10天粗加工, 安排6天精加工.…………8分24. (本题8 分)解(1)设租36座的车x 辆.……………………………………1分据题意得:3642(1)3642(2)30x x x x <-⎧⎨>-+⎩………………………………3分解得:79x x >⎧⎨<⎩ ……………………………………………4分1,,2=y xy==当时原式ABCD由题意x应取8…………………………5分则春游人数为:36⨯8=288(人).…………………………………6分(2) 方案①:租36座车8辆的费用:8⨯400=3200元,方案②:租42座车7辆的费用:74403080⨯=元方案③:因为426361288⨯+⨯=,租42座车6辆和36座车1辆的总费用:644014003040⨯+⨯=元所以方案③:租42座车6辆和36座车1辆最省钱.…………8分(说明:只要给出方案③就可得满分2分)25.(本题10 分)证明(1)连结OF∵FH是⊙O的切线∴OF⊥FH ……………1分∵FH∥BC,∴OF垂直平分BC ………2分∴BF FC=∴AF平分∠BAC …………3分(2)证明:由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2 ……………4分∴∠1+∠4=∠2+∠3∴∠1+∠4=∠5+∠3 ……………5分∠FDB=∠FBD∴BF=FD ………………6分(3)解:在△BFE和△AFB中∵∠5=∠2=∠1,∠F=∠F∴△BFE∽△AFB ………………7分∴B F A FF E B F=,……………8分∴2BF FE FA=⋅∴2BFFAFE=……………………9分∴274944 FA==∴AD=4974-=214…………………10分26.(本题12 分)解(1)C(4,……………………………2分t的取值范围是:0≤t≤4 ……………………………… 3分(2)∵D点的坐标是(t,+,E的坐标是(t)∴DE=+=……………………4分∴等边△DEF的DE边上的高为:123t-∴当点F在BO边上时:123t-=t,∴t=3 ……………………5分①当0≤t<3时,重叠部分为等腰梯形,可求梯形上底为:-3t…7分S=)23t+-=)2t=2-+………………………………8分②当3≤t≤4时,重叠部分为等边三角形S=1)(123)2t-………………… 9分=2-+……………………10分(3)存在,P(247,0)……………………12分说明:∵FO≥FP≥OP≤4∴以P,O,F以顶点的等腰三角形,腰只有可能是FO,FP, 若FO=FP时,t=2(12-3t),t=247,∴P(247,0)。

相关文档
最新文档